<div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr">Dear list,<div><br></div><div>When preprocessing my EEG data, I run ICA on a heavily cleaned dataset. Subsequently, I transfer the ICA weights to the original dataset, which is only moderately cleaned. The number of channels in the two datasets are the same and both are re-referenced to average reference (therefore, I use the 'pca', [number of channels in dataset - 1] settings when running ica). </div><div><br></div><div>Component 1 and 6 probably reflects blinks and horizontal eye movements, respectively. When I plot the components in the pruned dataset, the activity power spectrum looks fine (see attachment: ptc5_component1_pruneddata.png and ptc5_component6_pruneddata.png). However, when I plot the components in the original dataset, the activity power spectrum of both components contains bumps, while the scalp plot remain the same (see attachment: ptc5_component1_originaldata.png and ptc5_component6_originaldata.png). Does anyone know what's going wrong here? The component activations when plotted in the original dataset still indicate that component 1 and 6 reflect blinks and horizontal eye movements, respectively, although the component activation plot does contain a bit more noise than the component activation plot of the pruned data.</div><div><br></div><div>Any comments are welcome!</div><div><br></div><div>Kind regards,</div><div>Amélie la Roi</div><div><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr">Amélie la Roi, MA<div>PhD student CLCG, Semantics and Cognition</div><div>University of Groningen, the Netherlands</div><div>Harmony building, room 1311.0412 | Phone: +31 50 363 6683</div><div><br></div></div></div></div></div></div></div></div></div>
</div></div></div></div></div></div>