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Artificial neural networks (ANNs) have now been applied to a wide variety of real-world 

problems in many fields of application. The attractive and flexible characteristics of ANNs, such 

as their parallel operation, learning by example, associative memory, multifactorial optimization 

and extensibility, make them well suited to the analysis of biological and medical signals. In this 

study, we review applications of ANNs to brain signal analysis, for instance, for analysis of the 

electroencephalogram (EEG) and magnetoencephalogram (MEG), or electromyogram (EMG), 

and as applied to computed tomographic (CT) images and magnetic resonance (MR) brain 

images, and to series of functional MR brain images (i.e. fMRI).  
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1. INTRODUCTION 

Artificial neural networks (ANNs) are computational framework inspired by our expanding 

knowledge of the activity of networks of biological neurons in the brain. ANNs cannot hope to 

reproduce all the still not well-understood complexities of actual brain networks. Rather, most 

ANNs are implemented as sets of nonlinear summing elements interconnected by weighted links, 

forming a highly simplified model of brain connectivity. The basic operation of such artificial 

neurons is to pass a weighted sum of their inputs through a nonlinear hard-limiting or soft 

“squashing” function. To form an ANN, these basic calculating elements (artificial neurons) are 

most often arranged in interconnected layers. Some neurons, usually those in the layer furthest 

from the input, are designated as output neurons. The initial weight values of the 

interconnections are usually assigned randomly. 

The operation of most ANNs proceeds in two stages. Rules used in the first stage, training (or 

learning), can be categorized as supervised, unsupervised, or reinforced. During training, the 

weight values for each interconnection in the network are adjusted either to minimize the error 

between desired and computed outputs (supervised learning) else to maximize differences (or to 

minimize similarities) between the output categories (unsupervised or competitive learning). In 

reinforced learning, an input-output mapping is learned during continued interaction with the 

environment so as to maximize a scalar index of performance (Haykin, 1999). The second stage 

is recall, in which the ANN generates output for the problem the ANN is designed to solve, based 

on new input data without (or sometimes with) further training signals.  

Because of their multifactorial character, ANNs have proven suitable for practical use in 

many medical applications. Since most medical signals of interest are usually not produced by 

variations in a single variable or factor, many medical problems, particularly those involving 



Duann, Jung and Makeig: Brain Sugnal Analysis 

3 

decision-making, must involve a multifactorial decision process. In these cases, changing one 

variable at a time to find the best solution may never reach the desired objective (Dayhoff and 

DeLeo, 2001), whereas multifactorial ANN approaches may be more successful. In this chapter, 

we review recent applications of ANNs to brain signal processing, organized according to the 

nature of brain signals to be analyzed and the role that ANNs play in the applications.  
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2. ROLES OF ANNS IN BRAIN SIGNAL PROCESS 

To date, ANNs have been applied to brain data for the following purposes: 

a. Feature extraction, classification, and pattern recognition: ANNs here serve mainly 

as non-linear classifiers. The inputs are preprocessed so as to form a feature space. 

ANNs are used to categorize the collected data into distinct classes. In other cases, 

inputs are not subjected to preprocessing but are given directly to an ANN to extract 

features of interest from the data. 

b. Adaptive filtering and control: ANNs here operate within closed loop systems to 

process changing inputs, adapting their weights “on the fly” to filter out unwanted 

parts of the input (adaptive filtering), or mapping their outputs to parameters used in 

online control (adaptive control). 

c. Linear or nonlinear mapping: Here ANNs are used to transform inputs to outputs of a 

desired form. For example, an ANN might remap its rectangular input data 

coordinates to circular or more general coordinate systems. 

d. Modeling: ANNs can be thought of as function generators that generate an output 

data series based on a learned function or data model. ANNs with two layers of 

trainable weights have been proven capable of approximating any nonlinear function.  

e. Signal separation and deconvolution: These ANNs separate their input signals into 

the weighted sum or convolution of a number of underlying sources using 

assumptions about the nature of the sources or of their interrelationships (e.g., their 

independence). 

f. Texture analysis and image segmentation: Image texture analysis is becoming 

increasingly important in image segmentation, recognition and understanding. ANNs 
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are being used to learn spatial or spatial-frequency texture features and, accordingly, 

to categorize images or to separate an image into subimages (image segmentation).  

