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Abstract— Within the field of Brain Computer Interface, the 
sub-field of Neurofeedback that consists in training subjects to 
control specific brain rhythms is gaining momentum. Spatial 
filtering of brain source activities using Independent 
Component Analysis (ICA) may help subjects to specifically 
train specific brain regions. Here we propose an integrated 
platform built on top of two Open Source software namely 
BCI2000 and EEGLAB, to design and run source-based ICA 
Neurofeedback experiments. Our public software NeuroTRIP 
(Neurofeedback TRaining Ica Program) automates the 
sequence of procedure necessary to train a computer program 
to recognize brain sources and apply this training to isolate 
these sources in real time and provide feedback to subjects. In 
addition to provide an innovative technique for EEG Brain 
Machine Interface protocols, it will offer a flexible open source 
tool to conduct controlled experiments on neurotherapy 
methodology and results. 
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I.  INTRODUCTION 
With the recent development of software and dedicated 

hardware for real time acquisition and processing of 
electrical brain signals such as electro-encephalogram 
(EEG), new perspectives in the domain of Brain Computer 
Interfaces (BCI) have arisen. Even within the framework of 
controlling electrophysiological signal attributed to cerebral 
sources, different applications are possible. The main BCI 
application is to use the electrical signal generated by the 
brain to control an input communication software or 
mechanical device. The control signal may be used for 
instance to control a Virtual Reality setup or video games. 
Another possible BCI application, Neurofeedback, aims at 
training subjects over several weeks to up-regulate or down-
regulate the activity of specific electrical brain signal. More 
specifically, Neurofeeedback consists in having subjects 
train to modify brain waves at specific frequencies in order 
to suppress abnormal oscillatory activity usually linked to a 
psycho-pathological state such as ADHD [1-3], drug 
addiction [4,5], depression [6], or even neuro-pathological 
states such as epilepsy [7-12]. Neurofeedback has also been 
used to improve a specific aspect of cognition [13] such as 
concentration, stress management, or even musical 
performances [14]. 

Historically, the Neuroscientific community has long 
discredited Neurofeedback. Despite the fact it has been used 
extensively by therapists in the past 30 years,  there have not 
been serious scientific studies to back up Neurofeedback-
based therapeutic interventions. Moreover, most of these 
interventions were based on the intuition of the therapist or 
on observation in isolated patients or subjects.  The few 
controlled-group studies achieved so far, suffer from the 
small sample size and the absence of control for patient and 
therapist characteristics that could influence their outcome.  
Although it is clear that significant, beneficial effects  have 
constantly been reported in patients who volunteered to 
receive this type of treatment, additional controlled, group 
studies are needed in order to promote a clearer 
understanding  of this alternative to chemical therapies. 

Neurofeedback training is usually performed using one or 
two scalp electrodes. One of the main drawbacks of using 
single channel Neurofeedback is that it requires many 
sessions until the subject or patient starts gaining control 
over his EEG signal. One way to speed up learning could be 
to compensate the poor spatial resolution of EEG using 
efficient spatial filtering and source reconstruction, as this 
could potentially increase the functional specificity of the 
training. Because of volume conduction in the brain, the 
single-channel signal used in Neurofeedback is the sum of 
the projection of the activity originating from several cortical 
sources. Therefore, it makes it difficult to infer what brain 
region activity subjects are training to regulate and the neural 
mechanisms involved in Neurofeedback training are still 
largely unknown. 

Using a large number of electrodes allows to isolate the 
different sources of EEG activity and to use the activity of 
these sources as feedback for the subject. Source separation 
may be achieved using signal processing and statistical 
techniques such as Independent Component Analysis (ICA) 
[15-18], and some studies suggest that this processing could 
help improve the learning process [19,20]. 

This paper presents a piece of software called 
NeuroTRIP that would allow to easily design and run 
experimental Neurofeedback protocols. NeuroTRIP uses 
different open source solutions already widely used in BCI, 
namely BCI2000 [21] for acquiring the data and providing 
feedback to the subject or patient, and EEGLAB for EEG 
analysis [22]. We will start by describing standard single-
electrode Neurofeedback protocols. We will then introduce 



ICA and explain how it can extract brain sources to allow 
subjects to directly control the activity of specific brain 
areas. We will then present the BCI2000 software, the 
EEGLAB software and the sequence of processing required 
to perform Neurofeedback on ICA components. The last part 
of this report describes how we implemented this stream of 
processing in our software, NeuroTRIP. As illustrated in Fig. 
1, NeuroTRIP allows smoothly designing and monitoring a 
complete experimental neurofeedback paradigm and helps 
integrate for the first time ICA in Neurofeedback research 
applications. 

