<div dir="ltr">Dear Ali,<div><br></div><div>> So does it mean that the appearance of the scalp maps does not have any relationship with the dipolarity? (i.e. can we judge/guess from the appearance of a scalp maps that it could be a dipolar source? )<br></div><div class="gmail_extra"><br></div><div class="gmail_extra">Dipolarity is directly determined by scalp topography. I can almost predict where dipoles should be fit when I see the IC scalp maps, if they are dipolar. It's a very simple thing.</div><div class="gmail_extra"><br></div><div class="gmail_extra"><span style="font-size:12.8px">> However, dipoles may invert when neurons fire, so the EEG sources can't be stationary. So how is this assumption plausible for the </span><span style="font-size:12.8px">constitutive sources of EEG data?</span><br></div><div class="gmail_extra"><br></div><div class="gmail_extra">As EEG is an AC signal, by definition polarity must invert (a lot), which is NOT a cause of spatial non-stationarity. Do you have a speaker with a bass-reflex port in the back side? Or even better, do you own Magnepan, Martin Logan, Apogee, Quad, or old STAX? These speakers are dipolar, but they don't run around the room.</div><div class="gmail_extra"><br></div><div class="gmail_extra">Makoto</div><div class="gmail_extra"><br></div><div class="gmail_extra"><br></div><div class="gmail_extra"><br><div class="gmail_quote">On Thu, Feb 2, 2017 at 10:33 AM, ali zahedi <span dir="ltr"><<a href="mailto:ali.zahedi.bham@gmail.com" target="_blank">ali.zahedi.bham@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div dir="ltr">Dear Makoto,<div><br></div><div>Thank you for your explanation.</div><div>So does it mean that the appearance of the scalp maps does not have any relationship with the dipolarity? (i.e. can we judge/guess from the appearance of a scalp maps that it could be a dipolar source? )</div><div><br></div><div>Also, as it mentioned in <span style="font-size:12.8px">Delorme et al. (2012) PLoS One paper "</span>The motivation for the dipolarity is the
assumption that<span style="font-size:12.8px"> </span>brain and non-brain EEG sources have spatially
fixed source locations and orientations<span style="font-size:12.8px">". However, dipoles may invert when neurons fire, so the EEG sources can't be stationary. So how is this assumption plausible for the </span><span style="font-size:12.8px">constitutive sources of EEG data?</span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">Regards,</span></div><div><span style="font-size:12.8px">Ali</span></div><div><br></div></div><div class="gmail-HOEnZb"><div class="gmail-h5"><div class="gmail_extra"><br><div class="gmail_quote">On Thu, Feb 2, 2017 at 2:55 AM, Makoto Miyakoshi <span dir="ltr"><<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div dir="ltr">Dear Ali,<div><br></div><div>The scalp maps of ICs directly reflects the columns of mixing matrix (i.e. EEG.icawinv).</div><div>See slide 14: 'How does ICA model physiology' (from EEGLAB workshop 2017 at Mysore)<br></div><div><a href="https://sccn.ucsd.edu/mediawiki/images/7/74/IcaDecompositionOfEegData4.pdf" target="_blank">https://sccn.ucsd.edu/mediawik<wbr>i/images/7/74/IcaDecomposition<wbr>OfEegData4.pdf</a><br></div><div><br></div><div>Therefore, if you see nice dipolar scalp maps, it means that ICA (which does not know anything... it does not know channel locations, does not even know the signal is EEG!) identified theoretical electrophysiological property of EEG (see Nunes books about it).</div><span><div><br></div><div>> Is it just the smoothness of the scalp maps that determines capacity to fit dipoles?<br></div><div><br></div></span><div>No, not the smoothness. It's dipolarity. See Delorme et al. (2012) PLoS One paper.</div><div><br></div><div>Makoto</div><div class="gmail_extra"><br><div class="gmail_quote"><div><div class="gmail-m_269082677967001743h5">On Sat, Jan 28, 2017 at 12:00 PM, ali zahedi <span dir="ltr"><<a href="mailto:ali.zahedi.bham@gmail.com" target="_blank">ali.zahedi.bham@gmail.com</a>></span> wrote:<br></div></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div><div class="gmail-m_269082677967001743h5"><div dir="ltr">Dear all,<div><br></div><div>Regarding the dipole fitting to the ICs and dipolar components, what are the properties of the scalp maps of the ICs that can fit with a dipole with less than a residual variance? Is it just the smoothness of the scalp maps that determines capacity to fit dipoles?  </div><div><br></div><div>I really appreciate it if you could help me with this.</div><div><br></div><div>Regards,</div><div>Ali</div></div>
<br></div></div><span>______________________________<wbr>_________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/ee<wbr>glabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.uc<wbr>sd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.e<wbr>du</a><br></span></blockquote></div><span class="gmail-m_269082677967001743HOEnZb"><font color="#888888"><br><br clear="all"><div><br></div>-- <br><div class="gmail-m_269082677967001743m_-3911071752532648177gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</font></span></div></div>
</blockquote></div><br></div>
</div></div></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</div></div>