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Abstract

We develop a framework for analyzing non-gaussian
densities in terms of the curvature of the density function
itself, rather than moments of the random variable. The
framework suggests a new criterion for sub- and super-
gaussianity of densities that is seen to be of wider range of

application than the commonly used kurtosis criterion. We 07 © el o
show that the notion of relative curvature introduced can be 08 08
seen as a generalization of the notion of convexity, where > 05
classical convexity of a function is seen as a relationship 03 04
between the function and a linear model. We use the cur- Zj 02
vature framework to derive an inequality that holds for all 0 0
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functions that are super-gaussian in the sense of the pro-

posed criterion. Thi; inequglity aIIovy; proof of global con- Figure 1: (a) shows a typical vector generated by the (non-
vergence of a certain re-weighted minimum norm algorithm sparse) Gaussian density shown in (c), and (b) shows a typ-

by providing a weighting matrix that yields descent without 4| vector generated by the (sparse) generalized Gaussian
line search. The algorithm is equivalent to the FOCUSS density (with shape parameter 0.1) shown in (d)
algorithm of [1, 2] in the case of independent Generalized

Gaussian densities in the linear model.

1 Introduction The sources are considered to be sparse if the source compo-

The present research was inspired by the problem of find-nent densities are sharply peaked around zero and *heavy-

proach the problem using the Bayesian framework of [3]. Ind two possible states: active and inactive. When inactive,
Lety € R™ be an observed instance of the random vector the random variable takes a value close to zero, and when

Y, which is modelled according to the linear model, active, it takes a value far enough from zero to be easily dis-
tinguishable from the inactive zero state [4]. The “sparsity”
Y=AX+v of the random variable is a result of the fact that it has a

higher probability of being in the inactive state. For exam-
where A € R™*" is a deterministic matrix,X is an  ple, neurons are often modelled as sparse random variables
n-dimensional random source vector, andis an m- [5], and similarly the random variables corresponding to the
dimensional random noise vector, with all component ran- components of wavelet dictionaries [6], and to the indepen-
dom VariableS mutua”y independent. The MAP eStimation dent Components |earned in ICA [5] are a|so We”_known to

problem is to findz, defined by, be sparse.
i = arg fé?é? pxy (z]y) (1.1) The “sparseness” of the random variable is related to the

curvature of the density. With the requirement that the den-
*This research was partially supported by NSF Grant No. CCR- Sity be unimodal, in order to have a significant mass around
9902961 zero (large probability of being inactive) and a large ex-




pected magnitude (taking on a relatively large value when #
active), the density must peak sharply at zero, around the
inactive range, and flatten out, descending slowly over the
active range. of .
The commonly used measure of this curvature, and thus \
of the sparsity of the random variable, is the kurtosis, which, *[ ]
for a zero mean random variablé, is the difference be-
tween the fourth moment ok and the fourth moment of
a Gaussian random variable with the same varianck as 3F 8

i.e. EX* - 3(FEX?)2 The kurtosis is positive for super-
gaussian densities and negative for sub-gaussian densities */ i
While the kurtosis measure is consistent with the notion of | CmodeloiCaes

sparsity given above, it relies on the existence of even mo-
ments, and is thus not always finite. As sparse densities ° ]
tend to have non-integrable moments, the kurtosis measure ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

can fail in comparing very sparse or super-gaussian densi- Yo 0z o4 o0 08 1 12 14 16 18 2
ties. For example, the inverse tangent can be used as a non-

linearity in source separation networks [5]. Such a network Figure 2:  The functionTy; is defined atz, by
performs the equivalent of MAP estimation of the source Tr.n(zo,7) = a(zo)f(z) + B(zo) such that it is tangent
assuming a Cauchy prior. It is clear that the Cauchy densityto 2.(z) atzo. h has more curvature thahif T’ , (o, z) <
has the characteristics of a super-gaussian density, but wé(z) for z € (a, b).

are unable to order this density with respect to other super-
gaussian densities using the kurtosis criterion. Even if the
moments of the density are finite, it may not be possible to
evaluate the integral in closed form.

