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A B S T R A C T

Here we demonstrate the suitability of a local mutual information measure for estimating the temporal dynamics
of cross-frequency coupling (CFC) in brain electrophysiological signals. In CFC, concurrent activity streams in
different frequency ranges interact and transiently couple. A particular form of CFC, phase-amplitude coupling
(PAC), has raised interest given the growing amount of evidence of its possible role in healthy and pathological
brain information processing. Although several methods have been proposed for PAC estimation, only a few have
addressed the estimation of the temporal evolution of PAC, and these typically require a large number of
experimental trials to return a reliable estimate. Here we explore the use of mutual information to estimate a PAC
measure (MIPAC) in both continuous and event-related multi-trial data. To validate these two applications of the
proposed method, we first apply it to a set of simulated phase-amplitude modulated signals and show that MIPAC
can successfully recover the temporal dynamics of the simulated coupling in either continuous or multi-trial data.
Finally, to explore the use of MIPAC to analyze data from human event-related paradigms, we apply it to an actual
event-related human electrocorticographic (ECoG) data set that exhibits strong PAC, demonstrating that the
MIPAC estimator can be used to successfully characterize amplitude-modulation dynamics in electrophysiological
data.
1. Introduction

Since the first observations of human brain (8–12Hz) alpha waves by
Hans Berger in 1929 (Berger, 1929), additional modes of rhythmic or
semi-rhythmic cortical field activity have since been observed, including
characteristic activities in the (1–4Hz) delta, (4–8 Hz) theta, (12–30Hz)
beta and (above 30 Hz) gamma frequency bands. For many decades, the
study of the spectral dynamics of cortical field oscillations was limited to
analysis of phenomena occurring within single frequency bands. Over the
last few years, the growing evidence that oscillations at different fre-
quencies interact with each other has gathered attention, leading to
heightened interest in cross-frequency coupling (CFC) in brain dynamics.
Since high-frequency field activity is often more topologically localized
than low frequency rhythms (Buzsaki et al., 2004), CFC could be a
mechanism for integrating information across spatial as well as temporal
scales.
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Although CFC could refer to any possible interaction between
frequencies, phases and amplitudes of oscillatory phenomena (Sotero,
2016), most experimental work has focused on three types of CFC:
amplitude-amplitude coupling (AAC) or comodulation, phase-phase
coupling (PPC) including bicoherence, and phase-amplitude
coupling (PAC). Among them, PAC has attracted increasing interest
given the growing amount of evidence of its potential role in brain
information processing and its changes under pathological conditions
including epilepsy (L�opez-Azc�arate et al., 2010; De Hemptinne et al.,
2013). In PAC, the instantaneous amplitude of a higher frequency
band within a signal is modulated by (or otherwise linked to) the
instantaneous phase of a lower-frequency band of the same (or a
different) signal.

PAC has been observed between various frequency bands, in multiple
brain regions, in different task conditions, and in multiple species.
Table 1 illustrates the diversity of recent reports. In its diversity, PAC has
a Jolla, CA, USA.
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Table 1
Example of studies on Phase-Amplitude Coupling. DBS: Deep Brain Stimulation. LFP: Local field potential. MEG: Magnetoencephalography. MVLmi: Mean Vector Length
Modulation Index. KLmi: Kullback-Leibler Modulation Index. PLV: Phase Locking Value. DPAC: Direct PAC estimator. SI: Synchronization Index. PMI-PAC: Permutation
Mutual Information based Phase-Amplitude Coupling.

Study CFC Frequencies Brain Region Modality Study focus Species Estimation Method

(Canolty et al., 2006a) θ - high-γ Neocortex ECoG Perception, memory, motor Human MVLmi
(Cohen et al., 2009) α - low-γ Nucleus Accumbens DBS electrodes Reward Human MVLmi
(Tort et al., 2009) θ - γ Hippocampus LFP Learning Rat KLmi
(Voytek et al., 2010) θ/α - high-γ Posterior cortex ECoG Perception Human PLV
(Yanagisawa et al., 2012) α - high-γ Sensorimotor cortex ECoG Motor Human SI
(Spaak et al., 2012) α - low-γ/high-γ Visual cortex Laminar electrodes Spontaneous activity Monkey KLmi
(Szczepanski et al., 2014) δ/θ - high-γ Fronto-parietal cortex ECoG Attention Human PLV
(Florin and Baillet, 2015) δ/θ/α - low-γ/high-γ Resting state networks MEG Spontaneous activity Human DPAC
(Sotero et al., 2015) δ/θ/α - β/low-γ/high-γ S1 Laminar electrodes Spontaneous activity Rat MVLmi
Cheng et al., 2017) θ - low-γ Hippocampus CA3, CA1 LFP Spontaneous activity Rat PMI-PAC
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shown that it can reveal unsuspected relationships, e.g., the intriguing
PAC found between the basal gastric rhythm and alpha band power in
cortex (Richter et al., 2017).

If PAC is a functional aspect of normal brain dynamics, then abnormal
PAC could be a cause or symptom of unhealthy brain function. Associa-
tions between brain disease and PAC have been found in epilepsy
(Nonoda et al., 2016), Parkinson's disease (L�opez-Azc�arate et al., 2010;
De Hemptinne et al., 2013), Alzheimer's disease (Goutagny et al., 2013),
schizophrenia (Allen et al., 2011), obsessive-compulsive disorder (OCD)
(Bahramisharif et al., 2016), and mild cognitive impairment (MCI)
(Dimitriadis et al., 2015). This makes PAC estimation of interest for
clinical studies.

Several methods have been proposed to measure PAC. However, none
is currently a gold standard (see Table 1). The three measures most often
cited in the PAC literature are: the Mean Vector Length Modulation Index
(MVLmi) (Canolty et al., 2006a), the Kullback-Leibler Modulation Index
(KLmi) (Tort et al., 2010), and the General Linear Model Modulation
Index (GLMmi) (Penny et al., 2008a).

The data processing pipelines for these methods share a common
beginning. A first step is to band-pass filter the signal or signals of interest
to isolate the frequency ranges to be investigated. Then, an analytical
signal is obtained for each frequency band using the Hilbert transform,
from which instantaneous phase (of the low-frequency modulatory
signal) and instantaneous amplitude (of the high-frequency modulated
signal) are obtained. These time series are used then to compute a PAC
measure as explained in detail below. To compute statistical significance,
the collected sets of phases and/or amplitudes are shuffled many times to
create surrogate data sets. Significance is then estimated by determining
whether the PAC measure for the actual data belongs or not to the dis-
tribution of PAC measures computed on the surrogate data (Tort et al.,
2010; Hurtado et al., 2004). The same process can be applied when PAC
is assessed between low- and high-frequency dynamics of two different
signals, e.g., between different electrophysiological recording channels
or separated source activities in different brain areas.

A common drawback of most of the existing PAC measures is their
need for a large number of data points to compute a robust PAC estimate.
A typical approach is to perform the PAC calculation using a semi-
arbitrary time window (Penny et al., 2008b; Tort et al., 2010; Voytek
et al., 2013). The minimum length of this window is constrained by the
frequency of the lower (phase) frequency of interest; at that frequency
the analysis window should be at least one full cycle in length. However,
a recent study (Tort et al., 2010) has proposed that because of the
sensitivity to noise of existing PAC measures, the number of cycles
needed to compute a reliable PAC estimate may be 200 cycles or more.

PAC was first measured across blocks of continuous data, providing
relatively low sensitivity to changes in PAC across time. Subsequent work
(Cohen, 2008) tried to fill this gap by applying both automated and su-
pervised heuristics to determine the frequencies involved in the coupling
and by a combination of existing PAC measures to a moving time win-
dow. This method has been proven useful for characterizing dynamics of
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electrophysiological processes supporting cognition. However, this
method fails to detect CFC in different scenarios; for example, when the
amplitude time series does not have prominent components at the fre-
quencies at which it is coupled (Cohen, 2008).

Voytek et al. (2013) addressed the lack of temporal resolution by
computing PAC for latencies within multiple trials time locked to a set of
similar events, thereby introducing Event-Related Phase Amplitude
Coupling (ERPAC). In this approach, a variant of the GLMmi PAC esti-
mator was applied in an event-related manner. However, this approach
still cannot provide a trial-by-trial description of PAC variability and
requires many experimental events that may be presumed to produce
equivalent dynamics.

To disentangle the role(s) of PAC in neurophysiology, the question of
when it occurs is as central as where or how. As suggested by Lizier
(2014a), local or pointwise information theoretic measures can help
answer this question. In this work we propose a new approach to PAC
estimation, MIPAC, based on a local mutual information (MI) measure,
that allows a dynamic description of PAC within a relatively short time
window. The new method is first tested on simulated and then on actual
human event-related electrocorticographic (ECoG) data. We also
compare MIPAC estimates with the results of other PAC estimators.

The manuscript is organized as follows: In Section 2, we describe the
data on which we test the new method, as well as the required data
processing. Then, in Section 2.1.3 we comment on the estimation of the
instantaneous phase and amplitude in the signal of interest. Next, we give
an introduction to traditional PAC measures and briefly review three
current PAC estimation methods: Mean Vector Length Modulation Index
(Section 2.2.1), Kullback-Leibler Modulation Index (Section 2.2.2) and
Modulation Index based on a General Linear Model (Section 2.2.3).
Following this, we present an introduction to Information-Theoretical
measures and then introduce the MIPAC approach. Section 3 presents
validation results of the new methods on simulated data and its appli-
cation to human electrophysiological data. In Section 4 we discuss the
results, some pitfalls and caveats of the proposed method, and its possible
uses and extensions.

2. Methods

2.1. Ethics statement

Ethics statement: The patient data we study here were recorded
during monitoring of implanted ECoG electrode grid and strip signals
conducted during planning for surgery for epilepsy. The patient partici-
pated in a purely voluntary manner, after providing informed written
consent, under experimental protocols approved by the Institutional
Review Board (IRB) of the University of Washington (# 12193). All pa-
tient data were anonymized according to IRB protocol, in accordance
with HIPAA mandates. These data originally appeared in the manuscript,
“Spontaneous Decoding of the Timing and Content of Human Object
Perception from Cortical Surface Recordings Reveals Complementary
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Information in the Event-Related Potential and Broadband Spectral
Change”, published in PLoS Computational Biology in 2016 (Miller et al.,
2016).

