<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph
{mso-style-priority:34;
margin-top:0in;
margin-right:0in;
margin-bottom:0in;
margin-left:.5in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
p.msonormal0, li.msonormal0, div.msonormal0
{mso-style-name:msonormal;
margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
span.EmailStyle19
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.EmailStyle20
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.EmailStyle21
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.EmailStyle23
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:949362927;
mso-list-template-ids:1974886736;}
@list l1
{mso-list-id:1375959509;
mso-list-type:hybrid;
mso-list-template-ids:306449106 1540245528 67698713 67698715 67698703 67698713 67698715 67698703 67698713 67698715;}
@list l1:level1
{mso-level-text:%1-;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level2
{mso-level-number-format:alpha-lower;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level3
{mso-level-number-format:roman-lower;
mso-level-tab-stop:none;
mso-level-number-position:right;
text-indent:-9.0pt;}
@list l1:level4
{mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level5
{mso-level-number-format:alpha-lower;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level6
{mso-level-number-format:roman-lower;
mso-level-tab-stop:none;
mso-level-number-position:right;
text-indent:-9.0pt;}
@list l1:level7
{mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level8
{mso-level-number-format:alpha-lower;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;}
@list l1:level9
{mso-level-number-format:roman-lower;
mso-level-tab-stop:none;
mso-level-number-position:right;
text-indent:-9.0pt;}
ol
{margin-bottom:0in;}
ul
{margin-bottom:0in;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="MsoNormal">Hi , <o:p></o:p></p>
<p class="MsoNormal">Anyone knows in generating a GLM/ logistic regression model using both categorical and non-categorical data:
<o:p></o:p></p>
<ol style="margin-top:0in" start="1" type="1">
<li class="MsoNormal" style="margin-left:0in;mso-list:l1 level1 lfo3"> how should I treat with coefficient with insignificant p-values? Should I include them in the model? And how should I interpret the model with insignificant coefficient ( even after stepwise
process) ? <o:p></o:p></li><li class="MsoNormal" style="margin-left:0in;mso-list:l1 level1 lfo3">If I want to see their effect size then should I standardize (zscore) the predictors first?<o:p></o:p></li><li class="MsoNormal" style="margin-left:0in;mso-list:l1 level1 lfo3">If I have unbalanced data for training a logistic regression model ( suppose in my database, I have 1000 pairs for output category ‘1’ and only 50 data for output category ‘2’) then how
should I select the training data size?<o:p></o:p></li></ol>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Best,<o:p></o:p></p>
<p class="MsoNormal">Iman<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</body>
</html>