<div dir="ltr"><div><div style="font-size:12.8px">Hi,</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><span style="font-size:12.8px">I was planning on using ASR in the Pre-processing stage for one of the analysis I am doing and I was a bit confused with a couple of things. Would someone help me get a better understanding of them ?</span></div><span class="gmail-im" style="font-size:12.8px"><div style="font-size:12.8px"><br></div></span><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">1) Can there be successful reconstruction if the system is having very low density ? i.e. a 4 channel system by muse(2 frontal (AF7 ,AF8) and 2 temporal(TP9&TP10) channels) ? Will it be rank deficit if the channels are just 4 especially considering the fact that many at times two channels would be noisy?</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><span style="font-size:12.8px">2) Since Muse has widely separated channels, </span><span style="font-size:12.8px">the spatial separateness should affect the reconstruction, as it assumes correlation right?</span><span style="font-size:12.8px"> Is there a problem in doing reconstruction in this case?</span><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">3) If clean segments are automatically found out, should I remove signals >100uV prior to ASR if a large part of the total signal is noisy?</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><span class="gmail-im" style="font-size:12.8px">4) To my understanding the component space is respective of the number of channels and no other variant exists for ASR algorithm. </span></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Thanks</div></div>-- <br><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><p style="font-family:arial;font-size:small">Regards,</p><p style="font-family:arial;font-size:small"><b><font color="#000000"><br></font></b></p><p style="font-family:arial;font-size:small"><b><font color="#351c75">Akshay Sujatha Ravindran</font></b></p><p style="font-size:small"><i style="color:rgb(53,28,117);font-family:tahoma,sans-serif">Ph.D. Graduate Student | Electrical Engineering| University of Houston</i><br></p><p style="font-size:small"><i style="color:rgb(53,28,117);font-family:tahoma,sans-serif">Research Assistant | Non Invasive Brain Machine Interface Lab | University of Houston</i></p></div></div></div></div></div></div></div></div></div></div></div></div></div></div>
</div>