<div dir="ltr">Thanks for info Johanna.<div><br></div><div>

<font color="#0000ff"><span style="font-family:sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">> Several of these papers use phantom heads and swim caps (see first four papers) as to block brain EEG activity and identify pure movement artefacts...</span>

</font><br></div><div><br></div><div>If the following description is true (from Huigen 2000), some type of artifact may depend on physiological structure of the skin layers. However, note also that he says  abrading the skin can make the artifact negligible... maybe using a gel head model is fine after all.</div><div><br><b><i>Skin potential changes</i></b></div><div><i>Earlier, the stratum corneum and the barrier layer have been identified as the major sources of the impedance of the skin. Webster (1984) has also observed a potential difference between the inside and the outside of the barrier layer. Van Wijk van Brievingh (1988) however states that this skin potential is a liquid junction potential between deeper skin layers and the electrolyte. The skin potential has a typical value of 30 mV at the thorax. Stretching of the skin decreases the skin potential to about 25 mV. This artifact can be reduced to negligible value by abrading the skin.</i></div><div><i><br></i></div>Makoto<div><br></div><div><br><div><i><br></i></div><div>On Fri, May 4, 2018 at 10:39 AM Johanna Wagner <<a href="mailto:joa.wagn@gmail.com">joa.wagn@gmail.com</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi Makoto,<div><br></div><div>there are a number of recent papers that have looked at artefacts during full body motion, some of them using also accelerometers placed at EEG electrodes. Several of these papers use phantom heads and swim caps (see first four papers) as to block brain EEG activity and identify pure movement artefacts...</div><div><br></div><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">Symeonidou, E. R., Nordin, A. D., Hairston, W. D., & Ferris, D. P. (2018). Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion.<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">Sensors</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">,<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">18</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">(4), 1073.</span><div><br></div><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">Oliveira, A. S., Schlink, B. R., Hairston, W. D., König, P., & Ferris, D. P. (2016). Induction and separation of motion artifacts in EEG data using a mobile phantom head device.<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">Journal of neural engineering</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">,<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">13</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">(3), 036014.</span><div><br></div><span style="color:rgb(34,34,34);font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;font-family:Arial,sans-serif;text-align:left;float:none;display:inline">Snyder, K. L., Kline, J. E., Huang, H. J., & Ferris, D. P. (2015). Independent component analysis of gait-related movement<span> </span><span class="m_2728428850254201890gmail-gr_ m_2728428850254201890gmail-gr_249 m_2728428850254201890gmail-gr-alert m_2728428850254201890gmail-gr_spell m_2728428850254201890gmail-gr_inline_cards m_2728428850254201890gmail-gr_run_anim m_2728428850254201890gmail-ContextualSpelling m_2728428850254201890gmail-multiReplace" id="m_2728428850254201890gmail-249" style="display:inline;border-bottom:2px solid transparent;background-repeat:no-repeat;color:inherit;font-size:inherit">artifact</span><span> </span>recorded using EEG electrodes during treadmill walking.<span> </span></span><i style="color:rgb(34,34,34);font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;font-family:Arial,sans-serif;text-align:left">Frontiers in human neuroscience</i><span style="color:rgb(34,34,34);font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;font-family:Arial,sans-serif;text-align:left;float:none;display:inline">,<span> </span></span><i style="color:rgb(34,34,34);font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;font-family:Arial,sans-serif;text-align:left">9</i><span style="color:rgb(34,34,34);font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;font-family:Arial,sans-serif;text-align:left;float:none;display:inline">, 639.</span><div><br></div><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">Kline, J. E., Huang, H. J., Snyder, K. L., & Ferris, D. P. (2015). Isolating gait-related movement artifacts in electroencephalography during human walking.<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">Journal of neural engineering</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">,<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">12</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">(4), 046022.</span><div><br></div><div><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">Castermans, T., Duvinage, M., Cheron, G., & Dutoit, T. (2014). About the cortical origin of the low-delta and high-gamma rhythms observed in EEG signals during treadmill walking.<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">Neuroscience letters</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">,<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">561</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">, 166-170.</span><br></div><div><br></div><div><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">Gwin, J. T., Gramann, K., Makeig, S., & Ferris, D. P. (2010). Removal of movement artifact from high-density EEG recorded during walking and running.