<div dir="ltr">Dear Joshua,<div><br></div><div>Sorry for belated response.</div><div><br></div><div>> For example, if you define freqs as [3 50], and a 250ms window size is chosen by the algorithm, to estimate power at 3 hz, you would require a 333 ms time window to capture a full cycle. How is it that the TF image can show fluctuations in 3Hz power within a 200ms segment of time?<br></div><div><br></div><div>If you do this, I believe the function performs wavelet(-like) transform starting from 1/(0.25s/3cycles) = 12Hz and never goes down to 3Hz even if specified. You should be able to confirm it in the result.</div><div><br></div><div>Makoto</div><div><br></div><div><br></div><div class="gmail_extra"><br><div class="gmail_quote">On Fri, Mar 31, 2017 at 1:54 AM, Baker, Joshua <span dir="ltr"><<a href="mailto:joshua.baker@ntu.ac.uk" target="_blank">joshua.baker@ntu.ac.uk</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div lang="EN-GB">
<div class="gmail-m_-1158244134954755480WordSection1">
<p class="MsoNormal">Dear list, <u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">When using the newtimef function in eeglab (cycles=0, using STFFTs), and you do not specify winsize or stepsize, how does the algorithm chose them? Also, how is it that a TF image when using STFFTs shows variations in low frequencies at
a time scale that is too small to fully capture a full cycle of the frequency? For example, if you define freqs as [3 50], and a 250ms window size is chosen by the algorithm, to estimate power at 3 hz, you would require a 333 ms time window to capture a full
cycle. How is it that the TF image can show fluctuations in 3Hz power within a 200ms segment of time?<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal">Thanks for your help<u></u><u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal"><u></u> <u></u></p>
<p class="MsoNormal"><span>Joshua Baker<u></u><u></u></span></p>
<p class="MsoNormal"><span>Psychology Technician (Behavioural Neuroscience)<u></u><u></u></span></p>
<p class="MsoNormal"><span>Psychology<u></u><u></u></span></p>
<p class="MsoNormal"><span>Nottingham Trent University<u></u><u></u></span></p>
<p class="MsoNormal"><u></u> <u></u></p>
</div>
DISCLAIMER: This email is intended solely for the addressee. It may contain private and confidential information. If you are not the intended addressee, please take no action based on it nor show a copy to anyone. In this case, please reply to this email to
highlight the error. Opinions and information in this email that do not relate to the official business of Nottingham Trent University shall be understood as neither given nor endorsed by the University. Nottingham Trent University has taken steps to ensure
that this email and any attachments are virus-free, but we do advise that the recipient should check that the email and its attachments are actually virus free. This is in keeping with good computing practice.
</div>
<br>______________________________<wbr>_________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/<wbr>eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu">eeglablist-unsubscribe@sccn.<wbr>ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu">eeglablist-request@sccn.ucsd.<wbr>edu</a><br></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</div></div>