2.1.1. Experimental setting
A single data set (from subjectmv in the data reported in (Miller et al.,

2016)) was selected to demonstrate the methods proposed in this
manuscript. The patient was clinically implanted with platinum subdural
electrode grids and strips (Ad-Tech, Racine, WI) in frontal, parietal,
temporal, and occipital cortical areas for extended clinical monitoring
and localization of seizure foci. Lateral frontoparietal ECoG grid signals
were not used in the analysis; we focused on signals from one strip
located over inferior temporal cortex. The electrodes were 4mm in
diameter (2.3mm exposed), with 1 cm inter-electrode spacing, and were
embedded in silastic. Electrode locations relative to gyral surface anat-
omy were determined by projecting the post-implant CT to the
pre-operative axial T1 magnetic resonance head image using the
normalized mutual information approach in SPM, and the CTMR package
of Hermes et al. (2010). Cortical surface mesh reconstruction was per-
formed using Freesurfer (Dale et al., 1999).

During the experiment, the subject was presented with a sequence of
images of either a face (‘face stimulus') or house (‘house stimulus’) in
random sequence. There were three runs of 100 presentations each (50
houses and 50 faces in random order). Each stimulus presentation lasted
400ms and was followed by a blank inter-stimulus interval of 400ms.
The ECoG potentials were measured with respect to a scalp reference and
ground, subjected to recording system-imposed band-pass filtering be-
tween 0.15 Hz and 200Hz, and sampled at 1000Hz per channel. The
protocol is described in more detail in (Miller et al., 2016).

2.1.2. Data preprocessing
Data processing, PAC computation and analysis were performed using

EEGLAB functions (Delorme and Makeig, 2004) and custom scripts
written in MATLAB (The Mathworks, Inc.). First, segments in the data
containing strong non-brain artifact (e.g., high-frequency muscle noise
and other irregular artifacts) as identified by visual inspection were
removed. A common-average reference computation involving all
channels, was applied to the remaining data. The data were then
resampled to 512Hz and 60-Hz line noise was suppressed using a
Hamming-windowed (sinc) FIR notch filter [order 847] (EEGLAB func-
tion pop_eegfiltnew.m) to minimize activity between 58 Hz and 62 Hz and
between 118Hz and 122Hz (i.e., at the fundamental and first harmonic
of the 60Hz line noise). MATLAB scripts and functions for computing and
visualizing different PAC measures in the EEGLAB environment have
been collected into a toolbox developed by the authors (the
Event-Related Phase-Amplitude Coupling Toolbox, ERPACT) that is now
available from the EEGLAB Extension manager1 and from a GIT
repository.2

2.1.3. Extracting phase and amplitude time series
As we mentioned earlier, most PAC estimation methods begin with

computing phase and amplitude time series from the data. When
analyzing PAC within a single signal, the original raw signal Srawt is first
band-pass filtered to isolate the two frequency ranges in which the PAC
coupling is to be assessed, respectively centered on a lower central fre-
quency fphase for the phase time series, and a higher central frequency famp

for the amplitude time series. In the case of analyzing PAC between two
signals the process will be similar to the one described, but extracting one
frequency range from each of the signals under analysis.

Due to the uncertainty as to the ideal bandwidth for applying theHilbert
transform, the criteria for selecting the bandwidth for band-pass filtering
diverges among authors. Usually, the bandwidth used in constructing the
1 https://sccn.ucsd.edu/wiki/Plugin_list_process.
2 https://bitbucket.org/ramonmc/pop_pac.
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phase timeseries is required tobesufficientlynarrowtoderiveameaningful
phasemeasure (Aruetal., 2015).This requirement isoftenmet.Meanwhile,
when selecting the bandwidth used to obtain the amplitude time series,
side-bands resulting from the amplitude-modulation (AM) process should
be includedwithin themeasured bandwidth. Disregarding this criteriamay
result in inaccurate PAC estimates (Aru et al., 2015).

In the current work, the bandwidth of the band-pass filter used to
estimate the phase time series was fPhaseBand ¼ ½fphase � 1Hz; fphase þ 1Hz�,
while for the amplitude time series the bandwidth was fAmpBand ¼

h
famp ��

fphase þ 1Hz
�
; famp þ

�
fphase þ 1Hz

� i
to include the AM side-bands.

Below, we denote by Sφ and SA the signals obtained by band-pass
filtering the signal(s) of interest in the ranges fPhaseBand and fAmpBand

respectively.
To filter the data within these frequency bands, a combination of

high-pass and low-pass FIR filters were coded using EEGLAB function
pop_eegfiltnew.m. Analytic signals were then obtained by applying the
Hilbert transform to the Sφ and SA signals. Next, instantaneous phase φt

and amplitude At time series were estimated from the analytic signals of
Sφ and SA respectively.

2.2. Traditional PAC measures

In this section we briefly review some of the methods most commonly
used to estimate PAC. Later in the manuscript, we will compare results of
these methods to results of the proposed MIPAC measure.

2.2.1. Mean Vector Length Modulation Index (MVLmi)
Themethod proposed by Canolty et al. (2006a) relies on generation of

the composite values zt in the complex plane, constructed by combining
the instantaneous phase of the lower frequency signal (φt) and instan-
taneous amplitude of the higher frequency signal (At) as in Eq. (1).

zt ¼ At � eiφt (1)

The distribution of the composite vectors zt in the complex plane is
then analyzed. If there is no PAC, since there is no affinity between a
specific value of phase and amplitude, the distribution should be nearly
radially symmetric. However, if the local mean magnitude At is higher at
some specific phase (or phases), then PAC is present and the phasor
representation of the phase-amplitude distribution will exhibit a ‘bump’
at these phase values. The length of the composite mean vector obtained
in Eq. (2) is used as a measure of phase-amplitude coupling. Here, Nc

denotes the number of composite values averaged in the interval t ¼ ½1;
T�. Alternatively, some authors (Penny et al., 2008a) use in their PAC
analysis the z-score of the MVLmi in Eq. (2) obtained from a surrogate
data analysis (see Section 2.7)

MVLmi ¼
�����
1
Nc

XT
t¼1

zt

����� (2)

2.2.2. Kullback-Leibler Modulation Index (KLmi)
Tort et al. (2010) pointed out that the MVLmi approach assumes that

coupling only occurs at one preferred phase and thus may perform poorly
for more complex coupling relationships. To remedy this, they proposed
a different approach. First, the instantaneous phase time series φt is
subdivided into an arbitrary fixed number of bins Nbin and the mean of
the instantaneous amplitude At is computed for each j-bin j ¼ f1:::Nbing ,
here denoted by hAtiφðjÞ. These mean values are then divided by the sum
of all the amplitudes over the bins, giving a fractional value PðjÞ for each
bin j (Eq. (3)).

PðjÞ ¼
D
AtiφðjÞ

PNbin

k¼1

D
AtiφðkÞ

(3)

https://sccn.ucsd.edu/wiki/Plugin_list_process
https://bitbucket.org/ramonmc/pop_pac
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As PðjÞ � 0 8j and PNbin

j¼1
PðjÞ ¼ 1, P meets the criteria for a probability

distribution function. If there is no coupling, this distribution should be
uniform. If there is coupling, the deviation of this distribution from
uniformity will be proportional to the strength of the coupling. This
deviation is quantified by computing the Kullback-Leibler divergence
(DKL) between P and a uniform distribution U. The divergence measure is
used to define the KLmi (Eq. (4)), where the logðNbinÞ is used as a nom-
alization term.

KLmi ¼ DKLðPkUÞ
logNbin

(4)

with DKLðPkUÞ ¼
XNbin

k¼1

PðkÞlog PðkÞ
UðkÞ (5)

2.2.3. Modulation index based on general linear model (GLMmi)
The use of correlation to compute PAC was first proposed by Bruns

and Eckhorn (2004). In this method, also referred as envelope-to-signal
correlation (ESC), correlation between the time series (band-pass
filtered in the range of the frequency of the phase of interest) and
amplitude in the range of the higher frequency of interest was used as a
measure of PAC. Later, Penny et al. (2008a) pointed out Bruns and
Eckhorn ESC inability to capture the PAC phenomena in all instances
(e.g., ESC can be confounded with amplitude co-modulation). They took,
nonetheless, this measure as a starting point of their own approach. They
first proposed to estimate PAC by means of the correlation between the
amplitudes and the cosines of the phase signals, but pointed to the
inability of this approach to detect coupling at the so called ‘null phases’
(e.g cosð1=4Þ2π ¼ 0). To overcome this limitation, they proposed an
approach using the general linear model (GLM) framework as in Eqs. (6)
and (7). Here, the PAC estimate is inferred from the portion of variance
explained by the linear model.

At ¼ Xβ þ e (6)

with X ¼

��������

cos φt1 sin φt1 1
� � �
� � �

cos φtmax sin φtmax 1

��������
(7)

In Eq. (6), β is the regression coefficient matrix and e is additive
Gaussian noise. The design matrix X (Eq. (7)) is composed of three col-
umns; the first two columns are the sine and cosine of the time series φt

respectively, and the third is a constant vector of ones. This design
effectively circumvents the limitations of the previous correlation-based
method.

2.2.4. Event-Related Phase Amplitude Coupling (ERPAC)
The GLMmi method proposed by Penny et al. (see Section 2.2.3) was

modified by Voytek et al. (2013) to allow estimation of PAC dynamics
across a set of brief event-locked data epochs in event-related
experiments.

To apply this method, the time series φt and At are broken into time
windows of equal length, time-locked to the onset of equivalent experi-
mental events. Times series for both magnitudes form a matrix with di-
mensions equal to the number of trials by the number of latencies. The
method then follows as to the GLMmi method 2.2.3 by computing the
PAC modulation index for each successive latency across trials. This way
one can obtain a latency-resolved description of the evolution of PAC
following a set of similar events.

