<html><head></head><body><div style="font-family:Helvetica Neue, Helvetica, Arial, sans-serif;font-size:small;"><div><div>
<!--StartFragment-->

<p class="ydp7a31a0ffMsoNormal">Niels,</p>

<p class="ydp7a31a0ffMsoNormal">   I am new to the
EEGLab list and am not sure exactly how you are fitting dipoles or how many,
etc.  When I worked at NIH in the 1990s
we dealt with these issues including dipole coherence and dipole phase
differences, here is a url to one of our publications that may be helpful: </p>

<p class="ydp7a31a0ffMsoNormal"><a href="http://www.appliedneuroscience.com/HumanNetworkDynamics.pdf" rel="nofollow" target="_blank">http://www.appliedneuroscience.com/HumanNetworkDynamics.pdf</a></p>

<p class="ydp7a31a0ffMsoNormal"> </p>

<p class="ydp7a31a0ffMsoNormal">Recently we recognize that the 3D vectors have different
orientations depending on their location in gyri and sulci and therefore reliance
on the resultant vector (square root of the sum of squares) for connectivity analyses is not always the
best.  Instead we identify the x or y or
z vector that has the largest magnitude or largest contribution to the inverse solution and then compute coherence
and phase lags and cross-frequency coupling and effective connectivity, etc. between
the strongest  vector or dipole moment no matter whether
it is x or y or z.  Have you tried this
approach or am I off base about what you are trying to do?</p>

<p class="ydp7a31a0ffMsoNormal"> </p>

<p class="ydp7a31a0ffMsoNormal">Best regards,</p>

<p class="ydp7a31a0ffMsoNormal"> </p>

<p class="ydp7a31a0ffMsoNormal">Robert</p></div></div><div><br></div><div><br></div><div id="yahoo_quoted_8318136654" class="yahoo_quoted"><div style="font-family:'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:13px;color:#26282a;"><div>On Tuesday, June 13, 2017, 5:34:56 PM EDT, Tarik S Bel-Bahar <tarikbelbahar@gmail.com> wrote:</div><div><br></div><div><br></div><div><div dir='ltr'><html><body>Hello Nils, quick note below, best wishes.<br clear="none"><br clear="none">I believe the eeglab approach is to use dipfit for finding dipoles<br clear="none">that accurately explain spatial IC maps, thus there is no temporal<br clear="none">information that the dipoles are explaining, in this case, in eeglab.<br clear="none"><br clear="none">You probably need to get some way to get dipole fits over time, which<br clear="none">may require transitioning from eeglab to fieldtrip or brainstorm,<br clear="none">where surely that functionality exists.<br clear="none"><br clear="none"><br clear="none"><br clear="none"><br clear="none"><br clear="none"><br clear="none">On Mon, Jun 12, 2017 at 3:55 AM, Nils Hachmeister<br clear="none"><<a shape="rect" ymailto="mailto:nils.hachmeister@uni-bielefeld.de" href="mailto:nils.hachmeister@uni-bielefeld.de">nils.hachmeister@uni-bielefeld.de</a>> wrote:<br clear="none">> Hall again,<br clear="none">><br clear="none">> my topic is still dipole fitting, but as this question is otherwise<br clear="none">> unrelated to my first question I gave it a separate post.<br clear="none">><br clear="none">> When performing dipole fitting with EEGLAB-dipfit I only ever came across<br clear="none">> single 3-d vectors as representations for a dipole's moment. It is my<br clear="none">> understanding of dipole fitting that the dipole's moment should change over<br clear="none">> time, thereby generating the activity explaining the IC-activation (minus<br clear="none">> the RV).<br clear="none">><br clear="none">> I understand that having one, adequately chosen moment (representation) per<br clear="none">> dipole during dipole fitting is handy. However, I intended to perform a<br clear="none">> connectivity analysis on the dipole-activation (more precisely on the<br clear="none">> moments' norm). Is there some way to obtain such information from the dipole<br clear="none">> model? Or is this the wrong approach?<br clear="none">><br clear="none">> Best Regards<br clear="none">><br clear="none">> Nils<br clear="none">><br clear="none">> _______________________________________________<br clear="none">> Eeglablist page: <a shape="rect" href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br clear="none">> To unsubscribe, send an empty email to <a shape="rect" ymailto="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.ucsd.edu</a><br clear="none">> For digest mode, send an email with the subject "set digest mime" to<br clear="none">> <a shape="rect" ymailto="mailto:eeglablist-request@sccn.ucsd.edu" href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.edu</a><div class="yqt3529559936" id="yqtfd89989"><br clear="none">_______________________________________________<br clear="none">Eeglablist page: <a shape="rect" href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br clear="none">To unsubscribe, send an empty email to <a shape="rect" ymailto="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.ucsd.edu</a><br clear="none">For digest mode, send an email with the subject "set digest mime" to <a shape="rect" ymailto="mailto:eeglablist-request@sccn.ucsd.edu" href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.edu</a><br clear="none"></div></body></html></div></div></div></div></div></body></html>