<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">Journal of neurophysiology</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">,<span> </span></span><i style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial">103</i><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">(6), 3526-3534.</span><br></div><div><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline"><br></span></div><div><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline"><br></span></div><div><span style="color:rgb(34,34,34);font-family:Arial,sans-serif;font-size:13px;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:left;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">Johanna</span></div><div class="gmail_extra"><br></div><div class="gmail_extra"><br><div class="gmail_quote">2018-05-03 14:22 GMT-07:00 Makoto Miyakoshi <span dir="ltr"><<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear Michael,<div><br></div><div>Thank you for your comment.</div><div>I'm no authority of this issue, but generally speaking, if '<h2 id="m_2728428850254201890m_-5429040047221697889gmail-:17j" class="m_2728428850254201890m_-5429040047221697889gmail-hP" style="margin:0px;padding:0px 10px 0px 0px;border:0px;font-style:inherit;font-variant:inherit;font-weight:inherit;font-stretch:inherit;font-size:inherit;line-height:inherit;font-family:inherit;display:inline;outline:none">Movement artifact = Liquid junction potential', motion artifact reflects the amount of displacement of the electrode against contacting body of fluid. This seems the movement artifact represents the first order derivative of the amount of the electrode displacement. Slow motion artifact could be generated by a slow motion, and sudden potential difference spikes could be generated by sudden, jerky motion.</h2></div><div><h2 class="m_2728428850254201890m_-5429040047221697889gmail-hP" style="margin:0px;padding:0px 10px 0px 0px;border:0px;font-style:inherit;font-variant:inherit;font-weight:inherit;font-stretch:inherit;font-size:inherit;line-height:inherit;font-family:inherit;display:inline;outline:none"><br></h2></div><div><h2 class="m_2728428850254201890m_-5429040047221697889gmail-hP" style="margin:0px;padding:0px 10px 0px 0px;border:0px;font-style:inherit;font-variant:inherit;font-weight:inherit;font-stretch:inherit;font-size:inherit;line-height:inherit;font-family:inherit;display:inline;outline:none">I'm curious to see if motion artifact time-series correlates with accelerometer measurements recorded from the electrode.</h2></div><span class="m_2728428850254201890HOEnZb"><font color="#888888"><div><h2 class="m_2728428850254201890m_-5429040047221697889gmail-hP" style="margin:0px;padding:0px 10px 0px 0px;border:0px;font-style:inherit;font-variant:inherit;font-weight:inherit;font-stretch:inherit;font-size:inherit;line-height:inherit;font-family:inherit;display:inline;outline:none"><br></h2></div><div><h2 class="m_2728428850254201890m_-5429040047221697889gmail-hP" style="margin:0px;padding:0px 10px 0px 0px;border:0px;font-style:inherit;font-variant:inherit;font-weight:inherit;font-stretch:inherit;font-size:inherit;line-height:inherit;font-family:inherit;display:inline;outline:none">Makoto</h2></div></font></span><div><div class="m_2728428850254201890h5"><div><h2 class="m_2728428850254201890m_-5429040047221697889gmail-hP" style="margin:0px;padding:0px 10px 0px 0px;border:0px;font-style:inherit;font-variant:inherit;font-weight:inherit;font-stretch:inherit;font-size:inherit;line-height:inherit;font-family:inherit;display:inline;outline:none"><br></h2></div><div><h2 class="m_2728428850254201890m_-5429040047221697889gmail-hP" style="margin:0px;padding:0px 10px 0px 0px;border:0px;font-style:inherit;font-variant:inherit;font-weight:inherit;font-stretch:inherit;font-size:inherit;line-height:inherit;font-family:inherit;display:inline;outline:none"><br></h2></div><div class="gmail_extra"><br><div class="gmail_quote">On Thu, May 3, 2018 at 12:54 PM, Michael D. Nunez <span dir="ltr"><<a href="mailto:mdnunez1@uci.edu" target="_blank">mdnunez1@uci.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div>Thank you Makoto.<br><br></div>In EEG recordings do we expect movement artifact (due to liquid junction potential) to be expressed at slow frequencies or sudden potential difference spikes (i.e. temporary electrical discontinuities)? I have found empirical evidence of both.<br><br></div>Example references:<br><br><a href="https://www.researchgate.net/profile/Kristine_Snyder/publication/278792694_Isolating_gait-related_movement_artifacts_in_electroencephalography_during_human_walking/links/55873f3e08ae71f6ba914812.pdf" target="_blank">Isolating gait-related movement artifacts in electroencephalography during human walking</a><br><br><a href="https://www.researchgate.net/profile/Michael_Nunez4/publication/290449135_Electroencephalography_EEG_neurophysics_experimental_methods_and_signal_processing/links/57bf32c908ae2f5eb32e82a9/Electroencephalography-EEG-neurophysics-experimental-methods-and-signal-processing.pdf" target="_blank">Electroencephalography (EEG): Neurophysics, Experimental Methods, and Signal Processing</a><div><br><br></div></div><div class="gmail_extra"><br><div class="gmail_quote"><div><div class="m_2728428850254201890m_-5429040047221697889h5">On Thu, May 3, 2018 at 12:20 PM, Makoto Miyakoshi <span dir="ltr"><<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>></span> wrote:<br></div></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div class="m_2728428850254201890m_-5429040047221697889h5"><div dir="ltr"><div>Dear colleagues,</div><div><br></div><div>Let me share this info.</div><div><br></div><div>E. Huigen (2000) Noise in biopotential recording using surface electrodes</div><div>

