<div dir="ltr"><span style="color:rgb(0,0,0)"><font size="2"><span><span class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small">Hello </span>Sadatnejad, Some </span>quick notes and some recent literature <span class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small">(</span><span class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small">right below) </span>where you might find some useful tools or ideas. all the best.<br></font></span><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2">Sounds like a cool project@ ICA-EEG provides a source space with a good number of brain network nodes. One can of course also go into "distributed source space", where tools built for fmri voxel space can be used on it. Brainstorm, Fieldtrip, and MNE Python are various ways to get distributed source estimates for your network analyses, and it's possible to import eeglab data into them. I believe EEGNET (see below) goes from eeglab into brainstorm and then Brain Connectivity Toolbox. See also Calhoun's group at Mind research network for cool approaches to dynamic functional networks. If you find a pipeline that works for you, please consider sharing your solution with the list so users can benefit from your experience. <br></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><font size="2">All citations below easily googlable. <br></font></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2">// <br></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div><div><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" id="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-docs-internal-guid-a4b85354-7fff-0b8d-0728-bf42a43a7eab"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Pezoulas, V. C., Athanasiou, A., Nolte, G., Zervakis, M., Fratini, A., Fotiadis, D. I., & Klados, M. A. (2018, March). FCLAB: An EEGLAB module for performing functional connectivity analysis on single-subject EEG data. In </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Biomedical & Health Informatics (BHI), 2018 IEEE EMBS International Conference on</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"> (pp. 96-99). IEEE.</span></font></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></font></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Hassan, M., Shamas, M., Khalil, M., El Falou, W., & Wendling, F. (2015). EEGNET: an open source tool for analyzing and visualizing M/EEG connectome. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">PloS one</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">10</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">(9), e0138297.</span></span></font></span></p></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Fahrenfort, J. J., Van Driel, J., Van Gaal, S., & Olivers, C. N. (2018). From ERPs to MVPA using the Amsterdam Decoding and Modeling toolbox (ADAM). </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Frontiers in neuroscience</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">12</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">.</span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></font></span></div><div><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" id="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-docs-internal-guid-d5d8a047-7fff-3e78-2db6-b532d648b14f"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Bahrami, M., Laurienti, P. J., & Simpson, S. L. (2019). A MATLAB toolbox for multivariate analysis of brain networks. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Human brain mapping</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">40</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">(1), 175-186.</span></font></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></font></span></p></div></div></blockquote><div><span style="color:rgb(0,0,0)"> </span></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></font></span></p><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Allen, E. A., Damaraju, E., Eichele,
T., Wu, L., & Calhoun, V. D. (2018). EEG signatures of dynamic
functional network connectivity states. <i>Brain topography</i>, <i>31</i>(1), 101-116.</span></div></div></div></blockquote><div><span style="color:rgb(0,0,0)"><br></span></div><div><span style="color:rgb(0,0,0)"> </span></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></font></span></p><span style="color:rgb(0,0,0)"><br></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">//<br></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap" id="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-docs-internal-guid-998975a9-7fff-2cbe-448f-5cb18bd663a7">Wang, B. C., Norcia, A. M., & Kaneshiro, B. (2017). MatClassRSA: A Matlab toolbox for M/EEG classification and visualization of proximity matrices. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">bioRxiv</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, 194563.</span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap" id="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-docs-internal-guid-e419289c-7fff-e88a-f724-638fa64b2d06">Baggio, H. C., Abos, A., Segura, B., Campabadal, A., Garcia‐Diaz, A., Uribe, C., ... & Junque, C. (2018). Statistical inference in brain graphs using threshold‐free network‐based statistics. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Human brain mapping</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">39</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">(6), 2289-2302.</span></span></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></span></span></font></span></div><div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Heitmann, S., Aburn, M. J., & Breakspear, M. (2018). The Brain Dynamics Toolbox for Matlab. <i>Neurocomputing</i>, <i>315</i>, 82-88.</span></div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></span></span></font></span></div><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></font></span></p><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></span></span></font></span><div><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></font></span></p><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap" id="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-docs-internal-guid-995f6864-7fff-efe2-cd73-fe2f2c99ddc2">Soch, J., & Allefeld, C. (2018). MACS–a new SPM toolbox for model assessment, comparison and selection. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Journal of neuroscience methods</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">.</span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div><div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap" id="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-docs-internal-guid-0cf37d42-7fff-a3ce-ff62-52a24c576ef7">Dong, L., Luo, C., Liu, X., Jiang, S., Feng, H., Li, J., ... & Yao, D. (2018). Neuroscience information toolbox: an open source toolbox for EEG-fMRI multimodal fusion analysis. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Frontiers in neuroinformatics</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">12</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, 56.</span></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></span></font></span></div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Bode, S., Feuerriegel, D., Bennett, D., & Alday, P. M. (2018). The Decision Decoding ToolBOX (DDTBOX)–A multivariate pattern analysis toolbox for event-related potentials. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Neuroinformatics</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, 1-16.</span></font></span></div><div><span style="color:rgb(0,0,0)"><br></span></div><div><span style="color:rgb(0,0,0)">//</span></div><div><span style="color:rgb(0,0,0)"> <br></span><div><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></font></span></p><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></font></span></div><div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Sizemore, A. E., & Bassett, D. S. (2018). Dynamic graph metrics: Tutorial, toolbox, and tale. <i>NeuroImage</i>, <i>180</i>, 417-427.</span></div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></font></span></div></div><div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></span></span></font></span></div><div><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" id="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-docs-internal-guid-ddfc4ee5-7fff-c04d-c161-6f8c64317ea3"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Mijalkov, M., Kakaei, E., Pereira, J. B., Westman, E., Volpe, G., & Alzheimer's Disease Neuroimaging Initiative. (2017). BRAPH: A graph theory software for the analysis of brain connectivity. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">PloS one</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">12</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">(8), e0178798.</span></font></span></p></div></div><div><span style="color:rgb(0,0,0)"><br></span></div><div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Wang, J., Wang, X., Xia, M., Liao, X.,
Evans, A., & He, Y. (2015). GRETNA: a graph theoretical network
analysis toolbox for imaging connectomics. <i>Frontiers in human neuroscience</i>, <i>9</i>, 386.</span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Kruschwitz, J. D., List, D., Waller,
L., Rubinov, M., & Walter, H. (2015). GraphVar: A user-friendly
toolbox for comprehensive graph analyses of functional brain
connectivity. <i>Journal of neuroscience methods</i>, <i>245</i>, 107-115.</span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Liao, W., Wu, G. R., Xu, Q., Ji, G.
