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Abstract 
 
We analyzed 15 sessions of 64-channel EEG data recorded from a highly trained subject 
during sessions in which he attempted to regulate power at 12 Hz over his left- and right-
central scalp to control the altitude of a cursor moving toward target boxes placed at the 
top, middle or bottom right of a computer screen (J. Wolpaw et al., Electroencephalogr 
Clin Neurophysiol. 78:252-259, 1991). We used infomax independent component 
analysis (ICA) to decompose 64-channel EEG data from trials in which the subject 
successfully up-regulated or down-regulated the measured EEG signals. Applying time-
frequency analysis to the time courses of activity of several of the resulting 64 
independent EEG components revealed that successful regulation of the measured 
activity was accompanied by extensive, asymmetrical changes in power and coherence, at 
both nearby and distant frequencies, in several parts of cortex. A more complete 
understanding of these phenomena could help to explain the nature and locus of learned 
regulation of EEG rhythms and might also suggest ways to further optimize the 
performance of brain-computer interfaces. 
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Introduction 
 

When we alternately raise and then lower our arm at will, we have little 
awareness of the fact that these two actions involve complex coordination of activity in 
different sets of muscles. When a trained subject operating a brain-computer interface 
(BCI) raises or lowers, at will, a particular amplitude measure of their 
electroencephalographic (EEG) signals (without producing muscle activity), are the 
changes produced in their EEG dynamics similarly complex? In particular, does up- and 
down-regulation of a specific EEG measure produce or involve other changes in their 
EEG dynamics? Answers to these questions might shed light on the fundamental nature 
and locus of learned EEG control and might also be used to guide the development of 
optimal BCI algorithms. 
 
Methods 
 

We analyzed fifteen half-hour BCI sessions on a single highly-trained male 
subject (hk) in the Wolpaw group laboratory [1, 2]. In these experiments, changes in the 
amplitude of 12-Hz EEG power at left-central C3 electrode summed with the 12-Hz 
power at right central C4 electrode produced proportional changes in the screen height of 
a left-to-right moving cursor during experiments in which the subject attempted to make 
the cursor reach a goal box placed at the top, middle or bottom right of a computer 
screen. Here we report results for approximately 1000 successful top (up-regulate) and 
1000 successful bottom (down-regulate) trials. Details of the experimental methodology 
are available elsewhere [3]. The sessions analyzed were numbers 196-210 for this 
subject, who at the time of these sessions had participated in similar experiments twice 
weekly for over two years. The frequency and scalp loci of the indicator rhythm used by 
the BCI algorithm had been hand tuned during previous sessions to optimize subject 
performance on the task, which during these sessions was consistent (up, 81% successful; 
down, 79%). 
 
We used infomax independent component analysis (ICA) [4, 5] to decompose the 64-
channel whole-scalp recordings into 64 maximally independent components. Many of 
these components accounted for eye or scalp muscle activity, or for single- or multi-
channel noise. We selected several of the larger components for detailed analysis using 
the EEGLAB Matlab toolbox [6]. One of these (the ninth largest by variance accounted 
for) clearly displayed characteristics of a right-hemisphere mu-rhythm generator, with its 
characteristic 11-Hz and 22-Hz spectral peaks. The scalp map representing the projection 
of this component to the electrodes resembled closely the projection of a single dipole; 
BESA [7] source analysis showed that a single dipole in a spherical head model 
accounted for 97.8% of the scalp map variance. The resulting dipole was located near to 
the typical hand area of motor cortex, in line with previous results of ICA decomposition 
in button-press tasks [8] and with detailed investigations of mu-rhythm generators [9]. 
Other components we analyzed accounted for independent posterior alpha activities and 
for activity with 5-Hz and 8-Hz peaks projecting to frontocentral cortex. The scalp maps 
of these components could also be fit by a single dipole with 4%-6% residual variance. 
To study the concomitant dynamics of each of these components during learned mu-
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rhythm regulation, we computed erp-image plots [10], and event-related spectral 
perturbation (ERSP) [11] and event-related coherence images [12]. 
 