In this paper we propose a differential criterion for super-
gaussianity of a density that is also “centered” in a sense at”
the Gaussian density. The differential criterion arises from
a consideration of tk)lle relative curvature of two functions,  L##(%0,%0) = h(zo) and T}, (xo,z0) = '(zo)
and may be seen as a generalization of the notion of con- , - : : .(2'1)
vexity, where convexity is seen as comparing a function to where ' is the derlvatlve th'. That is, Ty is affinely
the linear model of the function at one or two points. We related tof so that it has function value and slope equal to

propose to consider densities sub- or super-gaussian as thtéJe value and slope df ato, i.e. Ty » andh are tangent at

negative log densities are convex or concave relative to the”°: Working with the tangent moddly., instead off in a

negative log Gaussian, i.e. relative to the quadratic func- SENS€ removes the influence of first order information. As a

tion. A happy result of this definition of super-gaussianity provisional definition, iff andh are convex, we shall take
is that it yields a natural re-weighted minimum norm al- Fhe curvature of to be greater than that hfgtxo < (a,8)
gorithm that is globally convergent without line search for if the tangent function 9f applied toh at lies uniformly
all super-gaussian densities thus defined. Furthermore, W@boveh on (a,b). Thatis,

have the result that the Fenchel-Legendre conjugate of (the
log of) a super-gaussian density is sub-gaussian, and vice-
versa. Thus the dual problem of a linear MAP estimation . - . '
problem with sub-gaussian prior is a super-gaussian esti—See Figure 2. Similarly, fof andh concave.f is defined

mation problem, so the proposed algorithm also applies tof[O have greater curvature tharata if the inequality (2.2)
sub-gaussian densities. is reversed. For convek andh, we say thatf has greater

curvature tharh on (a, b) if,

tion T, of f applied toh at the pointzy € (a,b) to be
the unique affine transformation ¢f(z), Ty n(xo,z) =
(zo)f(x) + B(xo), that gives,

Ty n(xo,z) > h(z) Yz € (a,b) (2.2)

2 Function Curvature

Tyn(w,y) =2 h(y) Va,y€ (a,b) (2.3)

Let f be a continuously differentiable increasing func-

tion over a possibly unbounded interval, b). We wish to and again the inequality is reversed in the cas¢ ahdh
define a measure of the curvature foht a point in(a, b). concave. For fixed, the univariate functioril’y , (zo, )
We proceed first in an operational manner. Given two func- is an affine function of (z) defined bya(z) f (z) + B(x0).
tions, f andh, we wish to say wherf is has “greater cur- It can be considered a first order model of the function
vature” thanh at zo € (a,b). Define the tangent func- atx usingf. The parametera(zo) andj3(z¢), chosen to



satisfy (2.1), are easily seen to be,

'(20) R (20)
f'(o) f'(o)

Substituting these into (2.2), we have thfdtas greater cur-
vature tharh on (a, b) if,

f'(xo)
W (o) (h(z) — h(zg)) Vze (a,(127)4)

It may be verified that this is equivalent to definigp have
“less curvature” thary atz if the affine transformation of
h(z), Th,(xo, ), lies entirely belowf(z) on (a,b). The
equation (2.4) is similar to the differential definition of con-
vexity, and indeed reduces to this definition when the func-
tion h is affine. In fact, (2.4) is the differential definition of
convexity for the composite functiofio h=1.

B(wo) = h(zo) — f(zo)

afrg) =

f(@) = f(xo) =

3 Relative Convexity and Square Convexity

Based on the considerations in the previous section, we

define relative convexity as follows.

Definition (Relative Convexity). For f andh continuous
and increasing on the intervét, b), f is convex relative to
hon(a,b)if foh~'is convex on(h(a), h(b)).

Note that this definition does not assume differentiabil-
ity of f andh, only invertibility on (a,b). We can show
using basic properties of continuous, increasing, and defi-
nite functions (not necessarily differentiable, but convex or
concave on an interval), that relative convexity, considered

as a relation on the set of functions continuous and increas-

ing on(a, b), induces a partial ordering on that set [7]. Thus
we can writef > h or f < hon(a,b) whenf has greater
or lesser curvature thah respectively. Alsof is convex
relative toh if and only if & is concave relative tg.

Since relative convexity is defined in terms of the con-
vexity of a composite function, we can apply the theory of
differentiable convex functions to the composite function to
derive the following.