<span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline"><a href="https://www.semanticscholar.org/paper/Noise-in-biopotential-recording-using-surface-Huigen/8fc0837f7af0a36b19799139d9b763969057b985" target="_blank">https://www.semanticscholar.org/paper/Noise-in-biopotential-recording-using-surface-Huigen/8fc0837f7af0a36b19799139d9b763969057b985</a></span>

<br></div><div><br></div><div>

<div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial"><b>%%%%%%%%%%%%%%%%%%%%%</b><br></div></div><div><b><br></b></div><div><b>2.4 Motion artifact</b></div><div>Movement can cause changes in the potentials that are created when an electrode is applied to the skin. Normally, when the patient is relaxed, and high quality electrodes are used, the recording is not distorted by motion artifact. Brinkman (1993) has found no significant correlation between the intentional movement of the arm and the noise signal. The mechanisms that can cause motion artifact are described next.</div><div><br></div><div><b>Liquid junction potential variations by electrode movement</b></div><div>The various phase junctions in the electrode-electrolyte-skin interface all cause junction potentials, sensitive to motion artifact. The skin-electrolyte interface can cause artifacts of <span style="background-color:rgb(244,204,204)">400-600 μV</span> when the electrode is moved parallel to the skin surface <span style="background-color:rgb(207,226,243)">(Smith and Wace, 1995)</span>. When the electrode is moved perpendicular to the skin the potential changes can be up to <span style="background-color:rgb(244,204,204)">900 μV</span>. Firm attachment to the skin can reduce the potential changes. The electrode-electrolyte interface also produces artifacts when mechanically disturbed. Gatzke (1974, as described in Webster, 1984) measured a <span style="background-color:rgb(244,204,204)">15 mV</span> potential change when a pure silver electrode is moved in electrolyte. Coating with silver chloride, thus creating a stable double layer, produces a 10-fold reduction of the artifact. Further reduction (up to negligible value) can be achieved by recessing the electrode-electrolyte interface in a protective cup, in which a sponge soaked in gel is placed (figure 2-2).</div><div><br></div><div><b>Skin potential changes</b></div><div>Earlier, the stratum corneum and the barrier layer have been identified as the major sources of the impedance of the skin. Webster (1984) has also observed a potential difference between the inside and the outside of the barrier layer. Van Wijk van Brievingh (1988) however states that <span style="background-color:rgb(244,204,204)">this skin potential is a liquid junction potential between deeper skin layers and the electrolyte.</span> The skin potential has a typical value of 30 mV at the thorax. Stretching of the skin decreases the skin potential to about 25 mV. This artifact can be reduced to negligible value by abrading the skin. Webster gives 20 strokes with fine sandpaper as an indication. Shackel (1959, as described in Geddes and Baker, 1989) developed a method for shorting the skin potential, called the skin-drilling technique. The epidermis is eroded using a dental burr. The capillaries remain undisturbed, so no blood is drawn. Unfortunately, the epidermis is also the layer that protects the skin from irritation. A mild electrode gel has to be used to prevent</div><div>unwanted effects.</div><div><br></div><div>%%%%%%%%%%%%%%%%%%%%%</div><div><br></div><div>