g. Edge detection: In an image, an edge or boundary between two objects can be 

mapped to a dark band between two lighter areas (objects). By using the properties of 

intensity discontinuity, ANNs can be trained to “recognize” these dark bands as edges, 

or can learn to "draw" such edges based on contrast and other information. 
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3. APPLICATION AREAS 

In this section, we illustrate applications of ANNs to brain signals through some examples 

involving neurobiological time series and brain images. Neurobiological signals of clinical 

interest recorded noninvasively from humans include EEG, MEG, and EMG data. Research in 

brain imaging includes the analysis of structural brain images, mainly focused on the extraction 

of 3-dimensional structural information, from various kinds of brain images (e.g., magnetic 

resonance images, MRI), as well as analysis of functional brain imaging series that mainly reveal 

changes in the brain state during cognitive tasks using medical imaging techniques (e.g., fMRI 

and positron emission tomography or PET). These examples, however, by no means cover all the 

publications in the field, whose number is growing rapidly. 

Neurobiological signals 

•  Electroencephalogram and Magnetoencephalogram 

The electroencephalogram (EEG) is a non-invasive measure of brain electrical activity 

recorded as changes in the potential difference between two points on the scalp. The 

magnetoencephalogram (MEG) is its magnetic counterpart. In accordance with the assumption 

that the ongoing EEG can be alternated correspondingly by stimulus or event to form the 

event-related potential (ERP) or the evoked potential (EP), these changes, though tiny, can be 

recorded through the scalp. It is possible for researchers to apply pattern recognition algorithms 

to search for the differences in brain status while the brain is performing different tasks. Thus, 

Peters and colleagues (2001) applied an autoregressive (AR) model to four-channel EEG 

potentials to obtain features that were used to train an ANN using a backpropagation algorithm to 

differentiate the subject's intention to move the left or right index finger or right foot. They 

suggested the framework might be useful for designing a direct brain-computer interface. In the 
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study of Zhang et al. (2001), ANNs were trained to determine the stage of anesthesia based on 

features extracted from the middle-latency auditory evoked potential (MLAEP) plus other 

physiological parameters. By combining power spectral estimation, principal component analysis 

and ANNs, Jung et al. (1997) demonstrated that continuous, accurate, noninvasive, and near 

real-time estimation of an operator's global level of alertness is feasible using EEG measures 

recorded from as few as two scalp sites. Results of their ANN-based estimation compare 

favorably to those using a linear regression model applied to the same PCA-reduced EEG power 

spectral data. 

As a linear mapping device, Sun and Sclabassi (2000) employed an ANN to transform the 

EEG topography obtained from a forward solution in a simple spherical model to a more realistic 

spheroidal model whose forward solution was difficult to compute directly. Here, a 

backpropagation learning algorithm was used to train an ANN to convert spatial locations 

between spherical and spheroid models. Instead of computing the infinite sums of the Legendre 

functions required in the asymmetric spheriodal model, the calculations were carried out in the 

spherical model and then converted by the ANN to the more realistic model for display and 

evaluation. 

Recently, ANNs have made an important impact on the analysis of EEG and MEG by 

separating the problem of EEG or MEG source identification from that of source localization, a 

mathematically underdetermined problem -- any scalp potential distribution can be produced by 

a limitless number of potential distributions within the head. Because of volume conduction 

through cerebrospinal fluid, skull and scalp, EEG and MEG data collected from any point on the 

scalp may include activity arising in multiple locally synchronous but relatively independent 

neural processes within a large brain volume. This has made it difficult to relate EEG 
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measurements to underlying brain processes and to localize the sources of EEG and MEG signals. 

Progress has been made by several groups in separating and identifying the distinct brain sources 

from their mixtures in scalp EEG or MEG recordings assuming only their temporal 

independence and spatial stationarity (Makeig et al., 1997; Jung et al., 2001), using a class of 

independent component analysis (ICA) or blind source separation (BSS) algorithms. 