2.3. Information-theoretic measures

Next, we will present an overview of the information-theoretic mea-
sures relevant to the approach proposed in this work. Let us start by
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considering two discrete random variables X and Y with sets of values x
and y respectively, probability distributions pðxÞ, pðyÞ, conditional
probabilities pðxjyÞ, and joint distribution pðx; yÞ. A central quantity in
Information Theory is the Shannon Entropy (H) (Eq. (8)). The quantity H
represents the average amount of uncertainty associated with a mea-
surement x of the random variable X:

HðXÞ ¼ �
X
x

pðxÞlog2pðxÞ (8)

Shannon Entropy can also be defined as the average Shannon infor-
mation content hðxÞ (Eq. (9)) over each outcome x of the random variable
X used to build the probability distribution function (pdf) pðxÞ (Eq. (10)):

hðxÞ ¼ �log2pðxÞ (9)

HðXÞ ¼ EX ½hðxÞ� (10)

By convention, base 2 or e logarithms are used, giving units of bits or
nats respectively.

By generalizing Shannon's definition of entropy to two random vari-
ables X and Y, the joint entropy can be defined as in Eq. (11), and rep-
resents the expected uncertainty of their joint distribution (Lizier,
2014a). Alternatively, Eq. (11) can be written as a function of the
Shannon information content as in Eq. (12).

HðX; YÞ ¼ �
X
x;y

pðx; yÞlog2pðx; yÞ (11)

HðX; YÞ ¼ EX;Y ½hðx; yÞ� (12)

The conditional entropy of X given Y is defined as the average un-
certainty about x that remains when the value of y is known:

HðXjYÞ ¼ �
X
x;y

pðx; yÞlog2pðxjyÞ (13)

Using the definition of entropy in Eq. (8), we can formalize the mutual
information (MI) between the random variables X and Y as a non-
negative and symmetric measure defined in Eqs. (14) and (15):

IðX; YÞ ¼
X
x;y

pðx; yÞlog2
pðx; yÞ
pðxÞpðyÞ � 0 (14)

¼ HðXÞ � HðXjYÞ (15)

This quantity can be interpreted either as the average reduction in
uncertainty about X given knowledge of the value of Y, or as its name
suggests, as the amount of information shared by the two variables. Note
that Eq. (14) is equal to zero if and only if X and Y are independent, which
means pðx;yÞ ¼ pðxÞpðyÞ. Therefore, the mutual information is a measure
of dependency (both linear and nonlinear) between the two random
variables X and Y (Kraskov et al., 2004).
2.4. Defining local mutual information

In Eq. (12) we saw that the joint entropy of the random variables X
and Y can be seen as the average of the joint Shannon information con-
tent hðx; yÞ over its realizations x and y respectively. Given this inter-
pretation, several authors have used the terms pointwise (particularly in
natural language processing) or local information theoretic measures to
describe quantities such as those defined in Eq. (9) or (16) (Lizier, 2014a;
MacKay, 2003; Fano, 1963; Church and Hanks, 1990; Hindle, 1990).
These local information theoretic measures characterize quantities from a
specific subset of measurements x and y of the random variables X and Y,
rather than the associated average measure computed over all available
data (Lizier, 2014a). An interesting discussion on how frequently used
information-theoretic measures can be viewed as averages over their
associated local measures can be found in (Lizier, 2014a). As an example
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of this, local MI values iðx; yÞ (Eq. (16)) may be averaged to compute
overall MI IðX;YÞ (Eq. (17)):

iðx; yÞ ¼ log2
pðxjyÞ
pðxÞ (16)

IðX; YÞ ¼ EX;Y ½iðx; yÞ� (17)

Negative local MI values might result if pðxjyÞ < pðxÞ in Eq. (16).
Thus, in contrast to the averaged quantity, which cannot take negative
values, local MI values can be either negative or positive. These negative
values may be interpreted as misinformative since the expectation of
observing x is lowered by knowing y (Lizier, 2014a).

In Eq. (16), the local value of iðx; yÞ is obtained by evaluating the pdf
pðxÞ and pðxjyÞ at a set of local observations ðx; yÞ. Meanwhile, the pdf
here are defined over all the observations, both local and non-local to the
observation under analysis. The term local, though, can be misleading
when dealing with time series since it does not imply locality in the time-
sense. Notice that until now, while introducing the basic information-
theoretic measures and local MI, we have been dealing only with
discrete random variables. This is, without assuming any type of tem-
poral structure within the samples in question. This makes the local sense
to be solely based upon the sample properties, e.g., distance between
sample magnitudes. If a time dependency is assumed, as in the case of a
time series, we will not be dealing anymore with a statistical sample, but
the definition of local will remain as in the case of discrete random var-
iables. Thus, the term local is not in relationship to the time structure of
the process. Because of this, in the case of real time series, points locally
close to the sample in the pdf are not necessarily local to the observation
in the time sense. Thus, the stationarity of the time series used to build
the pdf should be considered carefully. In fact, the validity of the appli-
cation to time series of the information theory measures introduced until
now is under the assumption of stationarity or quasistationarity over
time. We will return to this point in the next sections.
Fig. 1. Schematic of Z-space showing the k ¼ 2 nearest-neighbors search for data
point zi. Subspaces X and Y are represented in the horizontal and vertical axes
respectively. The two nearest samples to zi are A and B. Red dotted lines show
the distance in the marginal spaces from the samples A and B to the sample zi.
Sample B is the k ¼ 2 neighbor and its maximum marginal distance to the
sample zi (ε=2) defines the width of the marginal neighborhoods for X and Y,
represented by the vertical and horizontal blue and orange stripes. Four sample
points ð10

;2
0
;A;BÞ are within distance ε=2 in the marginal space of X (nxðiÞ ¼ 4);

six sample points ð1; 2;3; 4;5;AÞ are within distance ε=2 in the marginal space of
Y (nyðiÞ ¼ 6). Several other samples (unlabeled) are outside the k ¼ 2
neighborhood.
2.5. Estimating local mutual information

There is a long history of application of information theory methods
in neurosciences, specially MI (for a review see (Lizier, 2014a; Ince et al.,
2017)). Although several methods for estimating MI have been proposed,
the so called binningmethod remains the most commonly used approach.
In this method, the supports of X and Y are partitioned into an arbitrary,
limited number of bins, for which the joint probabilities are estimated by
counting the number of samples in each bin. However, this method
inevitably leads to serious bias problems (Wibral et al., 2015; Treves and
Panzeri, 1995; Victor, 2002; Panzeri et al., 2007). This drawback can be
alleviated to some extent by recent advances in development of MI
nearest-neighbour estimators such as the one proposed by Kraskov,
Stogbauer, and Grassberger (KSG) (Kraskov et al., 2004), together with a
rigorous statistical test using appropriate surrogate data. Although
computationally expensive for large amounts of data, the KSG estimator
constitutes an effective non-parametric estimator of MI that is data effi-
cient (resolve structures down to the smallest possible scales), resolution
adaptive (binning scale changes according to the underlying data point
density), and has minimal bias (Kraskov et al., 2004) (in consequence, it
may have large variance).

Before presenting the local mutual information estimator, let us first
introduce the KSG estimator and then move on to the local estimator. The
KSG estimator was obtained by modifying and extending the nearest-
neighbors-based Kozacheko-Leonenko estimator of entropy (Koza-
chenko, 1987). Instead of estimating directly the pdf needed to compute
the MI, the KSG estimator makes use of the distances of each sample to its
kth nearest neighbor to count the neighbors in the marginal spaces, then
plugs in these values in the MI estimator. To elaborate on this, let's as-
sume a metric given in the space spanned by the discrete random vari-
ables X, Y and the joint space Z ¼ ðX;YÞ. Then, the neighbors of each
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point zi ¼ ðxi; yiÞ are ranked by the distance di;j ¼
��zi �

zj
�� : di;j1 � di;j2 � …. Similar rankings are done in the subspaces X and Y.

While any norm can be used for these subspaces, the maximum norm is
used for the joint space (Eq. (18)) (Kraskov et al., 2004). At this point,
marginal variables, or alternatively the norms, can be scaled to make
them comparable. Additionally, although not strictly required, if the
distributions are very skewed and/or rough, it might be a good idea to
transform them such as to becomemore uniform in order to reduce errors
in general (Kraskov et al., 2004).

��z� z'
��
z
¼ max

���x� x'
��;��y� y'

��� (18)

Next, the kth nearest neighbor for each point zi, a distance εðiÞ=2 away,
is computed. Let's denote by εxðiÞ=2 and εyðiÞ=2 the distances between the
same points projected into the subspaces X and Y respectively. As the
maximum norm is used in Eq. (18), it becomes obvious that εðiÞ ¼
max

�
εx; εy

�
. In the KSG estimator used in our work, the number of

points nxðiÞ and nyðiÞ are estimated by counting the points within the
strips defined by ðxi � εðiÞ=2; xi þ εðiÞ=2 Þ and ðyi � εðiÞ=2; yi þ εðiÞ=2 Þ
respectively. The process of computing the number of neighbors nxðiÞ and
nyðiÞ of point zi in the neighborhood defined by its kth neighbor is
depicted in Fig. 1.

After computing the number of neighbors nx and ny for each zi, the
estimate for MI is given by the first KSG estimator (Eq. (19)).

IðX; YÞ ¼ ψðkÞ � �
ψðnx þ 1Þ þ ψ

	
ny þ 1


�þ ψðNÞ (19)

In Eq. (19), N is the number of samples and ψ denotes the digamma
function (ψðxÞ ¼ ΓðxÞ�1dΓðxÞ

dx ). MI values IðX;YÞ are returned in nats. By
using this approach, pdf evaluations are bypassed and the average
measure IðX;YÞ can be estimated for each observation from the nearest
neighbors (counts nx and ny) in the marginal spaces. Taking the KSG
estimator (Eq. (19)) as a starting point, Lizier (2014a) proposed to obtain
the local quantities by unrolling the expectation values (h…i) and
computing the nearest neighbor count only at the given ðx; yÞ (Eq. (20)):
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iðx; yÞ ¼ ψðkÞ � ψðnx þ 1Þ � ψ ny þ 1 þ ψðNÞ (20)

	 


This estimator of local MI has been previously treated as a ‘time-
resolved estimator’ in (G�omez-Herrero et al., 2015). If implemented in its
naive version using nested loops through all N points, the KSG algorithm
spends most of the CPU time searching for neighbors. This lead to a
complexity OðN2Þ (Kraskov et al., 2004). Although this may be accept-
able for small data sets (say N � 3500), strategies including fast nearest
neighbor search algorithms are needed to deal with higher dimension-
ality. Here we used the naive version.
2.6. Estimating PAC using local mutual information

Here, we apply the local MI estimation approach presented in Section
2.5 to calculate PAC in brain electrophysiological signals. As mentioned
before, to calculate local MI, as well as other information-theoretical
measures, an assumption is made on the stationarity of the signal. This
assumption is usually met in data collected in the field of behavioral
neuroscience, in which many electrophysiological experiments are
dominated by the repetition of equivalent (or considered equivalent)
events. This type of data is non-stationary in its nature, but given the
periodicity of the stimulus presentation (and the brain response), can be
viewed as a cyclo-stationary process. However, in more recently
emerging experimental paradigms, notably recordings acquired during
“resting state” and in continuous brain computer interface (BCI) appli-
cations, no explicit cycling through event presentations and participant
responses is featured. This type of data, again, is non-stationary, but may
be modeled as a stationary dynamic process within a time window of a
small enough size so the stationarity criteria is met (locally stationary).

