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Abstract

We develop a framework for analyzing non-gaussian
densities in terms of the curvature of the density function
itself, rather than moments of the random variable. The
framework suggests a new criterion for sub- and super-
gaussianity of densities that is seen to be of wider range of
application than the commonly used kurtosis criterion. We
show that the notion of relative curvature introduced can be
seen as a generalization of the notion of convexity, where
classical convexity of a function is seen as a relationship
between the function and a linear model. We use the cur-
vature framework to derive an inequality that holds for all
functions that are super-gaussian in the sense of the pro-
posed criterion. This inequality allows proof of global con-
vergence of a certain re-weighted minimum norm algorithm
by providing a weighting matrix that yields descent without
line search. The algorithm is equivalent to the FOCUSS
algorithm of [1, 2] in the case of independent Generalized
Gaussian densities in the linear model.

1 Introduction

The present research was inspired by the problem of find-
ing sparse solutions to a linear inverse problem. We ap-
proach the problem using the Bayesian framework of [3].
Let y ∈ Rm be an observed instance of the random vector
Y , which is modelled according to the linear model,

Y = AX + ν

where A ∈ Rm×n is a deterministic matrix,X is an
n-dimensional random source vector, andν is an m-
dimensional random noise vector, with all component ran-
dom variables mutually independent. The MAP estimation
problem is to find̂x, defined by,

x̂ = arg max
x∈Rn

pX|Y (x|y) (1.1)
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Figure 1: (a) shows a typical vector generated by the (non-
sparse) Gaussian density shown in (c), and (b) shows a typ-
ical vector generated by the (sparse) generalized Gaussian
density (with shape parameter 0.1) shown in (d)

The sources are considered to be sparse if the source compo-
nent densities are sharply peaked around zero and “heavy-
tailed”. One can think of a sparse random variable as hav-
ing two possible states: active and inactive. When inactive,
the random variable takes a value close to zero, and when
active, it takes a value far enough from zero to be easily dis-
tinguishable from the inactive zero state [4]. The “sparsity”
of the random variable is a result of the fact that it has a
higher probability of being in the inactive state. For exam-
ple, neurons are often modelled as sparse random variables
[5], and similarly the random variables corresponding to the
components of wavelet dictionaries [6], and to the indepen-
dent components learned in ICA [5] are also well-known to
be sparse.

The “sparseness” of the random variable is related to the
curvature of the density. With the requirement that the den-
sity be unimodal, in order to have a significant mass around
zero (large probability of being inactive) and a large ex-



pected magnitude (taking on a relatively large value when
active), the density must peak sharply at zero, around the
inactive range, and flatten out, descending slowly over the
active range.

The commonly used measure of this curvature, and thus
of the sparsity of the random variable, is the kurtosis, which,
for a zero mean random variableX, is the difference be-
tween the fourth moment ofX and the fourth moment of
a Gaussian random variable with the same variance asX,
i.e. E X4 − 3 (E X2)2. The kurtosis is positive for super-
gaussian densities and negative for sub-gaussian densities.
While the kurtosis measure is consistent with the notion of
sparsity given above, it relies on the existence of even mo-
ments, and is thus not always finite. As sparse densities
tend to have non-integrable moments, the kurtosis measure
can fail in comparing very sparse or super-gaussian densi-
ties. For example, the inverse tangent can be used as a non-
linearity in source separation networks [5]. Such a network
performs the equivalent of MAP estimation of the source
assuming a Cauchy prior. It is clear that the Cauchy density
has the characteristics of a super-gaussian density, but we
are unable to order this density with respect to other super-
gaussian densities using the kurtosis criterion. Even if the
moments of the density are finite, it may not be possible to
evaluate the integral in closed form.

In this paper we propose a differential criterion for super-
gaussianity of a density that is also “centered” in a sense at
the Gaussian density. The differential criterion arises from
a consideration of the relative curvature of two functions,
and may be seen as a generalization of the notion of con-
vexity, where convexity is seen as comparing a function to
the linear model of the function at one or two points. We
propose to consider densities sub- or super-gaussian as the
negative log densities are convex or concave relative to the
negative log Gaussian, i.e. relative to the quadratic func-
tion. A happy result of this definition of super-gaussianity
is that it yields a natural re-weighted minimum norm al-
gorithm that is globally convergent without line search for
all super-gaussian densities thus defined. Furthermore, we
have the result that the Fenchel-Legendre conjugate of (the
log of) a super-gaussian density is sub-gaussian, and vice-
versa. Thus the dual problem of a linear MAP estimation
problem with sub-gaussian prior is a super-gaussian esti-
mation problem, so the proposed algorithm also applies to
sub-gaussian densities.