II. WHAT IS NEUROFEEDBACK 
Neurofeedback is a technique used mainly in behavioral 

medicine and is often used in conjunction with 
psychotherapy. Surface electrical signals at a particular scalp 
location are amplified and processed in real time using 
dedicated hardware and software. Traditionally, 
Neurofeedback is done in clinical settings using only a few 
electrodes, such as CZ, C3 or C4 in the 10-20 system [13,23-
26]. These electrodes are most often referenced to the nose 
or on one of the earlobes. Specific features of the EEG signal 
are extracted and converted to visual and/or auditory 
feedback. The visual or auditory feedback is performed in 
real time, so it reflects the brain activity with a minimum 
constant time delay, a delay which is usually kept under 1 
second. Fig. 2 illustrates the structure and the consecutive 
steps of a neurofeedback loop. 

A specific feedback element, for instance the speed of a 
virtual spaceship shown on screen, may represent the brain 
waves the subject is trying to control. Often, subjects have to 

reach specific thresholds in order to unlock a reward phase. 
In the spaceship example, once subjects reach a specific 
threshold, the spaceship will start moving at supersonic 
speed. The Neurofeedback process consists in having 
subjects or patients acquire an enhanced awareness of mental 
states they must enter to gain a volitional control over the 
visual or auditory feedback. One hypothesis is that 
Neurofeedback training can lead to brain plasticity and to 
long-lasting modification of the global pattern of brain 
electrical activity. This newly learned activity counteracts, 
suppresses, or replaces the pre-existent abnormal 
pathological electrophysiological rhythms. 

Typical Neurofeedback trainings consists at least 20 30-
minute sessions and up to 40 sessions depending on the 
subject’s responsiveness to the treatment or experiment. 
Sessions are performed every two or three days. Original 
research on Neurofeedback started with experiments 
involving alpha rhythm training (8-13 Hz frequency band), a 
well-known cortical rhythm dominating the occipital region 
of the brain [23,24]. Kamiya [23] found that if participants 
were made aware of alpha frequency bursts recorded from 
electrodes located in occipital scalp regions, they eventually 
could gain a definite level of awareness of this rhythm even 
without feedback. Subjects also seemed to be able to increase 
voluntarily the incidence of their alpha rhythm and reported 
subjective experiences of being in a relaxed and peaceful 
state. For this reason and since alpha rhythms are idling brain 
rhythms, Neurofeedback protocols aiming at up-regulating 
alpha rhythms started to be commonly used as relaxation 
protocols. Since then, several Neurofeedback protocols have 
been developed for the treatment of different pathologies 
such as attention deficit disorder [1-3,25,27,28], affective 
disorder [29], epilepsy [7-12], chronic pain [30], and 
substance addictions [4,5,31]. A typical Neurofeedback 
training protocol consist for instance in training ADHD 
patients to up-regulate their Sensori Motor Rhythm (SMR) 
(frequency band of 12 to 20 Hz with a spectral peak in the 
area of 12 to 14Hz) and down regulate theta (4-8 Hz) power 
[25,32-34]. The visual feedback usually varies as a function 
of ratio of these two power estimates. 

Unfortunately, there is currently insufficient evidence to 
support conclusively the effectiveness of Neurofeedback 
treatments, and this is due mainly to the lack of large-scale 
randomized controlled clinical studies. Studies to date have 
provided evidence for its potential for improving attentional 
abilities in healthy subjects and clinical groups 
[13,14,35,36], but much research remains to be done. A 
practical concern in Neurofeedback is how to optimize the 
nature and duration of the training. Details of session length, 
schedule length, reward contingencies, electrode placements 
will require controlled investigation. 

Another reason for the lack of Neurofeedback research is 
the absence of proper research tools. Here NeuroTRIP 
provides a strong basis for performing Neurofeedback 
research using modern neuroimaging tools. 