 
Results 
 

Fig. 1B shows that while power at the 12-Hz regulation frequency is distributed 
across the head, the spatial pattern of 12-Hz regulation is maximal near C3, with a second 
maximum near C4. During up-regulation, 12-Hz power is higher than during dfown-
regulation at all channels except over right prefrontal scalp (Fig. 1A). Fig. 1C 
demonstrates that relative to down-regulation, up-regulation is associated with increased 
power at C3 and at C4 across the EEG frequency range, with a difference maximum at 12 
Hz and smaller peak differences near 2, 4, 22 and 38 Hz. Near 12 Hz and 22 Hz, the 
regulation effect is stronger at C3 than C4; at other frequencies it is equal at both 
channels.  

 

 
 
To explore the spatial and frequency-domain extent of the effects of regulation, 

we analyzed activity of several independent EEG components accounting for portions of 
12-Hz power at C3 and C4. Fig. 2 shows the mean and trial-length sorted and smoothed 
single-trial time courses of power around 12-Hz in the right-mu component (mapped in 

Fig. 1. Effects of learned regulation on EEG spectral power of a highly trained subject 
performing a brain-computer interface (BCI) experiment in which summed changes in 
EEG power near 12 Hz at sites C3 and C4 were used to adjust the screen height of a 
moving cursor. The subject's task was to make the cursor move into a box placed at the 
right top or bottom of the screen. In each trial, the target box appeared at time 0, and the 
cursor at 1.5 s. A. Power difference at 12 Hz during active regulation (up-regulate minus 
down-regulate, 800-2000 ms). B. Distribution of 12-Hz power at baseline (0-500 ms). C. 
Power spectra during regulation (800-2000 ms) at C3 and C4. Note that during  up-
regulation EEG power is larger at nearly all frequencies than during down-regulation 
(lower traces). 
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Fig. 2A) in successful up- and down-regulate trials. During regulation (800-2000 ms), 
this component accounted for a mean of 27% of 12-Hz power at site C4 and 15% at C3.  

 
In both conditions, the appearance of the target cue at 0 ms is followed by a dip in power 
peaking near 300 ms, with return to baseline in both trial types near 700 ms. Thereafter, 
the two power trajectories diverge until trial end (Fig. 2C, curved lines). Following the 
end of the trial, amplitude decreases in both conditions. The two trajectories are not 
mirror images of each other, however. After an initial surge (at roughly 800-1100 ms), 
up-regulation is sustained for the trial duration (Fig. 2C, top), whereas during down-
regulation 12-Hz power returns nearly to baseline at about 2 s. Note that following down-
regulate trials, 12-Hz power actually dips below its minimum down-regulated level. 
 

 
 

Some concomitant effects of 12-Hz regulation on other EEG processes are shown 
in Fig. 3, which portrays, for three independent EEG components accounting for 
posterior alpha activities, trial-length sorted single-trial power trajectories at the 
frequency in the alpha band showing the largest event time-locked variability. Note that 
the up- and down-regulate trial trajectories for these components also differ from one 
another, with large differences between conditions appearing after trial end. 

 
 
 
 

Fig. 2. Time course of relative spectral power at 12 Hz (by 3-cycle wavelets) in an 
independent EEG component accounting for mu-rhythm activity projecting most 
strongly to the right-central scalp. Same subject as in Fig. 1. A. Scalp map showing 
the fixed pattern of projection of the component to the scalp electrodes. B. Mean 12-
Hz component power trajectories for the two trial conditions. The central grey band 
shows bootstrap power baseline and bootstrap significance limits (p<0.01). C. Time 
course of power at 12 Hz in 1000 single trials per condition sorted in order of trial 
duration and then smoothed vertically with a 100-trial moving average (curved lines 
show trial end; vertical axis: smoothed trial number). 
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Fig. 4 shows the concomitant effects of mu-rhythm regulation on other EEG 
frequencies in the right-mu component spectrum. For this component, 12-Hz regulation 
was accompanied or followed by modulations of power in narrow bands near 7, 11, 17 
and 30 Hz. Power trajectories at these frequencies differed in various ways between up- 
and down-regulate conditions.  

Fig. 5 shows that the changes in EEG dynamics accompanying mu-rhythm 
regulation included changes in partial phase coherence between maximally independent 
components accounting for independent posterior alpha rhythms [13]. These changes also 
differed in up- and down-regulate conditions. Various phase coherence changes were 
observed for other component pairs (not shown). 