2 Function Curvature

Let f be a continuously differentiable increasing func-
tion over a possibly unbounded interval(a, b). We wish to
define a measure of the curvature off at a point in(a, b).
We proceed first in an operational manner. Given two func-
tions,f andh, we wish to say whenf is has “greater cur-
vature” thanh at x0 ∈ (a, b). Define the tangent func-
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Figure 2: The functionTf,h is defined at x0 by
Tf,h(x0, x) = α(x0)f(x) + β(x0) such that it is tangent
to h(x) atx0. h has more curvature thanf if Tf,h(x0, x) ≤
h(x) for x ∈ (a, b).

tion Tf,h of f applied toh at the pointx0 ∈ (a, b) to be
the unique affine transformation off(x), Tf,h(x0, x) =
α(x0)f(x) + β(x0), that gives,

Tf,h(x0, x0) = h(x0) and T ′f,h(x0, x0) = h′(x0)
(2.1)

whereh′ is the derivative ofh. That is, Tf,h is affinely
related tof so that it has function value and slope equal to
the value and slope ofh atx0, i.e. Tf,h andh are tangent at
x0. Working with the tangent modelTf,h instead off in a
sense removes the influence of first order information. As a
provisional definition, iff andh are convex, we shall take
the curvature off to be greater than that ofh atx0 ∈ (a, b)
if the tangent function off applied toh atx0 lies uniformly
aboveh on (a, b). That is,

Tf,h(x0, x) ≥ h(x) ∀x ∈ (a, b) (2.2)

See Figure 2. Similarly, forf andh concave,f is defined
to have greater curvature thanh atx0 if the inequality (2.2)
is reversed. For convexf andh, we say thatf has greater
curvature thanh on (a, b) if,

Tf,h(x, y) ≥ h(y) ∀x, y ∈ (a, b) (2.3)

and again the inequality is reversed in the case off andh
concave. For fixedx0, the univariate functionTf,h(x0, x)
is an affine function off(x) defined byα(x0)f(x)+β(x0).
It can be considered a first order model of the functionh
at x0 usingf . The parametersα(x0) andβ(x0), chosen to



satisfy (2.1), are easily seen to be,

α(x0) =
h′(x0)
f ′(x0)

β(x0) = h(x0)− h′(x0)
f ′(x0)

f(x0)

Substituting these into (2.2), we have thatf has greater cur-
vature thanh on (a, b) if,

f(x)− f(x0) ≥ f ′(x0)
h′(x0)

(
h(x)− h(x0)

) ∀x ∈ (a, b)

(2.4)
It may be verified that this is equivalent to definingh to have
“less curvature” thanf at x0 if the affine transformation of
h(x), Th,f (x0, x), lies entirely belowf(x) on (a, b). The
equation (2.4) is similar to the differential definition of con-
vexity, and indeed reduces to this definition when the func-
tion h is affine. In fact, (2.4) is the differential definition of
convexity for the composite functionf ◦ h−1.

3 Relative Convexity and Square Convexity

Based on the considerations in the previous section, we
define relative convexity as follows.

Definition (Relative Convexity). For f andh continuous
and increasing on the interval(a, b), f is convex relative to
h on (a, b) if f ◦ h−1 is convex on

(
h(a), h(b)

)
.

Note that this definition does not assume differentiabil-
ity of f andh, only invertibility on (a, b). We can show
using basic properties of continuous, increasing, and defi-
nite functions (not necessarily differentiable, but convex or
concave on an interval), that relative convexity, considered
as a relation on the set of functions continuous and increas-
ing on(a, b), induces a partial ordering on that set [7]. Thus
we can writef º h or f ¹ h on (a, b) whenf has greater
or lesser curvature thanh respectively. Alsof is convex
relative toh if and only if h is concave relative tof .

Since relative convexity is defined in terms of the con-
vexity of a composite function, we can apply the theory of
differentiable convex functions to the composite function to
derive the following.

Lemma 1 (Relative convexity for differentiable func-
tions). If f and h are increasing and differentiable on
(a, b), thenf º h on (a, b) if and only if,

f(y)−f(x) ≥ f ′(x)
h′(x)

(
h(y)−h(x)

) ∀x, y ∈ (a, b) (3.1)

If f andh are increasing and twice differentiable on(a, b),
thenf º h on (a, b) if and only if,

f ′′(x)
f ′(x)

≥ h′′(x)
h′(x)

∀x ∈ (a, b) (3.2)

Abstracting from (3.2), the operatorK :f → f ′′

f ′ , which
is equivalent to the operatorD log D, can be seen as a mea-
sure of instantaneous order that is invariant to affine trans-
formation off(x) [7]. In fact, f ′′(x)

f ′(x) is the exponentγ in an
exponential model off , α exp(γx) + β, defined so that it
agrees withf in function value, and first and second deriva-
tives.