We thus here propose and report initial results for two variants of an
approach to estimating mutual information-based phase-amplitude
coupling (MIPAC) in locally stationary and cyclo-stationary time series
respectively. We will use the terms Instantaneous MIPAC for continuous
data estimation and Event-related MIPAC for latency-tagged PAC esti-
mation in multiple-trial event-related data.

The first steps for both procedures are to obtain appropriate phase φt

and amplitude At time series from the data as in 2.1.3. At this point in the
manuscript, we make a switch from the random variables X and Y used in
the presentation of the local MI to the time series of the phase φt and
amplitude At previously introduced in Section 2.1.3. Next, the local MI is
estimated then as in Eq. (20) in a manner appropriate to the data
structure.

2.6.1. Instantaneous MIPAC
To estimate Instantaneous MIPAC, we first compute the local MI be-

tween φt and At . For this, let us assume the space Z ¼ ðφt ;AtÞ. Then, for
each point zi ¼ ðφi;AiÞ in the Z-space, the number of neighbors nφðiÞ and
nAðiÞ are computed for a given value of k as done in Section 2.5. When
estimating MIPAC, Eq. (18) can be rewritten as Eq. (21).

��z� z
0��

z
¼ max

���φ� φ
0��

c
;
��A� A

0��
2

�
(21)

Here, pairwise distances
��φ� φ

0��
c and

��A� A'
��
2 are scaled by dividing

each distance element by the maximum value of the pairwise distance
matrix (alternatively, other type of scalings might be used with similar
results, e.g., dividing by the spectral norm). Attending to the cyclic nature
of φt , the circular ( kkc) norm (Berens et al., 2009) is used to compute
pairwise distance between points in the phase space; the Euclidean ( kk2)
norm is used for the amplitude space.

Then, to estimate the local MI between φt and At , the values of nφðiÞ
and nAðiÞ in the k-neighborhood are plugged into Eq. (20) as nxðiÞ and
nyðiÞ respectively. The resultant local MI will be a vector of the same
dimensions of φt and. At .

To avoid the need of fixing a value for the parameter k, and as a
convergence criteria for the estimation of the local MI, the local MI be-
tween φt and At is estimated in an iterative scheme for different values of
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k, starting at k0 ¼ 1 increasing by Δk ¼ 1, until the percent decrease in
local MI variance from step ki to kiþ1 (ΔVarr) reaches the threshold
ΔVarthres, here defined as ΔVarthres ¼ 0:05%. The local MI for which the
threshold ΔVarthres is reached is then selected for further processing.

When computing Eq. (21), a leakage from phase frequency fphase to��z � z
0��

z is observed. The characteristics of the leakage were determined
empirically to lead to estimations of local MI with a high content of fphase
and its harmonics. As a heuristic to mitigate this leakage to obtain the
Instantaneous MIPAC estimate, the estimated local MI with the optimal k-
value is low-pass filtered to below fphase. Given the empirical nature of the
joint space Z, a theoretical explanation of the high frequency leakage into
the local MI may prove hard to obtain. However, the proposed heuristics
should work independently of the nature of the leakage observed and is
supported by the fact that we do not intend to interpret modulating
frequency components above fphase. The estimated Instantaneous MIPAC is
represented by a vector with the same dimensions of φt and At .

2.6.2. Event-related MIPAC
In the Event-related MIPAC approach, similar to Voytek et al. (2013)

the low-frequency phase φt and high-frequency amplitude At time series
are separated into non-overlapping epochs time-locked to a set of events
of interest that are treated as being equivalent. Phase and amplitude
epochs are then independently stacked to form two matrices (phase φtrl;t

and amplitude Atrl;t) of dimensions number of trials by number of la-
tencies. An across-trials local MI estimate between φt and At is then
computed for each trial latency using the iterative scheme for estimating
k presented in Section 2.6.1 on Instantaneous MIPAC. Notice here that
estimated local MI at each latency will be a uni-dimensional vector of
length the number of trials. To sample the full phase cycle on each la-
tency neighborhood, the values of nφðiÞ and nAðiÞ are estimated using a
one-cycle fphase frequency window centered on the latency of interest.
This will also boost the nearest-neighbors count and account for possible
jitter in the brain response to the stimulus. Estimation of local MI is then
performed for each trial latency. Finally, to obtain the Event-related
MIPAC, each epoch of the resulting local MI matrix (of length the number
of latencies) is low-pass filtered to below fphase to mitigate high frequency
noise in the final MIPAC estimate.

Each resulting MIPAC epoch time series is interpreted as a time-
varying measure of phase-amplitude coupling in the brain signal being
analyzed. By taking the average of the Event-related MIPAC estimates
across trials, we can obtain the Trial-mean MIPAC. Further collapsing the
MIPAC time series by taking its grand mean gives a summary Mutual
Information Modulation Index (MImi) value. This MIPAC-derived mea-
sure can be regarded as equivalent to other PAC estimates computed over
trials and latencies (see Section 2.2).
2.7. Surrogate analysis to compute MIPAC significance

For all the methods described in Section 2.2 including both MIPAC
variants, a statistical significance value can be computed using a surro-
gate data approach (Penny et al., 2008b; Canolty et al., 2006b).

Here, for each PAC estimate, Nsurr ¼ 500 surrogate measures were
generated (unless otherwise specified). In the caseof InstantaneousMIPAC,
to obtain these surrogates, each φt and At time series were separated into
Nsegm ¼ 20 (unless otherwise specified) segments. Segments in φt and At

were then uniformly randomly shuffled across latencies and a new PAC
measure estimate was derived. This process was repeated Nsurr times to
obtain a distribution of the surrogate MIPAC estimates. This shuffling
process aims to disrupt any meaningful relationship between φt and At ,
while preserving some of the temporal structure of the original signal, to
allow testing the null hypothesis that nomeaningful coupling exists in the
data. This procedure has been assumed to be a more rigorous test than
random latency-shuffling (He et al., 2010; Hurtado et al., 2004).

For Event-related MIPAC, surrogate signals for φtrl;t and Atrl;t are con-
structed by randomly drawing as many time points as trials from a
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baseline of the respective matrices φtrl;t and Atrl;t . In this case, the baseline
was assumed to be a latency window across all trials spanning from the
beginning of the trials until the latency of the stimulus presentation.

For each surrogate data set we then compute the mean μsurr and
standard deviation σsurr , plus MIPAC z-scores defined as:

Zsurr ¼ PACmeasure � μsurr
σsurr

(22)

Here, Zsurr values satisfying jZsurr j > 1:96 were considered statistically
significant for α ¼ 0:05 (assuming the z-scores to be gaussian
distributed).

3. Results

Next, we present the results obtained to validate the Instantaneous
MIPAC and Event-related MIPAC approaches introduced in Section 2.6,
first using simulated and then using actual brain data.

3.1. Simulation results

As an initial validation of the MIPAC approach, we carried out five
simulations. In the first two (Section 3.1.1 and 3.1.2) the performance of
the Instantaneous MIPAC estimator is tested on simulated phase-
amplitude coupled signals with and without added noise. In Section
3.1.3, the convergence of MIPAC in the previous simulations, as well as
the interaction of parameters of simulated signals and MIPAC estimation
are examined. In Section 3.1.4, we evaluate the performance of Event-
related MIPAC and compare its estimates to those produced by the ERPAC
measure (see Section 2.2.4). Finally, we compare the performance of
MImi (see Section 2.6.2) on a simulated PAC signal to the results of the
PAC estimation methods reviewed in Section 2.2.

3.1.1. Estimating MIPAC on simulated single-trial PAC data
Here we study the estimation of MIPAC in a simulated continuous

noiseless signal using Instantaneous MIPAC. To simulate the PAC signal, a
synthetic Amplitude-Modulated (AM) signal was generated using a time-
varying modulation strength. The modulation strength is then estimated
using Instantaneous MIPAC and later is compared to the ground truth.

To generate the synthetic PAC signal, a procedure similar to that used
for modeling AM signals was used (see Appendix A). Here we adopt the
notation used in the AM literature. The signal and frequency of the
modulator (fm) in these simulations will correspond to the time series φt

and the central frequency fphase of the phase frequency band during
MIPAC estimation respectively. In the same way, the signal and fre-
quency of the carrier (fc) will correspond to the time series At and fre-
quency famp of the amplitude frequency band used in the estimation.

In all simulations, two sinusoids featuring frequencies fc ¼ 40 Hz and
fm ¼ 5 Hz were generated to act as carrier and information (modulator)
signals respectively. The duration of the simulated signals was 5 s at the
sampling rate Srate ¼ 500 Hz. The signals were divided into five equal
segments; coupling was introduced in Segments 2 and 4 only, leaving
Segments 1, 3 and 5 with no coupling. In one simulation coupling was
introduced in all segments. The threshold for variance reduction (see
Section 2.6.1) was set to ΔVarthres ¼ 0:05%. Finally the signal was zero-
padded by appending 1 s of 0's to the beginning and to the end of each
time series. To compute MIPAC while accounting for filter edge effects,
this padding was removed after band bass filtering the signal. Unless
otherwise specified, these parameters were used in all the simulations.

To assess the ability of Instantaneous MIPAC to retrieve the time
course of coupling, three simulated variations in coupling strength were
constructed without adding noise. On/off boxcar and linearly increasing
time courses were used in the first two cases to simulate coupling in
signal Segments 2 and 4 only. In the third case, coupling was applied as
the absolute value of a sinusoid across the five Segments.

