<div dir="ltr">Dear Eric,<div><br></div>> Does the removal of additional low frequency noise you get from using a full epoch baseline (vs no baseline) outweigh the downsides of baseline correction for ICA?<br><br>The answer is no. So-called baseline correction does not remove 'low frequency noise'. It just removes DC (like moving up or down with an elevator). After applying an appropriate high-pass filter, baseline correction  has no merit for ICA. Hence, the correct way to apply ICA is to first perform an appropriate high-pass filter, epoch the data if you want BUT NO BASELINE CORRECTION, then ICA.<br><br>> Alternatively, is it appropriate to apply a 1 or 2 Hz filter to the data used for ICA training, and then apply the ICA solution to an EEGset filtered at 0.1 Hz? Winkler et al. suggest this, <div><br></div><div>If your purpose is to obtain good decomposition in ICA, yes this is reasonable.</div><div><br></div><div>> but what happens to the low frequency information in the data when the ICA solution that has been learned without it is applied? Can this cause problems?<br></div><div><br></div><div>What happens is that if the removed < 2Hz activity is temporally correlated with >2Hz activities, they will be decomposed altogether with no conflict. This is probably the case in most cases. However, if the < 2Hz activities are independent of > 2Hz (such as external artifact), then they will not be decomposed and would appear in the ICA results in an unexpected way. How unexpectedly? It often takes a form of 'it's everywhere' but the distribution is naturally based on where it is from, but never captured by a single component.</div><div><br></div><div>Continued.</div><div><br></div><div>Makoto</div><div><br><div class="gmail_quote"><div dir="ltr">On Wed, Feb 21, 2018 at 9:57 AM Eric Fields <<a href="mailto:eric.fields@bc.edu">eric.fields@bc.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi,<br><br>I know there have been other threads related to this, so I apologize if this has been addressed directly and I missed it.<br><br>Groppe et al. (2009) showed that ICA gives more reliable results if you use the full epoch instead of the prestimulus period to baseline. The reason generally given for this is that baseline correction changes the scalp distribution of sources depending on what is happening in the baseline period. By this logic, using the full epoch should improve ICA (because longer periods are less affected by random variations), but no baseline correction at all should be even better.<br><br>Meanwhile, Winkler et al. (2015) have suggested that ICA works best on data high pass filtered at 1-2 Hz.<br><br>Assuming I prefer to use a 0.1 Hz high pass filter (because of distortions 1 Hz filters can cause in the ERP: Tanner et al., 2015), I have two questions:<br><br><ol><li>Does the removal of additional low frequency noise you get from using a full epoch baseline (vs no baseline) outweigh the downsides of baseline correction for ICA?</li><li>Alternatively, is it appropriate to apply a 1 or 2 Hz filter to the data used for ICA training, and then apply the ICA solution to an EEGset filtered at 0.1 Hz? Winkler et al. suggest this, but what happens to the low frequency information in the data when the ICA solution that has been learned without it is applied? Can this cause problems?<br></li></ol><br>Thanks!<br><br>Eric<br><br clear="all"><div><div class="m_-621764032821681141gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><span>-----<br>Eric Fields, Ph.D.<br>Postdoctoral Fellow<br><a href="https://www2.bc.edu/elizabeth-kensinger/" target="_blank">Cognitive and Affective Neuroscience Laboratory</a>, Boston College<br><a href="http://www.brandeis.edu/gutchess/" target="_blank">Aging, Culture, and Cognition Laboratory</a>, Brandeis University<br><a href="mailto:eric.fields@bc.edu" target="_blank">eric.fields@bc.edu</a></span></div></div></div></div></div></div></div>
</div>
_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a></blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Makoto Miyakoshi<br>Swartz Center for Computational Neuroscience<br>Institute for Neural Computation, University of California San Diego<br></div></div></div></div>