 
Figure 1.  Overview of NeuroTRIP. ICA is run on pre-session data which 

is then used for Neurofeedback. 

 
Figure 2.  Classical neurofeedback loop. 



III. INDEPENDENT COMPONENT ANALYSIS 
We are interested in testing the impact of an increased 

functional specificity of the signals used as a base for 
Neurofeedback training, and this could be achieved by using 
a specific component or set of components activity. 

When recording brain electrical signals, because of 
volume conduction (the diffusion model of electrical 
potentials generated in the brain), surface electrodes do not 
record the sources situated directly under them. Instead they 
may record distant sources. When using the signal recorded 
at a single electrode sites, as this is done during 
Neurofeedback training, we can reasonably assume that this 
signal will be noisy and will not reflect the activity of a 
single underlying functional brain source but instead be 
contaminated by distant brain source activities as well as 
artifacts. 

A promising approach in EEG data analysis is based on 
blind source separation techniques such as independent 
component analysis. ICA has been mostly used so far to 
remove artifacts, but it may also help isolate independent 
activities from compact patches of cortex [19,20].  

It is generally assumed that brain electrical activity can be 
measured at the scalp level because of the synchronous 
activity of pyramidal cells in the cortex. The EEG signal 
results from the simultaneous fluctuation of post-synaptic 
potentials of pyramidal cells assemblies. Because of the 
ionic charge difference between upper and lower part of the 
cell, these neurons act as electromagnetic dipoles. These 
cells are organized in the same direction along macro 
columns, and coordinated activity in these columns result in 
an electrical field that may be modeled using a single 
equivalent dipole. The activity of these equivalent dipoles, if 
strong enough, may be detected at the scalp level. Since the 
local cortical connectivity is denser and stronger than the 
long-range connectivity, the activity of these cortical 
patches may be considered to be relatively independent. 
This is one reason why ICA may be able to recover and 
separate the activity from different patches of cortex.  

In addition to background brain noise generated by the 
activity of numerous groups of pyramidal cells oriented in 
different directions, another problem with EEG is that 
several electrical artifactual sources are embedded in the 
recorded signal. These artifacts can have either a 
physiological origin (eye movements, eye blinks, face 
muscles contractions, etc...) or non-physiological 
(interferences due to other electrical devices, power lines, 
pour electrodes contact, etc...). All these artifactual 
electrical sources might contaminate the recorded signal and 
may interfere with Neurofeedback training. ICA helps 
separate brain signal from artifacts since the electrical 
activity of environmental artifacts is mostly independent of 
the brain activity. 

Because of Maxwell’s equations of volume conductions, 
we obtain at each electrode a linear combination of all the 
sources (cognitive and articfactual). ICA is a linear 
separation method to attempt to recover the original source 

signals by multiplying the multi-electrode recorded data 
vector at each timepoint by an unmixing matrix. It has first 
been implemented using neural network models [18], and 
several algorithms have been developed using different 
approaches such as, for instance, Information Maximization 
[37], Natural Gradient Learning [38], Joint Approximate 
Diagonalization of Eigenmatrices [39]. The “runica” 
function of EGGLAB [22], an open source matlab toolbox 
for Electrophysiological research, provides a way to 
calculate unmixing matrix from EEG data recordings. This 
matrix is used as a spatial filter in order to train a specific 
component of the cerebral activity. These techniques have 
been applied with success to EEG data [17] and could 
potentially be used to separate EEG sources and use their 
activity for Neurofeedback training. Using ICA in 
conjunction with Neurofeedback will help select functionally 
relevant brain sources and filter out the activity of non-
relevant sources as well as electrical artifacts. We believe 
that, by increasing specificity, it could speed up the 
Neurofeedback training process. 

IV. NEUROTRIP 
BCI2000 is a general-purpose publicly available software 

for brain-computer interface research. It may be used for data 
acquisition, stimulus presentation, and brain monitoring 
applications. BCI2000 thus represents a flexible framework 
for designing BCI experiments. This software has already 
been used in several published studies on BCI [40-42] and is 
currently been used by about 300 laboratories worldwide. 
BCI2000 has however been less used for neurofeedback 
applications although it does embed the main required 
features. Fig. 3 and 4 show an example of BCI2000 
Neurofeedback module we developed. The experimenter 
screen is shown in Fig. 3 and the subject screen is shown in 
Fig. 4. 

