<div dir="ltr"><div dir="ltr"><div dir="ltr"><div class="gmail_default" style=""><font color="#000000">Hello A S,</font></div><div class="gmail_default" style=""><font color="#000000">Some brief notes below. When you reach a solution that satisfies your needs, please share it with the list so that other users can benefit from it.</font></div><div class="gmail_default" style=""><font color="#000000"><br></font></div><div class="gmail_default" style=""><font color="#000000">*There are functions named runpca and runpca2 in the eeglab distribution. Review their documentation and test them out, as they may not be regularly used.</font></div><div class="gmail_default" style=""><div class="gmail_default" style=""><font color="#000000">*There is also Joe Dien's PCA toolkit: <a href="https://sourceforge.net/projects/erppcatoolkit/">https://sourceforge.net/projects/erppcatoolkit/</a></font></div></div><div class="gmail_default" style=""><font color="#000000">*There is also the following, which I believe uses Dien's tools or is a replica of them <a href="https://github.com/krigolson/MATLAB-EEG-PCA-Toolbox">https://github.com/krigolson/MATLAB-EEG-PCA-Toolbox</a> </font></div><div class="gmail_default"><font color="#000000">*There are also some PCA functions in the Fieldtrip LIte folder that is part of the eeglab distribution (search for m files with pca in their title)<br></font></div><div class="gmail_default"><font color="#000000"><br></font></div><div class="gmail_default"><font color="#000000">Also, ICA in eeglab is not just for removing artifacts. Many researchers analyze the ICs themselves as indexes of unique neural sources.</font></div><div class="gmail_default"><div class="gmail_default" style=""><font color="#000000">From my understanding, eeglab developers strongly recommend ICA and NOT PCA, you can google "eeglablist + ICA + PCA" for past posts about that.</font></div><div class="gmail_default" style=""><font color="#000000">There is a PCA flag in the runica function in eeglab, but it will essentially run ICA on PCA-reduced data. </font></div><div class="gmail_default" style=""><font color="#000000">The following recent article is interest,findable on google scholar: <span style="font-size:13px;font-family:Arial,sans-serif">Artoni, F., Delorme, A., & Makeig, S. (2018). Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition. </span><i style="font-size:13px;font-family:Arial,sans-serif">NeuroImage</i><span style="font-size:13px;font-family:Arial,sans-serif">, </span><i style="font-size:13px;font-family:Arial,sans-serif">175</i><span style="font-size:13px;font-family:Arial,sans-serif">, 176-187.</span></font></div><div class="gmail_default" style=""><span style="font-size:13px;font-family:Arial,sans-serif"><font color="#000000"><br></font></span></div><div class="gmail_default" style=""><span style="font-size:13px;font-family:Arial,sans-serif"><font color="#000000"><br></font></span></div></div><div class="gmail_default" style=""><font color="#000000"><br></font></div><div class="gmail_default" style=""><span style="font-family:Arial,sans-serif;font-size:13px"><font color="#000000"><br></font></span></div></div></div><font color="#000000"><br></font><div class="gmail_quote"><div dir="ltr"><font color="#000000">On Fri, Nov 23, 2018 at 12:00 PM A S <<a href="mailto:eng.emetsasa@gmail.com">eng.emetsasa@gmail.com</a>> wrote:<br></font></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><font color="#000000">Hi all,<br>
I know there's ICA in EEGLAB to remove artifacts. However I want to<br>
use PCA (Principal Components Analysis) to reduce the electrodes to<br>
spatio-temporal information according to the regions of interest. I<br>
can't find the PCA. Is there PCA in EEGLAB?<br>
_______________________________________________<br>
Eeglablist page: <a href="http://sccn.ucsd.edu/eeglab/eeglabmail.html" rel="noreferrer" target="_blank">http://sccn.ucsd.edu/eeglab/eeglabmail.html</a><br>
To unsubscribe, send an empty email to <a href="mailto:eeglablist-unsubscribe@sccn.ucsd.edu" target="_blank">eeglablist-unsubscribe@sccn.ucsd.edu</a><br>
For digest mode, send an email with the subject "set digest mime" to <a href="mailto:eeglablist-request@sccn.ucsd.edu" target="_blank">eeglablist-request@sccn.ucsd.edu</a></font><br>
</blockquote></div></div>