<div dir="ltr"><div class="gmail_default" style="color:#333399"><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000">Hello Anoop, some notes for you right below, best wishes.</font></div><div class="gmail_default" style="color:rgb(34,34,34)"><b><font color="#000000"><br></font></b></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><b>************** </b>Overall, one can 1) just remove eye and muscle ICs, and keep the rest of the ICs to rebuild the EEG data. This is what researchers do when they are conservative and are only interested in ICA for light cleaning.</font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000">however, researchers that focus on ICA, and that trust ICA more, tend to remove all but the neural ICs from their data, thus in a sense, they are more strict and focus on ICs that are really neural.</font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000">There is no agreement at this point as to whether removing more ICs removes useful neural data, it depends on the biases of the researchers.</font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000">Besides SASICA, Adjust, and MARA plugins, you may also want to try Luca's recent IC-classification plugin. Finding the classic artifact ICs is easy as they are quite stereotypical, spatially speaking..</font></div><div class="gmail_default" style="color:rgb(34,34,34)"><b><font color="#000000"><br></font></b></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><b>**************</b>PCA is not recommended before ICA by experts on the topic: See the below recent article from Artoni et al that suggests that PCA is not good before ICA. </font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><span style="font-family:Arial,sans-serif">Artoni, F., Delorme, A., & Makeig, S. (2018). Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition. </span><i style="font-family:Arial,sans-serif">NeuroImage</i><span style="font-family:Arial,sans-serif">, </span><i style="font-family:Arial,sans-serif">175</i><span style="font-family:Arial,sans-serif">, 176-187. The online suggestions for beginners that you are looking at are useful, but it's important to verify/explore what steps to take for yourself, based on published literature.</span><br></font></div><div class="gmail_default" style="color:rgb(34,34,34)"><span style="font-family:Arial,sans-serif"><font color="#000000"><br></font></span></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><span style="font-family:Arial,sans-serif">*************** </span><span style="font-family:Arial,sans-serif">Usually there are only about ~5 or 15 neural ICs, even with high-density EEG, </span><span style="font-family:Arial,sans-serif">so one can just focus on those, and remove the rest of the ICs. This is also based on what researchers usually do and find in many past research publications. See at end of email for list of citations about this topic</span></font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><br></font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000">*********** If you haven't had a chance to yet, you can learn more about these topics by reading the sasica artcle, googling eeglab list for your topic (rejecting ICs), review eeglab tutorials on using ICA and pruning IC results.</font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><br></font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000">****** In eeglab one can automatically reject outside the head dipoles. However, one needs to make sure that electrode positions are correct, and that the dipfit head-to-electrodes setup is correct, as these can impact the IC dipole results. Further, the residual variance cutoff is also very useful in quickly pruning ICs (and also available in the eeglab STUDY setup gui).</font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><br></font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000">************ If you think you have sleep related spindles, There are several sleep EEG toolboxes that can help you define and confirm sleep related spindles. I would recommend seeing how the analysis changes with and without the ICs dominated by these spindles. <br></font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><br></font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><br></font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000">**********************Examples of citations about low number of neural ICs usually found:</font></div><div class="gmail_default" style="color:rgb(34,34,34)"><p class="gmail-MsoListParagraphCxSpFirst" style="text-align:justify;margin:0in 0in 0.0001pt 0.5in;font-family:Calibri"><font color="#000000"><span style="font-family:Arial">1)<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;font-family:"Times New Roman""> </span></span><span style="font-family:Arial">a small universe of possible neural/cognitive ICs in EEG datasets: Makeig S, Onton J. ERP features and EEG dynamics: An ICA perspective. In: Luck S, Kappenman E, editors. Oxford Handbook of Event-Related Potential Components. Oxford University Press; 2009.</span></font></p><p class="gmail-MsoListParagraphCxSpMiddle" style="text-align:justify;margin:0in 0in 0.0001pt 0.5in;font-family:Calibri"><font color="#000000"><span style="font-family:Arial">2)<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;font-family:"Times New Roman""> </span></span><span style="font-family:Arial"> a common small set of ICs that regularly show up with ICA decompositions of EEG data: Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). Independent EEG sources are dipolar. PloS one, 7(2), e30135.</span></font></p><p class="gmail-MsoListParagraphCxSpMiddle" style="text-align:justify;margin:0in 0in 0.0001pt 0.5in;font-family:Calibri"><font color="#000000"><span style="font-family:Arial">3)<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;font-family:"Times New Roman""> </span></span><span style="font-family:Arial">a small number of ICs are kept for analyses: Steele, V. R., Anderson, N. E., Claus, E. D., Bernat, E. M., Rao, V., Assaf, M., ... & Kiehl, K. A. (2016). Neuroimaging measures of error-processing: Extracting reliable signals from event-related potentials and functional magnetic resonance imaging. Neuroimage, 132, 247-260.