Fig. 2 shows the estimated time course of MIPAC in a simulated PAC
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signal in which modulation occurs only from 1 to 2 s and from 3 to 4 s; no
coupling is induced outside of these data segments (Fig. 2A). To estimate
MIPAC, the simulated signal was band-pass filtered using a combination
of high-pass and then low-pass filtering to isolate the two narrow fre-
quency bands used in the simulation (famp ¼ fc ¼ 40 Hz and fphase ¼ fm ¼
5 Hz) as described in Section 2.1.3. The frequency limits of the band-pass
filters were fPhaseBand ¼ ½4 6� Hz and fAmpBand ¼ ½34 46� Hz. These values
were kept constant across simulations (any changes noted below).

Fig. 2B depicts the relationship between the (red) time series φt and
(blue) At in this simulation. The time series At is the envelope of the
(grey) narrow-band AM or carrier signal within fAmpBand. The frequency of
the carrier signal remains constant both during and in the absence of
coupling, but its amplitude varies as a function of the phase of the
modulator signal φt in the segments where the modulation is in effect.

Fig. 2C shows the MIPAC estimate (red) using the Instantaneous
MIPAC approach along with the local MI (pink) time series obtained
before being low-pass filtered to obtain the MIPAC. The overall MI
computed as the average of the local MI is shown as well here. Note that
MIPAC successfully captures the simulated modulation dynamics shown
in Fig. 2A.

When MIPAC methods were introduced in Section 2.6, we discussed
the high-frequency leakage in the local MI while estimating the k-
neighbors in Eq. (21). Fig. 2C shows the effect of this leakage through the
presence of a 10-Hz oscillation in the local MI. This frequency is the first
harmonic of the fphase frequency. The figure also shows how the heuristic
remedy we implemented – low pass filtering the local MI at fphase – im-
proves the MIPAC estimate considerably. To this end, a zero phase-lag,
infinite impulse response (IIR) Butterworth low pass filter [order 6]
with a normalized cutoff frequency of 2fphase=Srate ¼ 0:02 was designed
and implemented in MATLAB. The type of filter and filter order was
chosen to avoid noticeable edge effects in view of the signal in question.

In performing the analyses to obtain the results shown in Figs. 3 and 4
we followed the same procedures as in Fig. 2 but used different time
courses to vary the coupling: linearly increasing and absolute value of a
sinusoidally varying coupling strength respectively. As can be seen in
both cases, the MIPAC estimate successfully recovers the simulated var-
iations in coupling strength.

3.1.2. Estimating MIPAC in simulated single-trial PAC data with added noise
In the previous section (Section 3.1.1), a set of three noiseless simu-

lated PAC signals were used to test Instantaneous MIPAC. A similar MIPAC
analysis was performed after adding white Gaussian noise to the same
three simulated PAC signals using the MATLAB function awgn.m. For
each signal, the signal-to-noise ratio (SNR) was set to 10. In Fig. 5, the
local MI and MIPAC estimated from the noisy signal using the Instanta-
neous MIPAC approach are shown for simulated coupling time courses
featuring a (on/off) boxcar, a linear ramp and absolute value of a sinusoid
(Fig. 5A–C). The overall variations in PAC shown in Figs. 2A, 3A and 4A
are again captured by MIPAC dynamics.

3.1.3. Convergence in MIPAC estimation
The first row of Fig. 6 shows the percent decrease in the estimated

local MI variance ΔVarr (blue) and MIPAC variance (red) as a function of
the number of k-neighbors in the simulations without noise added
(Figs. 2–4). The maximum value of k on the abscissa represents the value
at which the convergence criteria was reached for ΔVarthres ¼ 0:05% (see
Section 2.6.1). In this simulation, MIPAC variance tended to decrease as
the value of k increased. The same trend, although less evident, is shown
by ΔVarr .

This result is intuitively correct. As k increases while keeping con-
stant the number N of points in the signal, more neighboring time points
are included in the estimation of the local MI for each specific point.
This will lead to uniformity in the number of neighbors for all points,
thus pushing the distribution of local MI values toward uniformity and
therefore decreasing the variance of the estimated MIPAC signal. Notice



Fig. 2. MIPAC from a simulated PAC signal with on/off
boxcar coupling Here the sampling rate of the simu-
lated signal was Srate ¼ 500 Hz, the frequency of the
carrier was fc ¼ 40 Hz and the frequency of the
modulator was fm ¼ 5 Hz. (A): Coupling strength
alternated between ‘on’ and ‘off’ across signal seg-
ments. (B): In the simulated signal: instantaneous low-
frequency phase at 5 Hz (red), narrow-band high-fre-
quency signal at 40 Hz (grey), and instantaneous high-
frequency amplitude at 40 Hz (blue). (C): MIPAC
estimated from the simulated signal for famp ¼ 40 Hz,
fphase ¼ 5 Hz. Time courses of estimated MIPAC (red)
and local MI (only positive values are shown) before
low-pass filtering to obtain the MIPAC (pink) are
shown; both have the same units (nats). Overall MI
between instantaneous phase and amplitude
computed as the average local MI is shown in the
legend. Latencies with statistically significant
coupling estimates (p < 0:05, uncorrected) appear in
light grey.

Fig. 3. MIPAC estimates of simulated PAC signals with
linearly increasing coupling. (A): Linearly increasing
ramps of coupling strength in a simulated PAC signal.
(B): In the simulated signal, instantaneous phase (red)
at 5 Hz, (grey) narrow-band signal at 40 Hz and (blue)
instantaneous 40-Hz amplitude. (C): MIPAC estimate
for the simulated signal fc ¼ 40 Hz, fm ¼ 5 Hz. The
(red) MIPAC estimate and (pink) local MI (only posi-
tive values are shown) before being low-pass filtered.
Overall MI between instantaneous phase and ampli-
tude computed as the average local MI is shown in the
legend. Latencies with statistically significant
coupling estimates (p < 0:05, uncorrected) appear in
light grey.

Fig. 4. MIPAC time course estimate for a simulated PAC
signal with absolute value of a sinusoid used as coupling.
(A): Absolute value of a sinusoid used as coupling
strength in a simulated PAC signal. (B): In the simulated
signal, instantaneous phase (red) at 5 Hz, (grey) narrow-
band signal at 40 Hz and (blue) instantaneous ampli-
tude at 40 Hz. (C): Time course of MIPAC estimated
from the simulated signal with fc ¼ 40 Hz, fm ¼ 5 Hz.
The (red) MIPAC estimate and (pink) local MI (only
positive values are shown) before being low-pass
filtered. Overall MI between instantaneous phase and
amplitude computed as the average local MI is shown in
the legend. Latencies with statistically significant
coupling estimates (p < 0:05, uncorrected) appear in
light grey.
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Fig. 5. MIPAC estimation using Instantaneous MIPAC on simulated PAC signals with noise added. In this simulation, the time course of MIPAC was estimated for the same
signals simulated in Figs. 2–4 but with noise added (SNR ¼ 10). Estimated (red) MIPAC, and (pink) local MI before low-pass filtering are shown. Latencies with
statistically significant coupling estimates (p < 0:05, uncorrected) appear in light grey.

Fig. 6. Convergence in MIPAC estimation. Percentage variance reduction (ΔVarr) (blue) and MIPAC variance (red) as a function of the number of k-neighbors. The
decreasing of values of ΔVarr below the threshold defined by ΔVarthresh defines the convergence criteria for the MIPAC estimate. The three columns in the figure show
the percentage variance reduction (ΔVarr) (blue) and MIPAC variance for each of the three types of simulations shown earlier without noise (A–C) and with noise
added (D–F).
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that in the limiting case k ¼ N � 1 the number of neighbors for each
point to be estimated become equal, which lead to ΔVarr ¼ 0 and
MIPAC variance ¼ 0.

The same convergence analysis performed on three noiseless signals
was replicated for the noisy simulated signals (SNR ¼ 10) (lower row of
Fig. 6). The pattern of behavior previously found in the noiseless simu-
lations was preserved, though in this case as k increased the decreases in
ΔVarr and MIPAC variance became smoother. This effect can be
explained by the fact that by introducing noise, the distribution of points
zi in the joint space generated by the supports of At and φt become more
uniformly distributed. This blurs the signatures of interdependence
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between the signals in the Z� space and leads to a smoother MIPAC
estimate. Notice that in the limiting case when SNR → 0, the plots in
second row of Fig. 6 will display an approximate similar 1

k decay.
Another simulation was performed to study interactions between the

sampling rate, Srate, the SNR of the signal, and the parameter k used in
MIPAC estimation. Simulated PAC signals of 5 s duration were generated
using all combinations of the parameters SNR ¼ ½0:2; 0:5; 1:4; 3:8; 10� dB
and Srate ¼ ½128;256;512;1024;2048�Hz. Coupling was introduced as in
Fig. 2. Instantaneous MIPAC in these signals was then computed using a
fixed value of k ¼ ½2; 3;4;6; 8; 12;17;24;35;50�. For each combination
of these parameters, the estimatedMIPAC time series and the time course
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of simulated coupling were correlated. The values of these correlations
for all combinations of parameters Srate, SNR and k are shown in Fig. 7.
Here, higher correlation values reflect a better MIPAC estimation of the
simulated coupling.

Fig. 7 shows that MIPAC estimation is negatively impacted by higher
noise levels but that higher Srate improves MIPAC reliability. The
dependence of the MIPAC estimate on k was not as strong as its depen-
dence on Srate. For values of k below 4 and above 24, MIPAC estimation
performance was poor, particularly at lower SNR levels. Values between
k ¼ 6 and k ¼ 12 appear to provide slightly better estimates for a given
SNR. The effect of parameter k seems to affect the MIPAC estimatemainly
at low values of SNR and Srate.

3.1.4. Estimating MIPAC on simulated multi-trial data
Next, we tested the Event-related MIPAC approach, estimating MIPAC

for a simulated multi-trial data set, and compared the results to the PAC
time series computed for these data using ERPAC (Voytek et al., 2013).
For this simulation, a synthetic PAC signal similar to that shown in Fig. 2
was first used. The signal was replicatedNtrials ¼ 200 times and stacked to
form a matrix of dimension Ntrials by number of latencies. Then, each trial
was circularly shifted a random number of points between 1 and 100
(generated from a uniform distribution), equivalent to one full cycle of
the simulated phase frequency. This was aiming to simulate actual
trial-to-trial variations of brain responses to a repeated and/or equivalent
stimulus presentation. Gaussian white noise was then added to each trial,
with SNR ¼ 10. Phase and amplitude time series for each trial were
estimated as described in Section 2.1.3 and 2.6.2. Then Event-related
MIPAC was computed and its mean progression across the trials (Tri-
al-mean MIPAC) calculated. The MIPAC time series estimate for each trial
is shown in the central panel of Fig. 8; The Trial-mean MIPAC time series
is shown in the lower panel. Trial-mean MIPAC (red trace) and the
time-resolved ERPAC (blue trace) are similar (Fig. 8, bottom).