J., Zhang, Z., Zang, Y. F., & Lu, G. (2014). DynamicBC: a MATLAB
toolbox for dynamic brain connectome analysis. <i>Brain connectivity</i>, <i>4</i>(10), 780-790.</span></div></div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2">\\</font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div><div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Moezzi, B., Hordacre, B., Berryman,
C., Ridding, M. C., & Goldsworthy, M. R. (2018). Test-retest
reliability of functional brain network characteristics using
resting-state EEG and graph theory. <i>bioRxiv</i>, 385302.</span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Colclough, G. L., Woolrich, M. W.,
Harrison, S. J., López, P. A. R., Valdes-Sosa, P. A., & Smith, S. M.
(2018). Multi-subject hierarchical inverse covariance modelling
improves estimation of functional brain networks. <i>NeuroImage</i>, <i>178</i>, 370-384.</span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Bassett, D. S., Zurn, P., & Gold, J. I. (2018). On the nature and use of models in network neuroscience. <i>Nature Reviews Neuroscience</i>, 1.</span></div></div></div></div><div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Gili, T., Ciullo, V., & Spalletta,
G. (2018). Metastable states of multiscale brain networks are keys to
crack the timing problem. <i>Frontiers in computational neuroscience</i>, <i>12</i>.</span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Khambhati, A. N., Sizemore, A. E.,
Betzel, R. F., & Bassett, D. S. (2018). Modeling and interpreting
mesoscale network dynamics. <i>NeuroImage</i>, <i>180</i>, 337-349.</span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)">Avena-Koenigsberger, A., Misic, B., & Sporns, O. (2018). Communication dynamics in complex brain networks. <i>Nature Reviews Neuroscience</i>, <i>19</i>(1), 17.</span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" id="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-docs-internal-guid-0ab8b7f4-7fff-84d9-f78d-e791257ceb29"><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Nüßing, A., Piastra, M. C., Schrader, S., Miinalainen, T., Brinck, H., Wolters, C. H., & Engwer, C. (2019). duneuro-A software toolbox for forward modeling in neuroscience. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">arXiv preprint arXiv:1901.02874</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">.</span></font></span></p></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><span style="color:rgb(0,0,0)"><br></span></div><div class="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-gs_citr"><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="font-size:11pt;font-family:Arial;background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap" id="m_-8920884660635970325gmail-m_5507490089344177461m_-4708715232608566608gmail-docs-internal-guid-6cb798bc-7fff-8ffe-cf5e-ff8111913c61">Vorwerk, J., Oostenveld, R., Piastra, M. C., Magyari, L., & Wolters, C. H. (2018). The FieldTrip-SimBio pipeline for EEG forward solutions. </span><span style="font-size:11pt;font-family:Arial;background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Biomedical engineering online</span><span style="font-size:11pt;font-family:Arial;background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">, </span><span style="font-size:11pt;font-family:Arial;background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">17</span><span style="font-size:11pt;font-family:Arial;background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">(1), 37.</span></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="font-size:11pt;font-family:Arial;background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></span></font></span></div><div><span style="color:rgb(0,0,0)"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="font-size:11pt;font-family:Arial;background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Gonzalez-Moreira, E., Paz-Linares, D., Martinez-Montes, E., & Valdes-Sosa, P. A. (2018). Third Generation MEEG Source Connectivity Analysis Toolbox (BC-VARETA 1.0) and Validation Benchmark. </span><span style="background-color:transparent;font-weight:400;font-style:italic;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">arXiv preprint arXiv:1810.11212</span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">.</span></font></span></span></font></span></div></div></div></div><span style="color:rgb(0,0,0)"><br><font size="2"><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span><span style="background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></font></span></div><span style="color:rgb(0,0,0)"><font size="2"><br></font></span></div>
</blockquote></div></div>