<div dir="ltr">Dear Hamed,<div><br></div><div>> For the first time, I disable the third box in ASR ( Remove poorly correlated channels), so the ASR cleans the data without channels rejection<br></div><div><br></div><div>In this way, ASR may need to clean/reject more portion of data because you are including channels that are supposed to be rejected.</div><div><br></div><div>If you add back the channel rejected after ASR, though, you may introduce noise in that channel that is supposed to be reduced by ASR. So both approaches seem to have problems, but probably the latter case is better than the former; once you reject data, they are lost forever.</div><div><br></div><div>You can empirically check which is better rather than 'thinking' which is better.</div><div><br></div><div>Makoto</div><br><div class="gmail_quote"><div dir="ltr">On Mon, May 14, 2018 at 1:20 PM Hamed Taherigorji <<a href="mailto:hamed.taherigorji@uniroma1.it">hamed.taherigorji@uniroma1.it</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear Mokoto,<div><br></div><div>Thanks a lot for your reply. </div><div>I'm using another method and want to know your idea. </div><div>For the first time, I disable the third box in ASR ( Remove poorly correlated channels), so the ASR cleans the data without channels rejection and then with select data option in EEGLAB I remove the EOGs then again use the ASR and this time set the third box on 0.8 to remove the bad channels. </div><div>Finally, I use a script to add again EOGs from the previous dataset.</div><div>Is it ok?</div><div><br></div><div>Hamed</div><div><br></div></div><img src="https://my-email-signature.link/signature.gif?u=217676&e=23547477&v=2a650fbe675fb4ec126039306bbde98d80910a05c03c7c34b49595686aea8583" style="width: 0px; max-height: 0px; overflow: hidden;"><div class="gmail_extra"><br><div class="gmail_quote">On 14 May 2018 at 21:29, Makoto Miyakoshi <span dir="ltr"><<a href="mailto:mmiyakoshi@ucsd.edu" target="_blank">mmiyakoshi@ucsd.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear Hamed,<div><br></div><div>After applying clean_rawdata(), it generates clean_channel_mask under EEG.etc. You apply clean_rawdata() once, obtain the clean_channel_mask, modify it so that the mask does not indicate EOG channels to reject. Using this custom channel mask, perform EEGLAB pop_select() to reject channels, then feed this data to clean_rawdata() again without performing channel rejection.</div><div><br></div><div>Makoto<br><div><br></div><br><div class="gmail_quote"><div><div class="gmail-m_-6910212708198378166h5"><div dir="ltr">On Thu, May 10, 2018 at 1:55 AM Hamed Taherigorji <<a href="mailto:hamed.taherigorji@uniroma1.it" target="_blank">hamed.taherigorji@uniroma1.it</a>> wrote:<br></div></div></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div><div class="gmail-m_-6910212708198378166h5"><div dir="ltr">Hello Dear Mokoto,<div><br></div><div>I hope everything is going well with you. </div><div>I've read your preprocessing pipeline and it very interesting. </div><div>I've tried to use ASR but unfortunately, it removes my EOG channels.</div><div>Could you please let me know how can I solve this problem? because I need my EOG channels for ICA step. </div><div><br></div><div>Best Regards,</div><div>Hamed<br clear="all"><div><br></div>-- <br><div class="gmail-m_-6910212708198378166m_8923724077271730320m_7713205226309975125gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><span lang="en">Hamed Taheri Gorji<br>PhD Candidate <br><span>Brain Imaging Laboratory </span><br><span style="background-color:rgb(255,255,255)"><br><font color="#000000">DEPARTMENT OF PSYCHOLOGY<br>FACULTY OF MEDICINE AND PSYCHOLOGY<br>SAPIENZA<br>University of Rome</font></span><br><br><div>Santa Lucia Foundation, Via</div><div><a href="https://maps.google.com/?q=Ardeatina+306,+00179+Rome&entry=gmail&source=g" target="_blank">Ardeatina 306, 00179 Rome</a></div></span><br></div></div></div></div></div></div>
</div></div>
<br>
</div></div><div style="font-size:small;font-family:arial;background-color:rgb(255,255,255)">___________________________________________</div><div style="font-size:12.8px;font-family:arial,sans-serif;color:rgb(34,34,34);background-color:rgb(255,255,255)"><div style="font-size:12.8px"><b style="color:rgb(150,53,66);font-size:12.8px">Il tuo <span>5</span> diventa 1000</b></div><div style="font-size:12.8px"><span style="font-size:12.8px"><div style="font-size:12.8px">Fai crescere la tua università</div><div style="font-size:12.8px">Dona il <span>5</span> <span>per</span> <span>mille</span> alla Sapienza</div></span><div style="color:rgb(0,0,0);font-family:arial,helvetica,sans-serif;font-size:13px"><font style="font-family:arial,sans-serif;font-size:small">Codice fiscale: </font><b style="font-family:arial,sans-serif;font-size:large">80209930587</b></div><div style="font-size:12.8px;color:rgb(0,0,0);font-family:arial,helvetica,sans-serif"><font size="1"><a href="https://www.uniroma1.it/it/pagina/fai-crescere-la-tua-universita-con-il-cinque-mille" style="color:rgb(17,85,204)" target="_blank">https://www.uniroma1.it/it/pagina/fai-crescere-la-tua-universita-con-il-cinque-mille</a></font></div><div><br></div></div></div></blockquote></div><span class="gmail-m_-6910212708198378166HOEnZb"><font color="#888888"><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail-m_-6910212708198378166m_8923724077271730320gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div></font></span></div></div>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail-m_-6910212708198378166gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><span lang="en">Hamed Taheri Gorji<br>PhD Candidate <br><span>Brain Imaging Laboratory </span><br><span style="background-color:rgb(255,255,255)"><br><font color="#000000">DEPARTMENT OF PSYCHOLOGY<br>FACULTY OF MEDICINE AND PSYCHOLOGY<br>SAPIENZA<br>University of Rome</font></span><br><br><div>Santa Lucia Foundation, Via</div><div>Ardeatina 306, 00179 Rome</div></span><br></div></div></div></div></div></div>
</div>
<br>
<div style="font-size:small;font-family:arial;background-color:rgb(255,255,255)">___________________________________________</div><div style="font-size:12.8px;font-family:arial,sans-serif;color:rgb(34,34,34);background-color:rgb(255,255,255)"><div style="font-size:12.8px"><b style="color:rgb(150,53,66);font-size:12.8px">Il tuo <span>5</span> diventa 1000</b></div><div style="font-size:12.8px"><span style="font-size:12.8px"><div style="font-size:12.8px">Fai crescere la tua università</div><div style="font-size:12.8px">Dona il <span>5</span> <span>per</span> <span>mille</span> alla Sapienza</div></span><div style="color:rgb(0,0,0);font-family:arial,helvetica,sans-serif;font-size:13px"><font style="font-family:arial,sans-serif;font-size:small">Codice fiscale: </font><b style="font-family:arial,sans-serif;font-size:large">80209930587</b></div><div style="font-size:12.8px;color:rgb(0,0,0);font-family:arial,helvetica,sans-serif"><font size="1"><a href="https://www.uniroma1.it/it/pagina/fai-crescere-la-tua-universita-con-il-cinque-mille" style="color:rgb(17,85,204)" target="_blank">https://www.uniroma1.it/it/pagina/fai-crescere-la-tua-universita-con-il-cinque-mille</a></font></div><div><br></div></div></div></blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div></div>