Lemma 1 (Relative convexity for differentiable func-
tions). If f and h are increasing and differentiable on
(a,b), thenf = hon(a,b) if and only if,

(
(

If f andh are increasing and twice differentiable ¢a, b),
thenf = h on(a,b) if and only if,

f”(x h”(l‘)
f'(z) = W(z)

/

~

X

Fy)=f(@) > 5= (h(y)=h(z)) Y,y € (a,b) (B.1)

h'(z

~

~—

>

Vz € (a,b) (3.2)

Abstracting from (3.2), the operatéf: f — fT which
is equivalent to the operatd@ log D, can be seen as a mea-
sure of instantaneous order that is invariant to affine trans-
formation of f(x) [7]. In fact, ];,((j)) is the exponeny in an
exponential model of, aexp(yz) + 3, defined so that it
agrees withf in function value, and first and second deriva-
tives.

We can generalize the definition of relative convexity to
derive useful inequalities for functions defined .

Definition (Relative Convexity in R™). Let C C R™ be
convex, andleff : C — R, g: C — C. We say thatf is
convex relative tg on C'if f o g~1 is convex ory(C).

We now derive the differential implications of the mul-
tidimensional definition. In the following/(z) and H(x)
will be used for Jacobians and Hessians, withand H
referring for example to the Jacobian @and the Hessian
of f. The gradient off will be denotedvy.

Lemma 2 (Relative convexity for differentiable function-
als). LetC' Cc R*,and letf:C — R, g:C — C, with Vf
and J, continuous, and/f invertible onC'. Thenf is con-
vex relative tgg on C if and only if

Fy) = f(@) > V(@) Jy(z) " (9(y) —g(z)) Va,yeC

If Hy and H, are invertible onC, whereg, is thekth com-
ponent ofg, thenf is convex relative tg if and only if

Hy(2) > 3 Hya) [Jy(0) TV ()], VaeC
k=1

where the notatiodl > B is used forA — B positive semi-
definite.

In the particular case af(z) = 22, the component-wise
squaring operation, we havg (z) = diag2z). Define
W = diag(x). Then forf concave relative ta? we have,

fl) = (&) < 5VF@ W (2 ) VayeC
(3.3)
where diagonal components gfmay be infinite if the cor-
responding component afis zero. We shall call functions
that are concave relative i, “square-concave”, and those
that are convex relative te?, “square-convex”. Fof twice
differentiable, we havg square-concave if,

y"Hy(z

Ty W |W'Vf(z)||, Yz,yeC (3.4

that is, if the 2-norm of the matri%i; projected onta’' is
less than the 1-norm &¥/ ~!Vf(x) forall z € C.



4 Algorithm for Linear Estimation with where the component prior densities are assumed to be

Super-Gaussian Densities mutually independentg; is the jth row of A, f;(x;) =
—log px, (v;) andd;(y; — a"z) = —logpy; x (y;|2).

Let f:R™ — R be separable, so thifz) = >, fi(z:), Like the kurtosis measure, the relative convexity measure
and let each component functiofy : R — R be sign-  coincides with the notion of sub- and super-gaussianity if
invariant (symmetric about zero) and increasing with the we take the densityx to be super-gaussian wherlog px
magnitude of its argument, i.¢(z) = f(|z|), and |y;| > is square-concave (@ry negative log square-concave). In

|;| implies f;(y) > fi(x:). The increasing property im-  addition, densities that are commonly taken to be super-
plies thatr andVf(x) are in the same orthant for all S0 gaussian but do not have moments, like the Cauchy, are

that that’Vf (z) > 0, whereW = diagz). amenable to the relative convexity measure. In the fol-
Consider the problemmin,cc f(x), whereC'isaconvex  |owing we assume that the source componeftand the
set, e.g. the linear variety defined by: = b, and f is noise componentd; are square-concave (which includes
square-concave o@'. We can use the inequality (3.3) to the cases of Gaussian noise and fhenorm error). Defin-
define a descent algorithm as follows. At iterationfor ing e = y — Az, the problem can be written,
anyzy.1, using the separability of we have,
1 S 1 : . . . =
fawn) ~ S S GVFEIW ey —af) 0T UM A 4D di(e) st Avre=y
1 1
= -z Ipzpr — =zl x
g ThHLTR ThHL T TR Then defining” = [A T]andz = [27 ¢”']", we have

whereW,, = diag(zy), andIl;, = diag W, 'Vf(z)) > 0. s
Then if we take forry, 1, % = arg min Z fi(zi) st. Cz=y
z y —
Tpy1 — arg mig 2Ty, (4.1) =t
e