 
Figure 3.  BCI2000 experimenter Screen during neurofeedback training: a. 
EEG signal; b. Operator window which allows to control configuration of 
the program and its execution; c. Window displaying control signals used 
for feedback, usually the power in a specific frequency band from a given 
independent component. d. Output console 



BCI2000 allows to save parameters to files and to 
automatically load them through its Operator module. 
However, we encountered problems when we started using it 
with experimental paradigms that required to switch between 
parameter files, or executables modules, in order to perform 
a specific experimental sequence. The BCI2000 system does 
not allow implementing the sequence automatically and 
requires constant experimenter intervention, which could 
lead to errors. Moreover, if users want to use a different set 
of executables for each condition, it requires a restart of the 
software. Running ICA decomposition as explained in the 
previous section also proved very complex. We thus develop 
NeuroTRIP to supplement these lacks. 

NeuroTRIP is a piece of software that comes on top of 
BCI2000 in order to allow definition of sequences of 
BCI2000 configurations and run them automatically. It 
automatically updates and saves BCI2000 parameter files 
that can embed complex configurations such as spatial filters 
derived from ICA decompositions. Figure 5 illustrates the 
sequence of actions that NeuroTRIP allows to perform 
automatically.  

This involves acquiring pre-session data, running ICA on 
the pre-session data, visualizing selecting ICA components, 

and plug-in in the result into a BCI2000 parameter file for 
the actual Neurofeedback session.  

NeuroTRIP first starts a sequence of custom or native 
BCI2000 modules to acquire some pre-session data. Pre-
session data is important, as ICA needs to be applied to 
separate brain sources specific to the current subject. During 
the pre-session, two or more conditions are defined where 
subjects are asked to generate specific mental states (relaxed, 
ready to move, mental mathematics, etc…). Pre-session data 
acquisition lasts less than 10 minutes. NeuroTRIP then runs 
a sequence of Matlab commands to preprocess the acquired 
data (the Matlab sequence of commands – including the ICA 
decomposition - may be conveniently entered in a dedicated 
NeuroTRIP text window). NeuroTRIP is written in C++ but 
Matlab instances may be started using the COM Matlab 
Interface. As shown in Fig. 6, a Matlab figure pops up 
showing the ICA components, their scalp map, power, and 
discrimination power to separate two or more given 
frequencies of interest (or a ratio of frequencies) for the 
condition tested during the pre-session data acquisition 
period. Note that this tool is not intended for analysis 
purpose. Detailed offline analysis may be performed under 
Matlab to select which component and frequency should be 
used for Neurofeedback training. The NeuroTRIP 
implementation aims at selecting these predefined features 
for the current subjects. Components with more 
discriminative power are placed first but if the 
Neurofeedback task consists in training the frontal midline 
theta rhythm, experimenters must systematically select this 
component in the interface even if they do not come in first 
position. Users enter the index of the component they wish to 
use for Neurofeedback in the native C++ NeuroTRIP graphic 
interface (several components – one per frequency band may 
also be used). Finally, NeuroTRIP writes all of ICA 
parameters into a BCI2000 parameter file. Pressing a button 
under NeuroTRIP finally starts a new sequence of BCI2000 
modules that run the actual Neurofeedback session. 

 
Figure 4.  Neurofeedback application subject screen. Each colored bar 
represents the feedback for a control signal. The height of the bars covaries 
with the control signal value (for instance theta on the left and beta on the 
right). The red arrows are not shown to the subject but indicate the task, 
which is to lower the blue bar below the threshold represented by the 
horizontal black line, and increase the red bar above its threshold. When 
both conditions are met, a positive reinforcing feedback is given by 
displaying the star at the top.  

 
Figure 5.  List of operations performed by NeuroTRIP for the pre-session, 

the feature extraction and the Neurofeedback session. 

 
Figure 6.  Figure poped up by NeuroTRIP. This figure is generated by 
Matlab called from NeuroTRIP. It indicates the component that 
discriminates best between two conditions. The two colored bars under 
each map define the power of the component in the two different 
conditions. In this idealized example, an alpha source is shown on the left 
and exhibit the strongest power difference between the two pre-session 
conditions. Next is a frontal midline theta source. Finally a left and right 
mu sources are represented. Users enter the index of the component he is 
interested in directly in NeuroTRIP. 