•  Muscle and Movement Signals 

From recordings of muscle stretching (mainly, the electromyogram or EMG), it is possible to 

predict the intent of subjects to perform actions such as hand or finger movements, or to judge 

the disability of a specific bundle of muscle cells. For example, Khalil and Duchene used 

wavelet coefficients obtained from uterine electromyography to train ANNs (Khalil and Duchene, 

2000) to separate the inputs into four labeled categories: uterine contractions, fetal movements, 

Alvarez waves, and long-duration low-frequency band (LDBF) waves. They reported that the 

system was useful for maintaining preterm births. On the other hand, Stites and Abbas (2000) 

used an ANN as a pattern shaper to refine the output patterns of a functional neuromuscular 

stimulation system (FNS) that served as a pattern generator of control signals for cyclic 

movements to help the paraplegic patient stand using FNS.  

Brain Images 

•  Structural Images 

In structural brain image analysis, ANNs may play roles in image segmentation, image 

labeling and/or edge detection. Image segmentation is the first, and probably the most important 

step in digital image processing. Segmentation may be a labeling problem in which the goal is to 

assign, to each voxel in a gray-level image, a unique label that represents it’s belonging to an 

anatomical structure. The results of image segmentation can be used for the image understanding 
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and recognition, three-dimensional reconstruction, visualization, and for measurements including 

brain volume changes in developmental brain diseases such as Alzheimer’s disease and autism. 

The rapid pace of development of medical imaging devices such as magnetic resonance imaging 

(MRI) and computerized tomography (CT), allows to better understanding of anatomical brain 

structure without, prior to, or even during neurosurgery. However, results are highly dependent 

upon the quality of the image segmentation processes.  

Here, we give some examples using ANNs in image segmentation: Dawant et al. (1991) 

presented a backpropagation (BP) neural network approach to the automatic characterization of 

brain tissues from multi-modal MR images. The ability of a three-layer BP neural network to 

perform segmentation based on a set of MR images (T1-weighted, T2-weight and proton density 

weighted) acquired from a patient was studied. The results were compared to those obtained 

using a Maximum Likelihood Classifier. They showed there was no significant difference in the 

results obtained by both methods, though BP neural network gave cleaner segmentation images. 

By using the same analysis strategy, Reddick et al. (1997) first trained a self-organizing map 

(SOM) on multi-modal MR brain images to efficiently extract and convert the 3-D inputs (from 

T1-, T2- and PD-weighted images) into a feature space and utilized a BP neural network to 

separate them into classes of white matter, gray matter, and cerebral spinal fluid (CSF). Their 

work demonstrated high intraclass correlation between the automated segmentation and 

classification of tissues and standard radiologist identification as well as high intrasubject 

reproducibility. 

•  Functional Images 

Nowadays, not only does medical imaging device provide impressive spatial resolution and 

details of the fine structure of the human brain, it is also able to reveal changes in brain status 
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while awake subjects perform a task or even daydream by measuring ongoing metabolic changes 

including cerebral blood flow (CBF), cerebral blood volume (CBV) (by Positron Emission 

Tomography, PET), and blood oxygenation level-dependent (BOLD) signal levels (by functional 

MR imaging, fMRI). We will give some examples mainly from fMRI analysis. 

Functional brain imaging emerged in the early 90’s based on the observation that increase in 

local neuronal activity are followed by local changes in oxygen concentration. Changing the 

amount of oxygen carried by hemoglobin changes the degree to which hemoglobin disturbs a 

magnetic field is able to demonstrate that in vivo changes blood oxygenation could be detected 

by MRI (Ogawa et al., 1992). The subsequent changes in the MRI signal became known as the 

blood-oxygenation- level-dependent or BOLD signal. This technique was soon applied to normal 

humans during functional brain activation, by cognitive task performance, giving birth to the 

rapid growing field of functional magnetic resonance imaging.  

Theoretically, the fMRI BOLD signal from a given brain voxel can be interpreted as a linear 

combination of different sources with distinguishable time courses and spatial distributions, 

including use-dependent hemodynamic changes, blood or central spinal fluid flows, plus subject 

movement and machine artifacts. Recently, ANNs (especially independent component analysis, 

ICA), applied to fMRI data, have proven to be a powerful method for detecting and separating 

task-related activations with either known or unanticipated time courses (McKeown et al., 1998) 

that could not be detected by standard hypothesis-driven analyses. Duann et al. (2002) have 

given further details of applying ICA to fMRI BOLD signal showing that the hemodynamic 

response to even widely spaced stimulus presentations may be trial, site, stimulus and subject 

dependent. Thus, the standard regression–based method of applying a fixed hemodynamic 

response model to find stimulus- or task-related BOLD activations needs to be reconsidered.  
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4 .  DISCUSSION 

Uses of ANNs as classifiers currently dominates their applications to the field of brain signal 

analysis. This includes classification of brain or related signals as exhibiting normal or abnormal 

features or processes. Not surprisingly, all published studies report promising results.  