) where we definef; to range over thef; and d; functions,
we can guarantee tha(z,41) < f(zx). WhenCisthe  gach of which is assumed square concave.

linear variety defined bylxz = b, the minimization can be Now we can apply the algorithm to this problem to find

carried out by solving, the estimate:. If = is updated by,
T
F:[le % } [mk/\ﬂ} = [2} (4.2) Zk41 < arg mzinzTHk. z st.Cz=y

This proves descent of the algorithm. Defining the solution we can guarantee descentﬁ)f This minimization can be
set to be the set of fixed points of the algorithm, we can carried out by solving,

show global convergence on a large class of convex sets [7]

using one of Zangwill's global convergence theorems [8]. g (zx) 0 AT [2psq 0
When('is a polytope, including the case whéras a linear 0 My(er) T e | =10
variety, the set of fixed points is bounded, and we have the A I 0 A Y
following.

where I (zx) = diag W, Vf(zx)) and Hg(ex) =

Theorem 1 (Global convergence on polytopes [7])Let f:

R™ — R be separable, sign-invariant, and increasing over
each orthant, and lef be square-concave on the convex
polytopeC. Then the algorithn{4.1) converges to a local
minimum off on C from any point inR™ except possibly on

a set of measure zero.

diag(V,F Vd(ex)), andW,F andV," are pseudoinverses ob-
tained by inverting the non-zero components of diag
and diadey) respectively. We can write;; in closed
form as,

i1 = T () AT (ATIF (2)AT + T (e0)) 'y
We can apply this theory to the linear MAP estimation
problem (1.1) by considering the curvature of the negative It is unnecessary to solve fey.; as it is constrained to be
log prior densities. y — Axypy1. The recommended method of computing, ;
is to first solve,

T = argmmin—logpx(ir) - 10%PY|X(3/|93) T

. - (AT () AT + I (ex)) A =y

= arg mzlnz fl(l‘z) + Z dj (yj - dij)
i=1

= and then letry 1 = IT;} (z) ATA.



5 Conjugate Symmetry with respect to
Quadratic and Logarithmic Curvatures

apply the globally convergent algorithm given here. This
theoretical global convergence is also shown to be useful in
deriving convergent dictionary learning and ICA algorithms
As further evidence of the naturalness of the definition in [10]. The algorithm given is super-linear for log concave
of curvature in terms of relative convexity, we give a re- densities, as can be seen by generalizing the convergence
lationship between square-convexity, convexity relative to rate results in [1], but it is linear fdbg square-concave den-
log, and Fenchel-Legendre conjugacy of one dimensionalsities that aréog convex, wither higher asymptotic constant
functions. The relationship is also easily extended to separathe closerf is to quadratic.
ble functionals. We assume in the following thfatR — R If we admit line search, we can also use Theorem 2 to
is twice differentiable and definite di, b). Definiteness of ~ achieve stable quadratic convergence by applying Newton’s
fon(a,b), i.e. strict positivity or negativity of”’ on (a, b) method to the dual. This is the idea proposed in [11] for

ensures thay’ is invertible on(a, b) as it is then strictly ~ discreteL, optimization withl < p < 2. Newton's method
increasing or strictly decreasing. is unstable when applied to the primal problem as the sec-

; - ond derivative of super-gaussian functions is generally un-
* Ti:?jgcfglé::z;c[g?Jugate of a convex functipndenoted bounded at zero. The resulp given here regar(_jing the con-
' ’ jugate operation and “reflection” about quadratic curvature,
X ields insight into the effect on curvature of the conjugac
17 (¢)= Slip ¢z — f(z) gperation,gand may be used to derive a general aItJer%at?\//e
theorem concerning the boundedness of the second deriva-
If fis concave, then the Fenchel conjugate is defined byitive of either the primal or the dual.
f*(¢) = inf, ¢px— f(z). Since we assume thats smooth
and definite or{a, b), the Fenchel conjugate is the same as References
the Legendre transform [9]. For the derivatives, we have,

F(¢) = f'7H9) = (¢)
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(o) =f""(¢) = (=) f(=(e))
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