Fig. 7 indicates the sequence of operation run by 
NeuroTRIP and how it interacts with BCI2000 and 
EEGLAB. Time goes from top to bottom. Fig. 8 shows the 
main NeuroTRIP interface that allows users to select 
sequence of BCI2000 modules. The upper part allows 
defining experimental conditions by associating the selection 
of native modules to be launched with specific parameter 
files. The lower part is used for the definition of the 
experimental sequence (pre-session, ICA extraction and 
Neurofeedback session). 

Since NeuroTRIP has been designed as a meta-launcher, 
it is not tightly linked to the underlying tools that are being 
used for BCI. It relies on the abstraction of a common 
process and aims to behave as a global controller which 
orchestrates and monitors both this information flow and the 
execution of various open source solutions related to BCI 
and neurofeedback domain. It may be extended to run a full 
sequence of BCI scripts under Matlab using Fieldtrip toolbox 
developed at the Donders Institute for Brain, Cognition and 
Behaviour, [43] or to interface the Openvibe platform, 
another OpenSource solution for BCI and neurofeedback 
applications [44]. NeuroTRIP (currently version 0.9) will be 
released as an Open Source software once it has been 
validated by a few laboratories. Perspectives for 
development involve automatic selection of ICA components 
based on pre-defined templates. 

V. INTEGRATION IN OPEN SOURCE SOFTWARE 
DEVELOPMENT FRAMEWORK. 

NeuroTRIP will be released as a “BCI2000 
contribution”. “BCI2000 contributions” gather code that is 
contributed by users of BCI2000. Although the BCI2000 
team tries to keep contributed code functional, they cannot 
apply the same standards of maintenance and testing than the 
one they use for the "core" BCI2000 distribution. In order to 
provide quality standard code that could be integrated in 
BCI2000 version control system, NeuroTRIP code should 
comply with some basic standard requirements.  

First, BCI2000 developers maintain a set of guidelines 
and rules that is aimed at readability and maintenance 
efficiency. Rules include C++ coding style reference, and 
project settings regarding the pre-compiled headers (PCH).  

The second part of the integration in BCI2000 
development framework is to create a documentation page 
on BCI2000 Wiki. This page should give a short description 
of the code, i.e., an overview of its functionality, 
documentation of its parameters, and additional information 
that the user needs to know in order to use it. It should also 
be clear for which core BCI2000 version (source code 
revision) the code was developed, and which revisions have 
been used to test it.  

Once NeuroTRIP code and documentation are integrated 
into the BCI2000 framework, a directory will be created by 
the BCI2000 Administrator in the SVN source code 
repository. NeuroTRIP will also be integrated into the 
BCI2000 project management software. The TRAC 
software has been deployed as the main solution for project 
management and bug/issue tracking system emphasizing 
ease of use and communication rather than formal document 
driven processes. It provides an integrated Wiki, an 
interface to version control systems, and a number of 
convenient ways to manage events and changes within a 
project.  

The release of NeuroTRIP as an open source tool part of 
the BCI2000 framework will allow direct benefit to the OSS 
community. Moreover, it will allow direct contact to 
potential users and developers, which will hopefully lead to 
new requirements resulting in the implementation of new 
features. We hope that the release of the NeuroTRIP source 
code will help develop further research on neurofeedback. 

VI. CONCLUSION 
The field of Neurofeedback and BCI research is a new 

merging field in brain research that is advancing at a fast 
pace. Here we emphasized the potential use of ICA as a 

 
Figure 7.  Sequence of operations run by NeuroTRIP and its interactions 

with different softwares. 

 
Figure 8.  Screenshot of NeuroTRIP Graphical User Interface 



signal processing tools to separate electrical brain activity 
mixed at the level of scalp sensors. ICA would allow to have 
subjects train the activity of specific brain areas. We 
identified the need of improved open source technical tools 
to facilitate scientific studies on this promising technology. 
In this paper we present NeuroTRIP, a open source software 
tool aiming to automate sequences of procedures for 
neurofeedback and BCI experiments using ICA. We also 
describes how the NeuroTRIP solution can be readily 
integrated into existing open source management software. 
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