3.1.5. Mutual Information Modulation Index (MImi)
Next, we compared the performance of the MImi (see Section 2.6.2)

against the modulation indices obtained by using MVLmi (Section 2.2.1),
KLmi (Section 2.2.2) and GLMmi (Section 2.2.3). We first simulated a
signal similar to that shown in Fig. 2, with an on/off boxcar waveform
modulating the coupling and using fc ¼ 50Hz, fm ¼ 7 Hz.White Gaussian
noise was then added to make SNR ¼ 10. The simulated signal is shown
in Fig. 9A. Modulation Index was computed on this signal for each of the
Fig. 7. Relationship between MIPAC estimates and signal parameters. Functional
relationships between MIPAC estimates and parameters k, Srate and SNR were
assessed by computing the correlation of the simulated coupling time courses
and estimated MIPAC time series.
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combinations of fphase ¼ ½4;5;6;7; 8;9;10;11;12� Hz and famp ¼
½30; 35; 40; 45;50;55;60;65;70�) Hz by using MVLmi, KLmi and
GLMmi. Additionally, Instantaneous MIPAC was computed for all com-
binations of fphase and famp (Fig. 9B). MImi image (Fig. 9C) was then
computed by taking the mean of MIPAC time series. MImi image was
then compared with GLMmi (Fig. 9D), MVLmi (Fig. 9E) and KLmi
(Fig. 9F) modulation index estimates. To facilitate comparison across
methods, modulation indices were scaled by dividing the values on each
figure by its maximum modulation value. The MImi estimates qualita-
tively replicate the results obtained using the other methods and even
outperform the KLmi (Fig. 9F).
3.2. Applying MIPAC to actual ECoG data

3.2.1. Subject selection and data exploration
We applied Event-related MIPAC on actual electrocorticographic

(ECoG) data from a human subject. Results obtained in this section are
aiming to illustrate the use of the proposed method with actual data, not
to support any specific interpretation of the results nor to generalize
these results in advance to any other data sets.

The data described in Section 2.1.1, with electrode locations over the
inferior temporal gyrus, fusiform gyrus, and lingual gyrus in the left brain
hemisphere, were used after being preprocessed as described in Section
2.1.2. Combinations of fphase, ranging from 2Hz to 20Hz in 2-Hz steps,
and famp from 30 Hz to 120Hz in 5-Hz steps, were investigated. The time
series At and φt for all combinations of these frequency values were
computed (as described in Section 2.1.3) and split into epochs time-
locked to either ‘face’ image or ‘house’ image stimuli and extending
from �400ms to 800ms relative to stimulus onset. Next, Event-related
MIPAC was estimated across all ECoG channels separately for face and
house stimulus-locked datasets. Grand mean estimated MIPAC across
trials and latencies was computed for each frequency combination to
obtain comodulogram matrices of MImi estimate for each channel and
stimulus type (Fig. 10).

A single channel exhibiting PAC was selected to illustrate the appli-
cation of the proposed method to actual brain data. The selected channel
(Channel 16) was located on the posterior side of the fusiform gyrus. An
area of maximum MImi was obtained around 16Hz (phase) and 95 Hz
(amplitude) (Fig. 10 upper left dotted area) following face presentations
only (Fig. 10). The channel Event-Related Potentials (ERPs) time-locked
to face and house image presentations are plotted in Fig. 11 (left and right
panels). For the selected channel, the responses to face presentations are
more consistent across trials than responses to house presentations. Mean
responses to face stimuli (Fig. 11, lower left) show a distinctive evoked
negative peak (N170) at roughly 180ms after presentation, while mean
responses to house stimuli (Fig. 11, lower right) exhibit a weak positive
peak near 420ms after stimulus presentation. These ERP-image panels
were plotted using EEGLAB function erpimage.m using a 3-trial vertical
smoothing window.

To study the spectral dynamics of brain responses to presentations of
face and house images, event-related spectral perturbation (ERSP)
(Makeig, 1993) and inter-trial coherence (ITC) measures were computed
for the same channel (16). Results are shown in Fig. 12. In the ERSP time
locked to face-stimulus presentations (Fig. 12, upper left panel), begin-
ning near 150ms after stimulus onset a sharp power increase occurs
across a broad band spanning from 4Hz up to 120 Hz. At lower fre-
quencies (� 50Hz) this power increase is brief, lasting �100ms. At
higher frequencies, power decreases slowly from its peak near 150ms.
ITC time locked to face stimulus presentations (Fig. 12, lower left panel)
becomes significant (�0.4) in the (10–30 Hz) alpha-beta frequency range
during the N170 negativity (between 150ms and 250ms). In ITC
following house stimulus presentations (Fig. 12, lower right), a slight
increase occurs near 400ms at low frequencies (�20 Hz) during an ERP
positivity, a feature that does not appear in the house stimulus ERSP
(Fig. 12, upper right).



Fig. 8. Estimating MIPAC in a simulated noisy multi-trial
PAC data set. A set of 200 simulated PAC signal trials
like that depicted in Fig. 2 were generated to estimate
Event-related MIPAC. Each trial was circularly shifted a
random number of points (between 1 and 100), and
Gaussian white noise was added to each trial, setting the
SNR ¼ 10. Top: An on/off boxcar waveform was used to
vary the modulation strength of the simulated PAC sig-
nals. Middle: Estimated MIPAC for each trial and latency.
Bottom: Estimated ERPAC (blue) and Trial-mean MIPAC
(red). Standard deviation of MIPAC across trials is shown
in light red.
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Due to the non-stationarity in the signal indicated by the relatively
sharp response to the face stimulus, it may be a concern that in the time-
frequency analysis the power in high frequencies might be artificially
created in response to sharp spike-like features in the (single-trial) sig-
nals. This issue is a well known and long discussed (Jensen et al., 2016)
side effect of all Fourier-like techniques that may lead to spurious PAC,
since artificial high frequencies returned by the analysis may then be
coupled in time to slower oscillations. While this can occur in some cases,
in our case, high-frequency components resembling wave complexes (�
50 Hz) can be seen in single responses to face image presentations. In
Fig. 13 we show two such trials (trials 113 and 91 in Fig. 11) time-locked
to face stimulus that display this effect. Notice here that the increase in
the power of the gamma band around 95Hz (Fig. 13 red traces) is
coherent with the high-frequency oscillation superimposed to the ERP
starting around 200ms (Fig. 13 blue traces). This argues for the validity
of the high-frequency components found in the data (Fig. 12), but
nevertheless is an issue that may need special attention in the general
case.

3.2.2. Trial-mean MIPAC and ERPAC
In the face-image trials ERSP shown in Fig. 12, the simultaneous

event-related increases in power in the beta and gamma bands (maximal
in broad sub-bands containing 95Hz (78-112 Hz) and 16 Hz (15-17 Hz)
sub-bands respectively) coincide with a peak in ITC at �16Hz sur-
rounding the negative N170 trough. This indicates the presence of PAC at
these frequencies. This finding is consistent with the relatively high de-
gree of MImi found for this channel (Fig. 10).

Next, Event-related MIPAC, Trial-mean MIPAC and ERPAC were
computed for face and house image trials. Results of Trial-mean MIPAC
and ERPACwere compared (Fig. 14). Trial-mean MIPAC for both stimulus
trial sets (Fig. 14, upper panel) is consistent with the results from ERPAC
(Fig. 14, lower panel). Statistical significance of increases in Trial-mean
MIPAC and ERPAC following face-image presentations (compared to pre-
stimulus baseline) were computed using a family-wise-error rate (FWER),
tmax permutation test (Groppe et al., 2011), and are shown in Fig. 14 in
pink shading. The empirical distribution of maximal t-values under the
null hypothesis was obtained by generating 5000 100-time point
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surrogate epochs from the pre-stimulus baseline. The null hypothesis was
then rejected at a significance level α ¼ 0:05 if the actual statistic t of the
analyzed sample was beyond the 1� α percentile of the empirical dis-
tribution. No significant differences from baseline were found in re-
sponses to house image presentations. Thus, further analyses focused on
responses to face image presentations.

3.2.3. Event-related MIPAC
Results of MIPAC estimation using Event-related MIPAC (fphase ¼ 16

and famp ¼ 95 Hz) for all face-presentation trials are shown in Fig. 15A,
which we may refer to as a (peak MIPAC-sorted) MIPAC-image. In this
figure, a statistical significance mask (p < 0:05, uncorrected) was
computed by surrogate data analysis (see Section 2.7); non-significant
values were set to zero and are shown in green color.In the MIPAC-
image (Fig. 15A), trials were sorted by mean MIPAC across a window
centered at 200ms and spanning the equivalent of one full cycle of fphase
(the region between the dotted lines). In this time window, MIPAC
consistently increases from bottom to top across the (peakMIPAC-sorted)
trials. The same trial sorting order was then used to plot the time course
of instantaneous phase at 16 Hz (Fig. 15C) and power at 95 Hz (Fig. 15B)
in the same trials. The interval of increased MIPAC (180–250ms) co-
occurs with the N170 ERP peak (see Fig. 15D). However the MIPAC
values are not homogeneous across trials. Trials with higher MIPAC in
the sorting window also exhibit a distinct power increase at 95 Hz
(Fig. 15B). This occurs concurrently with a partial phase reset at 16 Hz
(Fig. 15C) beginning just after stimulus presentation and lasting until
about 430ms as also indicated by the ITC image. Here, latencies showing
negative MIPAC may be interpreted as exhibiting no coupling.