 
 

Fig. 3. Power trajectories for three independent EEG components in successful mu-
rhythm up- and down-regulate trials. Same subject and trials as in Figs. 1 and 2. All 
three components have a peak in their activity spectrum near 10 Hz. A. Power at 10.5  
Hz in a central posterior alpha component, shows alpha block following target onset, 
stronger in down-regulate trials, particularly after cursor onset. After trial offset, 
power returns to baseline. B. 9.5-Hz power in a left posterior alpha source, showing 
blocking after target onset (1.5 s) in down-regulate trials only. C. 9-Hz power in a 
right posterior alpha source, showing phasic increases after target and cursor onsets 
and a power increase after offset of up-regulate trials only. 
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Fig. 4. Time/frequency decomposition (by FFT) of the right-mu independent 
component of Fig. 2 in successful up- and down-regulate trials. Bootstrap 
significance level: p < 0.01 A. Scalp map showing the pattern of projection of the 
component to the scalp electrodes. B. Mean power spectrum in up-regulate (black 
trace) and down-regulate (gray) trials. Dashed vertical line shows the 12-Hz 
frequency whose at summed amplitude at C3 and C4 was used to control cursor 
altitude. C. Time-frequency decompositions for up- and down-regulate trials. In up-
regulate trials, changes in 12-Hz power are accompanied by inverse changes in 
power near 7.5 Hz and 20 Hz. In down-regulate trials, power decreases at 12-15 Hz 
are accompanied by a somewhat different set of amplitude modulations.  

Fig. 5. Event-related phase coherence in successful mu-rhythm up- and down-regulate 
trials between two independent EEG components whose alpha-power time courses are 
shown in Fig. 3. A. In up-regulate trials, 12-Hz phase coupling of the two components 
increases (top arrow) whereas in down-regulate trials it becomes insignificant 
(bottom arrow). Bootstrap significance level:  p< 0.01. B. Scalp maps showing the 
pattern of projection of the components to the scalp electrodes.  
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Discussion 
 

Clearly, as this highly trained subject regulated the amplitude of his 12-Hz EEG 
activity on the left- and right-central scalp, he simultaneously modulated his EEG 
dynamics at several frequencies in multiple cortical areas. Therefore, learned modulation 
of one EEG amplitude measure may be effected through a process that concurrently 
modulates multiple EEG processes, producing event-related changes in power in multiple 
EEG components and frequencies. Many of the concomitant power changes in alpha 
rhythms resemble the broad so-called ‘event-related desynchronization’ (ERD) blocking 
of alpha rhythms [14] seen in experiments involving focused attention [15]. This suggests 
that the system regulating left and right mu activity in this subject may not be located in 
motor cortex. Instead, they may be associated with distributed arousal and attention 
networks, possibly linked to subcortical modulatory systems associated with non-
glutaminergic transmission. In these sessions, up- and down-regulation of 12-Hz (mu) 
activity was also accompanied by changes in event-related coherence between maximally 
independent EEG component processes.  
 

While the results presented here come from a single subject, they appear 
consistent over fifteen separate sessions. The accumulating data archive of brain-
computer interface (BCI) laboratories using this and other paradigms presents a clear 
opportunity to study the independence and interdependence of dynamic changes in 
cortical synchronization that produces EEG signals [16]. In particular, it should be 
interesting to study the extent to which the spectral changes produced by trained BCI 
subjects become tuned to the exact algorithm used to effect operant control. Activity at 
12-Hz in the controlling channels in this subject was accounted by ICA to sum 
contributions from several independent EEG processes. Had this subject been trained to 
directly regulate the activity of an independent left or right hemisphere mu component 
directly, would the concomitant changes in other EEG processes differ from those shown 
here? Across subjects, are there regularities in the location and dynamic portraits of those 
independent EEG components that co-vary with mu activity in BCI experiments? 
Answers to these and similar questions could reveal more about the function of EEG 
rhythms, and could suggest ways to incorporate more information about EEG dynamics 
into BCI algorithms, possibly improving their performance. 
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