<div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial"><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial">Wikipedia 'liquid junction potential'</div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial"><a href="https://en.wikipedia.org/wiki/Liquid_junction_potential" target="_blank">https://en.wikipedia.org/wiki/Liquid_junction_potential</a></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial"><br></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial">In Huigen, Peper, Grimbergen (2002) Med. biol. Eng, they described:</div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial"><br></div><i>RECORDINGS  OF  biomedical  signals  from  the  body  surface  often  contain  a  substantial  noise  component. This  noise  signal  can  severely  impair  the  resolution  of  biomedical  recordings  as  <span style="background-color:rgb(244,204,204)">its  magnitude  can  be  as high  as  10-60  uVp_p  (GONDRAN  et  aL,  1996).  This  is  in  the  range  of  EEG  potentials  and  is  at  least ten  times  as  high  as  several  types  of  evoked  potentials  (e.g.  visual  evoked  potentials  or  somatosensory evoked  potentials).</span></i><br></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial"><br></div><div style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration-style:initial;text-decoration-color:initial">By the way I could not find Smith and Wave (1995)<i><span> </span>European Journal of Anaesthesiology.<span> </span></i>If you have a copy, please let me know.</div><span class="m_2728428850254201890m_-5429040047221697889m_1610435864102569510HOEnZb"><font color="#888888">

<br></font></span></div><span class="m_2728428850254201890m_-5429040047221697889m_1610435864102569510HOEnZb"><font color="#888888"><div>Makoto</div>-- <br><div class="m_2728428850254201890m_-5429040047221697889m_1610435864102569510m_-615631374590747166gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</font></span></div>
<br></div></div>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a><span class="m_2728428850254201890m_-5429040047221697889HOEnZb"><font color="#888888"><br></font></span></blockquote></div><span class="m_2728428850254201890m_-5429040047221697889HOEnZb"><font color="#888888"><br><br clear="all"><br>-- <br><div class="m_2728428850254201890m_-5429040047221697889m_1610435864102569510gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr">Michael D. Nunez</div><div>Associate Specialist (Neuroscientist)</div><div><a href="http://lopour.eng.uci.edu/" target="_blank">Laboratory of Computational and Translational Neuroscience</a><br></div><div>Dept. of Biomedical Engineering<br></div><div dir="ltr"><div><div><div><a href="http://hnl.ss.uci.edu" target="_blank">Human Neuroscience Lab</a></div></div><div><a href="http://www.cidlab.com/" target="_blank">Cognition and Individual Differences Lab</a></div><div>Dept. of Cognitive Sciences</div><div>University of California, Irvine</div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>
</font></span></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="m_2728428850254201890m_-5429040047221697889gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div>
</div></div></div></div>
<br>_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a><br></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="m_2728428850254201890gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><br><span style="color:rgb(136,136,136);font-size:12.8px">-- </span><br style="color:rgb(136,136,136);font-size:12.8px"><div style="color:rgb(136,136,136);font-size:12.8px"><div dir="ltr"><div dir="ltr" style="font-size:12.8px"><font color="#000000">Johanna Wagner, PhD</font></div><div dir="ltr" style="font-size:12.8px"><font color="#000000">Postdoctoral Researcher</font></div><div dir="ltr" style="font-size:12.8px"><font color="#000000">Swartz Center for Computational Neuroscience</font></div><div dir="ltr" style="font-size:12.8px"><font color="#000000">Institute for Neural Computation</font></div><div dir="ltr" style="font-size:12.8px"><font color="#000000">University of California San Diego</font><br><div style="color:rgb(80,0,80)"><br></div><div style="color:rgb(80,0,80)"><a href="http://scholar.google.at/citations?user=vSJYGtcAAAAJ&hl=en" style="color:rgb(17,85,204)" target="_blank">http://scholar.google.at/citations?user=vSJYGtcAAAAJ&hl=en</a></div></div></div></div><div><br></div><div><br></div><br><a href="http://sccn.ucsd.edu/" target="_blank"></a></div></div></div></div></div></div></div></div></div></div></div></div>
</div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div></div></div>