The Fig. 15G shows the time course of 16-Hz phase in face image
trials now explicitly sorted by phase at 16 Hz in a window centered at
200ms spanning one full cycle of fphase (e.g., between the thin dotted
vertical lines). Using this trial-sorting order, the phase resetting after the
stimulus presentation becomes even more obvious (Fig. 15G versus C).
The same trial-sorting order was used then to plot the MIPAC-image
(Fig. 15E) and the time course of power near 95 Hz in each trial
(Fig. 15F). For the MIPAC-image (E), as in (A), a statistical significance
mask (p < 0:05, uncorrected) was computed using surrogate data



Fig. 9. Comparing results of MImi with those of other modulation indices (A): Simulated PAC signal with noise added (SNR ¼ 10) (blue). An on/off boxcar waveform is
used to model the PAC modulation strength (red) in the simulated signal. In this simulation, the amplitude frequency is fc ¼ 50 Hz, the phase frequency is fm ¼ 7 Hz,
and the sampling rate is.Srate ¼ 500 Hz. (B): MIPAC estimates for all combinations of phase frequencies from 4 to 12 Hz (1 Hz steps) and amplitude frequencies from 30
to 70 Hz (5-Hz steps). Comodulograms using (C) MImi, (D) GLMmi (Penny et al., 2008b), (E) MVLmi (Canolty et al., 2006a) and (F) KLmi (Tort et al., 2010). Non
significant values (p < 0:05, uncorrected) appear shaded in (D-F).
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analysis (non-significant MIPAC estimates were set to zero and are shown
in green color). We can see that the three measures depicted here, MIPAC
(E), high-frequency amplitude (F), and low-frequency (16-Hz) phase (G),
all appear to co-vary in latency across trials during the N170 negative
peak (H).

4. Discussion

4.1. MIPAC estimates of simulated data

We showed that bothMIPAC variants, Instantaneous MIPAC and Event-
related MIPAC, are able to successfully estimate the temporal dynamics of
the coupling in simulated PAC signals both without and with added
noise. In simulations, as the noise level in the simulated signal increased,
MIPAC estimation accuracy decreased. Although analyzed here only in
three comparable simulations, we expect this result to generalize. Noise
introduced into the simulated signals produces an increased uniform
spread of points in the joint space spanned by the supports of At and φt ,
leading to more uniformity in the numbers of neighbors counts used in
the local MI computation and undermining the estimation of MIPAC. A
quantitative evidence for this is the decrease of the overall MI values
from the noiseless simulations in Figs. 2, 3, 4-C from 0.71, 0.31 and 0.89
nats to 0.69, 0.14 and 0.84 nats respectively in the simulations with noise
added in Fig. 5A–C.

We also studied the reliability of estimating coupling dynamics using
Instantaneous MIPAC in single trials. For this, we assessed the relationship
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of the signal parameters SNR and Srate to the number of neighbors k used
in MIPAC estimation (Fig. 7). Correlation between the modeled coupling
strength and estimated MIPAC time series was used as a measure of the
quality of MIPAC estimation under the given parameters. Similar to other
PAC estimation methods (Penny et al., 2008b), we showed that the
reliability of the MIPAC estimation is inversely proportional to noise
level and directly proportional to the signal sampling rate. In our method,
the later correlation occurs since as the Srate increases, the joint space
spanned by the supports of At and φt becomes more locally populated,
leading to increased estimates of marginal neighbor counts for points
with relevant PAC. Here, with locally populated space, we want to
highlight the difference between the increase of uniformity introduced
by the increase of the noise level and of the local density increase in the
joint space evoked by the increase of Srate in signals displaying PAC.

In the same simulation, for a given Srate we were able to identify a k-
value interval that gave a high-reliability MIPAC estimate. This result
supports our conclusion that, given a signal with PAC (real or simulated),
an optimal value of k can be estimated. This supports our implementation
of a heuristic in the form of the iterative scheme for the k-value used to
estimate MIPAC here. However, the optimal values of k obtained cannot
be generalized, since the result is dependent on the dynamics of the
coupling in each signal. As a heuristic, the proposed iterative (or
convergence) scheme is not a robust method to uniquely determine the
MIPAC estimate, but rather gives a coarse approximation of the optimal
k. Indeed, in our examples the combination of this heuristic and the low-
pass filtering at the end of MIPAC estimation produced fair estimates. We



Fig. 10. Electrode locations (lower left) and MImi comodulograms computed for face and house stimulus-locked trials at a subset of ECoG channels electrodes. The como-
dulogram for responses to face presentations in Channel 16 is magnified in upper left. Relevant MImi at 95Hz (amplitude) and 16Hz (phase) is highlighted with a
dotted box (upper left). Note that there is no MImi following house image presentations for this channel (dashed box lower right). No significance testing was
performed on the comodulograms.

Fig. 11. ERP-images for Channel 16 trials time locked to pre-
sentations of face and house image stimuli. Stimulus onset is at
0 ms and trials have been (vertically) smoothed with a 3-trial
moving window. Left: Single ECoG trials time-locked to the
presentation of face stimuli. Right: Trials time-locked to pre-
sentations of house stimuli. Lower panels plot the trial-mean
ERP for each trial subset. At Channel 16, located on the Fusi-
form Gyrus, the response to face stimuli includes a prominent
and expected (N170) negativity that does not appear following
presentations of house stimuli.
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Fig. 12. Event-related spectral perturbations
(ERSPs) and inter-trial coherences (ITCs) for the
same channel (16) time locked to (left) face and
(right) house image presentations. The trial-mean
ERPs are shown in the traces below the ITC
panels. The face-stimulus ERSP exhibits a broad-
band power increase near 200ms after stimulus
onset. Beta-band frequencies (16–30 Hz) exhibit
strong (� 0:5) ITC near 200ms. The ERSP and
ITC responses to house stimuli (right) are weaker
and peak later (400ms). Jointly, these phenom-
ena may suggest the presence of event-related
phase-amplitude coupling (PAC) near fphase ¼ 16
Hz and famp ¼ 95 Hz. Attending to Section 2.1.3,
these bands are represented with horizontal
dotted lines with values between 78-112 Hz
(upper left) and 15-17 Hz (lower left) respectively.

Fig. 13. Two single face image presentation trials displaying high-frequency activity:
The figure shows (blue traces) trials 91 and 113 in Fig. 11 and time courses for
the same two trials of power near 95 Hz (band limits, 78 Hz–112 Hz). The
computed power increases are consistent with the appearance of high-frequency
oscillations superimposed in the ERPs surrounding the negative (N170)
ERP peak.
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also note that small values of the parameter Varthres may lead to the
limiting case described in Section 3.1.3 where the estimated coupling can
become constant, or analogously, have zero variance. As this is an un-
desirable feature, a careful assessment of parameter Varthres is encouraged
in real data applications. These results were obtained while estimating
MIPAC in a single-trial signal using Instantaneous MIPAC. However, if we
consider Event-related MIPAC as an iterative application of Instantaneous
MIPAC at each latency across trials, then these results can be applied and
generalized without loss of rigor to the case of multiple trials. For such
data, Event-related MIPAC takes advantage of the presumed
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cyclostationarity of the event-related trials to boost the neighbor count in
the MIPAC estimation. The use of the one phase-cycle estimation window
both allows the MIPAC estimates to sample from all parts of the full
phase-frequency cycle, but also can better capture transient PAC across
trials in which the event-related PAC time courses have some latency
differences. On a practical level, these considerations support the refor-
mulation of Instantaneous MIPAC into Event-related MIPAC.

In the simulation 3.1.4, MIPAC computed on a set of simulated PAC
signals was compared to the PAC result obtained using ERPAC. We
demonstrated that both ERPAC and Trial-mean MIPAC could successfully
estimate changes in PAC modulation strength. In addition, Event-related
MIPAC estimated the modulation strength of PAC dynamics in each in-
dividual trial. From our view, this is one of the main benefits of the
proposed MIPAC method vis a vis existing methods.

Finally, in Section 3.1.5 we compared MImi performance on a simu-
lated signal to the modulation indices obtained by GLMmi, MVLmi and
KLmi. Here we demonstrated the degree of agreement among the results
across all these methods. In our work, MImi was introduced as an
alternative to the modulation index used by other authors (Penny et al.,
2008a; Canolty et al., 2006a; Tort et al., 2010). Our alternative came
from the equivalence of MIPAC, when computed without low pass
filtering of the local MI, to the overall MI. This measure has the potential
to be used in analyses like the one performed at the beginning of Section
3.2, but note that this improvement may come at the cost of compro-
mising critical temporal information about the PAC process.

4.2. MIPAC estimates of experimental data

To illustrate the potential of the proposed method, Event-related
MIPAC was applied to real ECoG data in Section 3.2. Here a single,
average-referenced ECoG channel with the active electrode located in the
fusiform gyrus and exhibiting high MImi in response to face image pre-
sentations was selected for further investigation. Selecting a channel
because of a particular feature in its comodulogram, then analyzing the
very same feature on the channel, might constitute a classic example of
double dipping (Kriegeskorte et al., 2009). Also, most of the presented
statistical analysis lacks multiple comparison correction (e.g., over sen-
sors, conditions, frequencies). However, as mentioned previously, this
analysis was presented here for illustrative purposes, without investi-
gating whether the results might or not generalize to new subjects, etc.

The specificity of the fusiform gyrus response to visual face image
presentations, and its expected (N170) ERP response to face image pre-



Fig. 14. Trial-mean MIPAC and ERPAC computed for Channel
16 at fphase 16 Hz and famp 95 Hz. Top: Trial-mean MIPAC
following face image (red) and house image (blue) pre-
sentations. Bottom: ERPAC following face image (red) and
house image (blue) presentations. Pink shaded areas indicate
intervals of significant PAC (p < 0:05, FWER corrected over
both time and conditions) following face image presentations.
Both event-related MIPAC and ERPAC measures give similar
results that feature a PAC maximum near 185ms following
face image presentations only.