If the measurements can be modeled as an additive mixture of different sources, including 

task-related signals and artifacts, applying blind source separation (BSS) prior to the further 

processing, visualization, or interpretation may better reveal the underlying physical phenomena 

such as different brain processes) which in the raw data could be contaminated or overwhelmed 

by other processes of no interest.  

A survey of relevant papers shows that the most popular architecture for artificial neural 

network used is the multilayer perceptron (MLP). The MLP architecture is both simple and 

straightforward to implement and use. In MLPs, information flows in one direction except during 

training, when error terms are back-propagated. Backpropagation updates network weights in a 

supervised manner. Although it cannot guarantee a globally minimal solution, backpropagation at 

least arrives at a local minimum through gradient descent. Various techniques have been derived 

to attempt to avoid overfitting to a local minimum. Once the network weights have been learned 

and fixed, feedforward networks can be implemented in hardware and made to run in real-time. 

All these characteristics make the backpropagation algorithm most popular in biomedical 

applications. 

In some applications, target outputs may not be available or may be too expensive to acquire. 

In these cases, unsupervised learning algorithms may be used. Among unsupervised learning 

algorithms, self-organizing maps (SOMs) are the most popular for biomedical applications. 

During training, SOMs attempt to assign their input patterns to different output regions. Often 



Duann, Jung and Makeig: Brain Sugnal Analysis 

12 

SOMs may converge after only few learning cycles.  

APPLICATION ISSUES 

Although most published papers have concluded that ANNs are appropriate for their domain 

of interest, many issues still have to be resolved before ANNs may be claimed to be the general 

method of choice. Unfortunately, most published studies have not gone beyond demonstrating 

application to a very limited amount of data. As with any type of method, ANNs have their 

limitations that should be carefully considered: 

•  Every study should provide a rationale for the data chosen as input. For example, 

ANN-based computer-aided-diagnosis (CAD) systems may give misleading results if the 

ANNs are not given adequately representative features and sufficient naturally occurring 

data variations in their training data. Using ANNs, any input may yield some sort of 

output, correct and useful or not (“garbage in, garbage out”). Therefore, keys for success 

of ANN applications are not only to pick an appropriate architecture or learning 

algorithm, but also to choose the right data and data features to train the network.  

•  Although methods of applying ANNs to biomedical signals have already shown great 

promise, great care must be taken to examine the results obtained. The issue of trust in 

the outputs of ANNs always deserves informed as well as statistical consideration. Since 

medical diagnosis is nearly always a multifactorial and multidisciplinary problem, 

medical experts should always evaluate network outputs in light of other direct or indirect 

convergent evidence before making final decisions affecting the health of patients.  

•  Before practical implementation is planned, ANN methods should be compared to more 

direct ways of obtaining the same answers, as these might sometimes prove more 

accurate or cost-effective. 
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MODEL MINING 

Since the first wave of popularization of backpropagation networks, nearly two decades ago, 

an ever-growing number and variety of ANN models have been devised to tackle an 

ever-widening variety of problems. The overall insight that ANNs both embody and exemplify is 

perhaps that our human intelligence is multifactorial and highly adaptable to using whatever 

forms of information are available to us. In this spirit, we suggest that researchers always attempt 

to interpret the physiological meaning both of the features of their input data and of the data 

models that their trained ANNs represent. Too often ANNs have been treated like “black boxes.” 

We believe it is time to open the black boxes and interpret what is happening inside them. Such 

interpretations might even give new insights into the nature of the biomedical signals, or suggest 

new or more efficient ways to look at the input data. It is also possible that the ANN models and 

methods might suggest more efficient methods to collect input data. Such 'model mining' might 

even prove to be the most rewarding result of applying ANNs. Researchers who simply recount 

classification accuracy may ignore nuggets of novel information about brain processes hidden in 

the ANN models that they and the data have jointly constructed.  
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