<div dir="ltr">Hi Makoto,<div><br></div><div>I have 63 channels plus the reference. After re-referencing to the average reference and adding the reference channel back to the data there are 64 channels, the reference channel is channel 64. I am selecting channels 1:63 for ICA. This is when I get the error. If I select channels 1:64 for ICA it runs fine.</div><div><br></div><div style="font-size:12.800000190734863px"><font color="#000000" face="arial, helvetica, sans-serif">Erika</font></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Jan 3, 2018 at 2:28 PM, Makoto Miyakoshi <span dir="ltr"><<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear Erika,<div><br></div><div>Your story confused me.</div><span class=""><div><br></div><div><font color="#0000ff">> I am selecting 63 channels and excluding the reference channel for ICA. All the datasets are from the same subject and have been preprocessed in the same way. </font></div><div><br></div></span><div>So you ran ICA on this 63 channels. Hence your EEG.icasphere has 63x63. I guess your EEG.icachansind is also 1x63.</div><span class=""><div><br></div><div><font color="#0000ff">> I tried running ICA with 64 channels selected and it runs fine.<br></font></div><div class="gmail_extra"><br></div></span><div class="gmail_extra">Where did you get this 64 channel data, and why do you need to run different ICA on this (probably the original, non-channel-removed) data separately?</div><div class="gmail_extra"><br></div><div class="gmail_extra">It's like reading a detective story to me.</div><span class="HOEnZb"><font color="#888888"><div class="gmail_extra"><br></div><div class="gmail_extra">Makoto</div></font></span><div><div class="h5"><div class="gmail_extra"><br></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Jan 3, 2018 at 7:21 AM, Erika Nyhus <span dir="ltr"><<a href="mailto:enyhus@bowdoin.edu" target="_blank">enyhus@bowdoin.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Hi Tarik and Makoto,<div><br></div><div>All datasets were re-referenced to the average reference and the reference channel was added back to the data so there are 64 channels and no bad channels. I am selecting 63 channels and excluding the reference channel for ICA. All the datasets are from the same subject and have been preprocessed in the same way. I tried running ICA with 64 channels selected and it runs fine. I tried running ICA with the tutorial dataset and selecting 31 channels and get the same error as in my datasets.<span class="m_2054605807520743300gmail-HOEnZb"><font color="#888888"><div><br></div><div>Erika</div></font></span><div><div class="m_2054605807520743300gmail-h5"><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Dec 26, 2017 at 6:22 PM, Makoto Miyakoshi <span dir="ltr"><<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear Erika,<div><br></div><div>If EEG.icasphere has 63 x 63 columns, it means ICA was computed on 63 channels. How many channels did you have when you run ICA? Was the data full-ranked (no bridging across channels, no standard re-referencing before ICA)?</div><div><br></div><div>Makoto</div></div><div class="gmail_extra"><br><div class="gmail_quote"><span>On Wed, Dec 20, 2017 at 8:28 AM, Erika Nyhus <span dir="ltr"><<a href="mailto:enyhus@bowdoin.edu" target="_blank">enyhus@bowdoin.edu</a>></span> wrote:<br></span><div><div class="m_2054605807520743300gmail-m_7836109230247290443m_147050903508982024m_-9196508372056888295h5"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><font face="arial, helvetica, sans-serif" color="#000000">I am getting the following error when I run ICA on a concatenated datasets and selecting 63 of 64 channels<span style="white-space:pre-wrap">.</span> When I run ICA on any of the datasets individually I do not get an error. I was wondering if anyone has run in to this problem and how they were able to solve it.</font><div><font face="arial, helvetica, sans-serif" color="#000000"><br></font></div><div><font color="#000000" face="arial, helvetica, sans-serif">eeg_checkset error: number of elements in 'icachansind' (64) </font></div><div><font color="#000000" face="arial, helvetica, sans-serif">does not match the number of columns in the sphere array (63)</font></div><span class="m_2054605807520743300gmail-m_7836109230247290443m_147050903508982024m_-9196508372056888295m_-2627772378052551374HOEnZb"><font color="#888888"><div><font color="#000000" face="arial, helvetica, sans-serif"><br></font></div><div>-- <br><div class="m_2054605807520743300gmail-m_7836109230247290443m_147050903508982024m_-9196508372056888295m_-2627772378052551374m_-5745033161617361137gmail_signature"><div dir="ltr"><div><div>
Erika Nyhus, Ph.D.<br>Department of Psychology and Program in Neuroscience<div>6900 College Station</div><div>Bowdoin College</div><div>Brunswick, ME 04011<br></div><p><span style="font-size:13pt"></span></p>
</div></div></div></div>
</div></font></span></div>
</blockquote></div></div></div><span class="m_2054605807520743300gmail-m_7836109230247290443m_147050903508982024m_-9196508372056888295HOEnZb"><font color="#888888"><br><br clear="all"><div><br></div>-- <br><div class="m_2054605807520743300gmail-m_7836109230247290443m_147050903508982024m_-9196508372056888295m_-2627772378052551374gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</font></span></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="m_2054605807520743300gmail-m_7836109230247290443m_147050903508982024m_-9196508372056888295gmail_signature"><div dir="ltr"><div><div>
Erika Nyhus, Ph.D.<br>Department of Psychology and Program in Neuroscience<div>6900 College Station</div><div>Bowdoin College</div><div>Brunswick, ME 04011<br></div><p><span style="font-size:13pt"></span></p>
</div></div></div></div>
</div></div></div></div></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="m_2054605807520743300gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</div></div></div></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div>
Erika Nyhus, Ph.D.<br>Department of Psychology and Program in Neuroscience<div>6900 College Station</div><div>Bowdoin College</div><div>Brunswick, ME 04011<br></div><p><span style="font-size:13.0pt"></span></p>
</div></div></div></div>
</div>