<div dir="ltr"><div class="gmail_default" style="color:#333399"><br></div><div class="gmail_quote"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div style="color:rgb(51,51,153)">Hello Ihshan, brief notes below.</div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><div class="gmail_default" style="color:rgb(51,51,153)">****************************************************</div><br></div><div style="color:rgb(51,51,153)">1. One can make different .set files containing only <span class="gmail_default" style="color:rgb(51,51,153)">one kind of</span> sections<span class="gmail_default" style="color:rgb(51,51,153)">/conditons</span> and not others, for each single subject. Then <span class="gmail_default" style="color:rgb(51,51,153)">load</span> them into eeglab study, clearly defin<span class="gmail_default" style="color:rgb(51,51,153)">ing </span>which conditions are which<span class="gmail_default" style="color:rgb(51,51,153)"> in the Study gui</span>. Then use the study GUI to <span class="gmail_default" style="color:rgb(51,51,153)">calculate channel metrics, and to visualize/</span>show the power for different conditions. Stats comparisons between conditions for any of the computed EEG metrics <span class="gmail_default" style="color:rgb(51,51,153)">are</span> available via the study function. If you are new to study, download the eeglab tutorial data (the full study data) and explore that data via the study GUI. If you're not sure where to find into about eeglab STUDY, try googling "eeglab study tutorial"</div><div style="color:rgb(51,51,153)">In other words: you need to have different files that <span class="gmail_default" style="color:rgb(51,51,153)">contain one kind of condition, and other files that contain another kind of condition, etc..</span>, and then make a study with those files, which will allow you to compare spectral power across your <span class="gmail_default" style="color:rgb(51,51,153)">sections/</span>conditions.</div><div style="color:rgb(51,51,153)">Note also, if you want to try it, that the new updated STUDY allows loading full files, and it can create different conditions based on event information in the data you load in.</div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)">2. Basic theory/facts about spectral power involves the Power law<span class="gmail_default" style="color:rgb(51,51,153)"> (low frequencies are much larger than higher frequencies)</span>. If you google the topic on Google or google scholar, you will find a range of online resources, such as, for example, Mike X. Cohen's teaching site for time-frequency/EEG, and also, as another example, brief overviews such as those from Voytek lab: <b><a href="http://voyteklab.com/interpreting-the-electrophysiological-power-spectrum/" target="_blank">http://voyteklab.com/interpreting-the-electrophysiological-power-spectrum/</a></b></div><div style="color:rgb(51,51,153)">Basic handbooks of EEG have chapters regarding spectral computation and characteristics. For example, the Luck handbook, and the Mike X Cohen handbook.</div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)">Regarding the code you found on Makoto's site, it's giving you absolute power , in the second part, as per the comments<span class="gmail_default" style="color:rgb(51,51,153)"> in the code from Makoto</span>. In the first part, what's it doing is simply reading the output of the spectopo function. Note that when one looks at the original output of the spectopo function it is already "logged" in the way that you see in the spectral plots (the main eeglab spectral plots do not show absolute power, so that's is easier to see power in higher frequency bands). <span class="gmail_default" style="color:rgb(51,51,153)">Som t</span>ry not using the second part of Makoto's code, <span class="gmail_default">the</span> part which transforms the <span class="gmail_default" style="color:rgb(51,51,153)">logged </span>spectopo output <span class="gmail_default" style="color:rgb(51,51,153)">back </span>to absolute power.</div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)">For comparing between bands, <span class="gmail_default" style="color:rgb(51,51,153)">a method often used is computing</span> relative power,</div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><span class="gmail_default" style="color:rgb(51,51,153)">If you have not had a chance to, remember to review</span> high-quality EEG articles that do <span class="gmail_default" style="color:rgb(51,51,153)">analysis simialr to the ones you are trying (comparing "strength" of bands between "conditions")</span></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)">Note that when one compares between different conditions, there should be about the same amount of data/time/epochs per participant<span class="gmail_default" style="color:rgb(51,51,153)"> and per condition</span>, and it should all be cleaned/preprocessed correctly before computing metrics.</div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><div class="gmail_default" style="color:rgb(51,51,153)">ps. dominant band is usually alpha - it predominates in the EEG signal, althgouh all other bands are important too.</div><br></div><div style="color:rgb(51,51,153)">****************************************************<br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div><div style="color:rgb(51,51,153)"><br></div></div></div></div><br><div class="gmail_quote"><div dir="ltr">On Mon, Sep 24, 2018 at 1:14 PM Vibra Lab <<a href="mailto:labvibra@gmail.com" target="_blank">labvibra@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Let me describe my study. A person is given 4 sections (in total around 60 minutes for all sections for each participant). For each section, participant is given various questions that they need to answer. i.e. it's like a conversation. Due to the nature of the experiment, the length of each section for each participant varies. For instance, for section <b>one </b>(for 4 participants) there are <b>4 different lengths</b> of time window (10 minutes, 15 minutes, 20 minutes, and 25 minutes). Due to that, I have some questions<div><br></div><div>I tried to look at the archives but it seems that there is no answer for the problem that I have.</div><div><br><div><b>1. </b>How can I find what is the most dominant frequency (eg. theta, alpha) for each section ?</div><div><br></div><div>I can plot all types of band via (<b>Plot > Channel spectra and map</b>) by putting <b>6, 10, 22, 30 in</b> column <b>Frequencies to plot as scalp map</b> for instance. But, how do I choose what is the most dominant frequency (out of 4 frequencies in the example above) during specific period / section ? So that, I can only show one brain figure (eg. brain map figure with 10 Hz) with statistical consideration.</div><div><br></div><div><b>2.</b> I am trying to use the code that is made by Makoto, found it in the archive , but it seems not working to determine which frequency band that is dominant in a certain period. I tried the code in different files, but it showed that low frequency bands have always higher mean amplitude than high frequency bands (eg. delta's mean amplitude is higher than theta's one). Why is it so ? </div><div><br></div><div>Here's the code from Makoto to find mean amplitude</div><div>%%%%%%%%%%%%%%%%%%%<br></div><div><div>% for your epoched data, channel 2</div><div>[spectra,freqs] = spectopo(EEG.data(2,:,:), 0, EEG.srate);</div><div><br></div><div>% delta=1-4, theta=4-8, alpha=8-13, beta=13-30, gamma=30-80</div><div>deltaIdx = find(freqs>1 & freqs<4);</div><div>thetaIdx = find(freqs>4 & freqs<8);</div><div>alphaIdx = find(freqs>8 & freqs<13);</div><div>betaIdx = find(freqs>13 & freqs<30);</div><div>gammaIdx = find(freqs>30 & freqs<80);</div><div><br></div><div>% compute absolute power</div><div>deltaPower = mean(10.^(spectra(deltaIdx)/10))</div><div>thetaPower = mean(10.^(spectra(thetaIdx)/10))</div><div>alphaPower = mean(10.^(spectra(alphaIdx)/10))</div><div>betaPower = mean(10.^(spectra(betaIdx)/10))</div><div>gammaPower = mean(10.^(spectra(gammaIdx)/10))</div></div><div>%%%%%%%%%%%%%%%%%</div><div> <br></div><div>Thank you for your help</div><div><br></div><div>Best,</div><div>Ihshan</div><div><br></div><div>if I want to show only one band, considering that is the most dominant or prominent during specific period, </div></div></div>
_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a></blockquote></div>
</div></div>