</span></font></p><p class="gmail-MsoListParagraphCxSpMiddle" style="text-align:justify;margin:0in 0in 0.0001pt 0.5in;font-family:Calibri"><font color="#000000"><span style="font-family:Arial">4)<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;font-family:"Times New Roman""> </span></span><span style="font-family:Arial"> a small number of ICs are kept for analyses, in this case using MEG: Urbain, C. M., Pang, E. W., & Taylor, M. J. (2015). Atypical spatiotemporal signatures of working memory brain processes in autism. Translational psychiatry, 5(8), e617.</span></font></p><p class="gmail-MsoListParagraphCxSpMiddle" style="text-align:justify;margin:0in 0in 0.0001pt 0.5in;font-family:Calibri"><font color="#000000"><span style="font-family:Arial">5)<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;font-family:"Times New Roman""> </span></span><span style="font-family:Arial">a small number of ICs are kept for analyses of mediofrontal activity: “The mean number of resulting maximally independent and localizable EEG components used in subsequent analysis was 15 per subject (range: 7 to 26)”. Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. Neuroimage, 27(2), 341-356.</span></font></p><p class="gmail-MsoListParagraphCxSpMiddle" style="text-align:justify;margin:0in 0in 0.0001pt 0.5in;font-family:Calibri"><font color="#000000"><span style="font-family:Arial">6)<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;font-family:"Times New Roman""> </span></span><span style="font-family:Arial">a small number of ICs are kept for analyses: “6.8±5.5 of the top 30 components were removed from each EEG recording”. Wu, J., Srinivasan, R., Kaur, A., & Cramer, S. C. (2014). Resting-state cortical connectivity predicts motor skill acquisition. NeuroImage, 91, 84-90.</span></font></p><p class="gmail-MsoListParagraphCxSpMiddle" style="text-align:justify;margin:0in 0in 0.0001pt 0.5in;font-family:Calibri"><font color="#000000"><span style="font-family:Arial">7)<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;font-family:"Times New Roman""> </span></span><span style="font-family:Arial">a large number of datasets and examining the reliability of ICA decompositions, the following paper found only about 15 reliable clusters of ICs across participants (including about 10 neural IC clusters and about 5 artifactual IC clusters), and a median of 18 to 20 ICs per dataset that had <5% dipole-fitting residual variance: Artoni, F., Menicucci, D., Delorme, A., Makeig, S., & Micera, S. (2014). RELICA: a method for estimating the reliability of independent components. NeuroImage, 103, 391-400.</span></font></p><p class="gmail-MsoListParagraphCxSpLast" style="text-align:justify;margin:0in 0in 0.0001pt 0.5in;font-family:Calibri"><font color="#000000"><span style="font-family:Arial">8)<span style="font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;line-height:normal;font-family:"Times New Roman""> </span></span><span style="font-family:Arial">a broad range of blind-source separation ICA algorithms, ~5 to 15 reliable ICs were found by each algorithm. Bridwell, D. A., Rachakonda, S., Silva, R. F., Pearlson, G. D., & Calhoun, V. D. (2016). Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data. Brain topography, 1-15.</span></font></p></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><br></font></div><div class="gmail_default" style="color:rgb(34,34,34)"><font color="#000000"><br></font></div><br class="gmail-Apple-interchange-newline"></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_default" style="color:#333399"><br></div></div><br><div class="gmail_quote"><div dir="ltr">On Wed, Aug 29, 2018 at 11:04 AM anoop jagadeesh <<a href="mailto:anoop2187@gmail.com">anoop2187@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear all,<div><br></div><div>We use a 256-channel EGI equipment to measure auditory evoked potentials. There are a few questions I have and I hope you can answer them for me</div><div><br></div><div>1. Should I run the ICA for the full 256 channels or using a PCA (as suggested in Makoto's preprocessing pipeline)? Till now I have done it using the PCA approach. But it would be helpful to know of any other approaches to handle the high-density recordings.</div><div><br></div><div>2. Even after running the ICA (RUNICA) with a PCA value of 64, there are many components which are very difficult to explain. Normally, we would remove only the components which are"outside the head". However, there are many components which are clearly 'bad' inside the head. Especially, there are components within the 64 which look like a localised dot. Do we remove these components? Please note that I have seen instances where there are 10 (out of 64) or even more such dot components</div><div><br></div><div>3. Another important issue I have encountered is there are many cases where 'spindles' (very likely related to sleep) occur. These spindles are often seen in the top 5 most robust components. Do we keep them or remove them? </div><div><br></div><div>Simply put, how strict do we need to be while rejecting the bad components. Inputs regarding this are highly appreciated</div><div><br></div><div>Regards<br clear="all"><div><br></div>-- <br><div dir="ltr" class="m_4852698621214991499gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><font color="#0000ff">Anoop B J</font><div><font color="#0000ff">Junior Research Fellow</font></div><div><font color="#0000ff">Dept of Audiology,</font></div><div><font color="#0000ff">All India Institute of Speech and Hearing, Mysuru, India</font></div></div></div></div></div>
_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a></blockquote></div>