Fig. 15. MIPAC-images showing event-related
MIPAC time series for individual face image tri-
als. (A):MIPAC-image with trials sorted by the
mean MIPAC value near 200ms (between the
vertical dotted lines). Points with statistically
non-significant MIPAC estimates (p > 0:05, un-
corrected) were set to zero and are shown in
green color. (B): Power near 95 Hz in trials sorted
as in A. (C): Phase at 16 Hz, trials again sorted as
in A. (D): Trial-mean ERPs. (E-H) as in A-D, trials
here sorted by 16-Hz phase in a latency interval
centered at 200ms (see dotted lines in panel G).
Images in panels A and E are smoothed with a 3-
trial moving window.
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sentations are well known (McCarthy et al., 1997). However, the
observed increase of beta-gamma band PAC during the surface-negative
N170 ERP peak is a novel observation that may deserve further investi-
gation. Here, the high-frequency broadband (HfB) activity increase in the
ERSP (Fig. 12) following face presentations is consistent with the
phase-amplitude coupling increase. The simultaneous �16-Hz ITC and
�95-Hz HfB power increases occur together during the PAC period. The
increase in power near 16 Hz is a necessary condition for emergence of
meaningful PAC, since filtering may create an artificial appearance of
activity at the phase frequency, which can lead to a spurious correlation.
Interestingly, the local PAC values across trials (Fig. 15A, E) are not
homogeneous.

Fig. 14 shows that results of Trial-mean MIPAC are similar to those
obtained using ERPAC on the same data. This supports the validity and
potential utility of the new MIPAC measure. Here the Trial-mean MIPAC
was computed from the Event-related MIPAC estimates only for compar-
ison to another PAC estimation method (ERPAC). MIPAC offers a richer
description of PAC dynamics than other methods by providing a time-
resolved PAC estimate for each trial.

Here, whether or not PAC is a brain mechanism supporting brain
information transfer remains unanswered. However, MIPAC has the po-
tential to add correlative evidence to this question by allowing a more
complete description of PAC dynamics. Indeed, applying MIPAC to more
complex data and relating it to behavior (reaction times, performance,
etc.) could add compelling correlative evidence for the neurophysiolog-
ical role of PAC. Appropriate modeling should also be carried out to
disentangle the relationship of PAC to the measures involved in its
computation (e.g., other spectral characteristics of the brain processes).

Since the MIPAC measure was developed within the framework of
mutual information, we can interpret its moment-to-moment and trial-to-
trial variability as indexing changes in the amount of information shared
by the phase and amplitude signals. The fact that MIPAC can be used to
estimate PAC with high temporal resolution is valuable. In an analysis of
actual brain ECoG data, we were able to detect the appearance of PAC
time locked to face stimulus presentations and to demonstrate the use of
MIPAC for event-related PAC estimation, giving an insight into the dy-
namics of the coupling process without collapsing the dimensionality of
the data. However, as we will discuss shortly, any conclusions based on
these results should be drawn carefully.

4.3. Limitations, caveats and future directions

One should be aware that MIPAC gives a measure of the degree of
relationship of any sort between higher-frequency amplitude and lower-
frequency phase time series. Thus, a MIPAC peak may not mark a high-
frequency amplitude peak only, but might signal some other form of
consistent relationship between the two time series.

An increasing concern in PAC reports is the inability of all PAC
methods to deal with spurious CFC in non-stationary signals. Generally,
non-stationary processes show spectral correlations between components
of their Fourier expansions (Aru et al., 2015; Davis et al., 2011; Jensen
et al., 2016) that can be misinterpreted as CFC. For example, the Fourier
decomposition of a non-stationary signal with sharp spike-like features
may lead to the spurious conclusion that some high-frequency activity is
coupled to slower rhythms. This has been called spurious CFC. Some
authors (Aru et al., 2015) have suggested that statistical analysis using
surrogate data may help in dealing with the ambiguity introduced by the
spurious CFC. Alternatively, a causal analysis between the CFC spectral
components may be able to overcome these limitations. The new MIPAC
method proposed here, like traditional PAC metrics, do not solve the
problem of spurious CFC. Thus, physiological interpretation of MIPAC
results should be subject to stringent statistical analysis supported by
evidence for its physiological plausibility and function.

By defining the MIPAC-image (Fig. 15 A, E) we were able to visualize
dynamics in the single-trial MIPAC estimates and to look for patterns –
here, in particular, single-trial co-variations of event-related changes in
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high frequency power and low frequency phase that were otherwise
invisible. Thus, the proposed method might be a more powerful tool for
exploratory analysis to gain insight into the evolution of the PAC process
and its dynamic relationship to other electrophysiological measures.

The local information-theoretic measures used to create the MIPAC
measures might also be applied to different types of cross-frequency
coupling, since procedures we used made no assumptions as to the na-
ture of the signals being analyzed. Thus, any type of CFC might poten-
tially be estimated by a similar MI-based approach, perhaps simply by
replacing the phase and amplitude signals with any pair of measures of
interest applied to the same or to two different signals.

In addition to the potential problem of spurious coupling, we have
identified three main limitations of the MIPAC approach. First, is that due
to the scaling performed to compute the nearest neighbors in Section
2.6.1, MIPAC may be sensitive to outliers. For this, an alternative scaling
may be used, or one may simply clean the data ahead of computing
MIPAC. The fact that signals are band-pass filtered in a narrow band may
also help to overcome the problem of the outliers. Second, like other PAC
measurement methods, MIPAC does not provide information about the
directionality of the phase-amplitude interaction (e.g., whether lower
(phase) frequency oscillations appear to drive changes in the power of
the high frequency signals and/or vice versa). A natural solution to this
limitation within the framework of information theory might be to
combine PAC measurement with transfer entropy estimation (Schreiber,
2000). So far as we know, this has not yet been applied using local in-
formation measures.

The third limitation may be inaccuracy in MIPAC estimation arising
from sub-optimal sampling of the phase and amplitude values across
trials. For Event-related MIPAC, estimation of the number of neighbors
within a phase-frequency full cycle window alleviates this problem.
However, if the trial-to-trial variations in PAC time course vary across a
wider interval than one cycle, MIPAC may be underestimated. Another
possible way to compute event-related MIPAC might be first to compute
MIPAC on the continuous signal (or on the concatenated set of signal
epochs) using Instantaneous MIPAC and then to extract MIPAC estimates
in segments time-locked to events of interest. For this, some computa-
tional means would have to be implemented to handle the large
dimensionality of the distance matrix needed to find the nearest neigh-
bors. Fast nearest-neighbor search algorithms bypassing the need to
compute the entire distance matrix exist and might be usable for this
purpose (e.g., (Grassberger, 1990; Friedman et al., 1977)). However, this
approach would not make use of the cyclostationarity assumption that
the Event-related MIPAC approach capitalizes on, and so might work well
only if local stationarity in the continuous (or concatenated) data can be
assumed (see Section 2.6).

It has been widely demonstrated that in the hippocampus (Bragin
et al., 1995; Colgin et al., 2009; Lisman and Jensen, 2013; Igarashi et al.,
2014; Tort et al., 2009), human medial temporal lobe (Axmacher et al.,
2010) and in the visual system in both human and non-human primates,
(Osipova et al., 2008; Voytek et al., 2010; Spaak et al., 2012; Foster and
Parvizi, 2012; Bahramisharif et al., 2013; Roux et al., 2013),
low-frequency phase of local field activity can be coupled to
high-frequency power. It is often assumed that PAC indexes transfer of
information from low-frequency phase to high-frequency amplitude, i.e.,
low-frequency phase ‘drives’ high-frequency amplitude. However, most
current methods for estimating PAC cannot distinguish the direction of
this information flow (but see (La Tour et al., 2017)). The possibility of
bi-directional interaction is supported by a recent report on ECoG data
from epileptic patients that the envelope of gamma oscillations drives
alpha phase (Jiang et al., 2015). No doubt, estimation of the direction-
ality of the coupling is important for proper interpretation of PAC. Given
this evidence and the temporal description provided by MIPAC, a natural
question would be how to explore the directionality of the
phase-amplitude interactions underlying MIPAC.

Quite recently, a new method (La Tour et al., 2017) has been devel-
oped to estimate cross-frequency coupling using non-linear
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auto-regressive models. This method has the potential to model causal
cross-frequency interactions by estimating time delays in interactions
between the different frequency components. Further, a recent report
(Barnett et al., 2009) has suggested a unified framework for data-driven
causal inference that bridges both information-theoretic and
auto-regressive methods. The report demonstrates the equivalence of
Granger causality and transfer entropy under Gaussian assumptions on
the variables. Information theoretic measures, indeed, may provide a
non-linear model-free approach suitable for PAC estimation. Thus, based
on previous work (La Tour et al., 2017) and on the findings provided by
Barnett et al., 2009, one might propose a data-driven estimation method
for CFC including causal analysis based on local transfer entropy (Lizier,
2014b) rooted in the same framework presented here.

5. Conclusions

Here we propose a novel method, MIPAC, for estimating the dynamics
of phase-amplitude coupling (PAC) in (continuous) single-trial and
(event-related) multi-trial data using a measure of local mutual infor-
mation. Two mutual-information PAC (MIPAC) variants, Instantaneous
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MIPAC and Event-related MIPAC, were here validated by applying them to
simulated data and then to actual cortical surface (ECoG) brain data. In
both cases, results were consistent with results of published PAC esti-
mators. The main advantage of the proposed MIPAC measures is their
more highly time-resolved description of PAC process dynamics. This
makes MIPAC suitable, in particular, for the analysis of either sponta-
neous or event-related dynamics in electrophysiological data.
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Appendix A. Phase-amplitude coupled signal modeling

Let us start by considering a carrier signal Sc of frequency fc and amplitude Ac as in Eq. (A.1).

ScðtÞ ¼ Acsinð2πfctÞ (A.1)

The amplitude of this carrier wave will be modulated by a signal Sm of frequency fm and amplitude Am (Eq. (A.2)).

SmðtÞ ¼ Amcosð2πfmtÞ (A.2)

Then, the simulated PAC signal is expressed as the sum of the AM and modulator signal (Eq. (A.3)). Where the modulation is controlled by the
parameter MðtÞ.

SsimðtÞ ¼ ½1þMðtÞSmðtÞ�ScðtÞ þ SmðtÞ (A.3)

In the simulations presented in this manuscript, Ac ¼ 5, fc ¼ 40 and fm ¼ 5, the time series of the modulation strength MðtÞ were constructed
according to the type of simulation. For this, the signal was split in five identical segments each of 1 s duration. Three different functions were used to
generate theMðtÞ time series simulating dynamic changes in the amplitude modulation. In the first two cases (on/off) boxcar and linearly ramped time
courses were used to simulate coupling in alternate signal segments. In the third case, coupling was applied as the absolute value of a sinusoid across all
the segments. The scripts and functions used to simulate the PAC signals in the manuscript can be obtained from the authors upon request.
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