<div dir="ltr">Ramon Martinez-Cancino et al. have published a new paper on a mutual information-based approach to estimating phase-amplitude coupling (PAC) between high-frequency power or amplitude and low-frequency phase in a signal. The new method has advantages with respect to time resolution for both continuous and epoched data. An EEGLAB plug-in PAC toolbox will be released soon. Read the new article for free at<div><br></div><div><a href="https://authors.elsevier.com/c/1XyiV3lc~r3J6u" target="_blank" style="color:rgb(0,115,152);font-family:Roboto,RobotoDraft,Helvetica,Arial,sans-serif;font-size:18px;text-align:-webkit-center;background-color:rgb(255,255,255)">https://authors.elsevier.com/c/1XyiV3lc~r3J6u</a></div><div><br></div><h5 style="box-sizing:border-box;margin:0px 0px 0.6rem;padding:0px;font-weight:normal;font-size:1rem;line-height:1.4rem;color:rgb(50,50,50);font-family:NexusSerif,Georgia,"Times New Roman",Times,STIXGeneral,"Cambria Math","Lucida Sans Unicode","Microsoft Sans Serif","Segoe UI Symbol","Arial Unicode MS",serif;text-align:left;text-decoration-style:initial;text-decoration-color:initial">Abstract</h5><div style="box-sizing:border-box;margin:0px;padding:0px;color:rgb(50,50,50);font-family:NexusSerif,Georgia,"Times New Roman",Times,STIXGeneral,"Cambria Math","Lucida Sans Unicode","Microsoft Sans Serif","Segoe UI Symbol","Arial Unicode MS",serif;font-size:16px;text-align:left;text-decoration-style:initial;text-decoration-color:initial"><p style="box-sizing:border-box;margin:0px 0px 0.8rem;padding:0px;line-height:1.5rem">Here we demonstrate the suitability of a local mutual information measure for estimating the temporal dynamics of cross-frequency coupling (CFC) in brain electrophysiological signals. In CFC, concurrent activity streams in different frequency ranges interact and transiently couple. A particular form of CFC, phase-amplitude coupling (PAC), has raised interest given the growing amount of evidence of its possible role in healthy and pathological brain information processing. Although several methods have been proposed for PAC estimation, only a few have addressed the estimation of the temporal evolution of PAC, and these typically require a large number of experimental trials to return a reliable estimate. Here we explore the use of mutual information to estimate a PAC measure (MIPAC) in both continuous and event-related multi-trial data. To validate these two applications of the proposed method, we first apply it to a set of simulated phase-amplitude modulated signals and show that MIPAC can successfully recover the temporal dynamics of the simulated coupling in either continuous or multi-trial data. Finally, to explore the use of MIPAC to analyze data from human event-related paradigms, we apply it to an actual event-related human electrocorticographic (ECoG) data set that exhibits strong PAC, demonstrating that the MIPAC estimator can be used to successfully characterize amplitude-modulation dynamics in electrophysiological data.</p></div><div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature">Scott Makeig, Research Scientist and Director, Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla CA 92093-0961, <a href="http://sccn.ucsd.edu/~scott" target="_blank">http://sccn.ucsd.edu/~scott</a></div></div></div>