We can generalize the definition of relative convexity to
derive useful inequalities for functions defined onRn.

Definition (Relative Convexity in Rn). Let C ⊂ Rn be
convex, and letf : C → R, g : C → C. We say thatf is
convex relative tog onC if f ◦ g−1 is convex ong(C).

We now derive the differential implications of the mul-
tidimensional definition. In the followingJ(x) andH(x)
will be used for Jacobians and Hessians, withJg andHf

referring for example to the Jacobian ofg and the Hessian
of f . The gradient off will be denoted∇f .

Lemma 2 (Relative convexity for differentiable function-
als). Let C ⊂ Rn, and letf :C → R, g :C → C, with∇f
andJg continuous, and∇f invertible onC. Thenf is con-
vex relative tog onC if and only if

f(y)−f(x) ≥ ∇f(x)T Jg(x)−1
(
g(y)−g(x)

) ∀x, y ∈ C

If Hf andHgk
are invertible onC, wheregk is thekth com-

ponent ofg, thenf is convex relative tog if and only if

Hf (x) ≥
n∑

k=1

Hgk
(x)

[
Jg(x)−T∇f(x)

]
k

∀x ∈ C

where the notationA ≥ B is used forA−B positive semi-
definite.

In the particular case ofg(x) = x2, the component-wise
squaring operation, we haveJg(x) = diag(2x). Define
W = diag(x). Then forf concave relative tox2 we have,

f(y)− f(x) ≤ 1
2
∇f(x)T W−1

(
y2 − x2

) ∀x, y ∈ C

(3.3)
where diagonal components off may be infinite if the cor-
responding component ofx is zero. We shall call functions
that are concave relative tox2, “square-concave”, and those
that are convex relative tox2, “square-convex”. Forf twice
differentiable, we havef square-concave if,

yTHf (x)y
yTy

≤ ∥∥W−1∇f(x)
∥∥

1
∀x, y ∈ C (3.4)

that is, if the 2-norm of the matrixHf projected ontoC is
less than the 1-norm ofW−1∇f(x) for all x ∈ C.



4 Algorithm for Linear Estimation with
Super-Gaussian Densities

Let f :Rn → R be separable, so thatf(x) =
∑

i fi(xi),
and let each component functionfi : R → R be sign-
invariant (symmetric about zero) and increasing with the
magnitude of its argument, i.e.f(x) = f(|x|), and |yi| >
|xi| implies fi(yi) > fi(xi). The increasing property im-
plies thatx and∇f(x) are in the same orthant for allx, so
that thatW∇f(x) ≥ 0, whereW ≡ diag(x).

Consider the problemminx∈C f(x), whereC is a convex
set, e.g. the linear variety defined byAx = b, andf is
square-concave onC. We can use the inequality (3.3) to
define a descent algorithm as follows. At iterationk, for
anyxk+1, using the separability off we have,

f(xk+1)− f(xk) ≤ 1
2
∇f(x)T W−1

k

(
x2

k+1 − x2
k

)

≡ 1
2

xT
k+1Πk xk+1 − 1

2
xkΠk xk

whereWk ≡ diag(xk), andΠk ≡ diag(W−1
k ∇f(x)) ≥ 0.

Then if we take forxk+1,

xk+1 ← arg min
x∈C

xT Πk x (4.1)

we can guarantee thatf(xk+1) ≤ f(xk). WhenC is the
linear variety defined byAx = b, the minimization can be
carried out by solving,

[
Πk AT

A 0

] [
xk+1

λ

]
=

[
0
b

]
(4.2)

This proves descent of the algorithm. Defining the solution
set to be the set of fixed points of the algorithm, we can
show global convergence on a large class of convex sets [7]
using one of Zangwill’s global convergence theorems [8].
WhenC is a polytope, including the case whereC is a linear
variety, the set of fixed points is bounded, and we have the
following.

Theorem 1 (Global convergence on polytopes [7]).Letf :
Rn → R be separable, sign-invariant, and increasing over
each orthant, and letf be square-concave on the convex
polytopeC. Then the algorithm(4.1) converges to a local
minimum off onC from any point inRn except possibly on
a set of measure zero.

We can apply this theory to the linear MAP estimation
problem (1.1) by considering the curvature of the negative
log prior densities.

x̂ = arg min
x
− log pX(x)− log pY |X(y|x)

= arg min
x

n∑

i=1

fi(xi) +
m∑

j=1

dj(yj − āT
j x)

where the component prior densities are assumed to be
mutually independent,̄aj is the jth row of A, fi(xi) ≡
− log pXi(xi) anddj(yj − āT x) ≡ − log pYj |X(yj |x).

Like the kurtosis measure, the relative convexity measure
coincides with the notion of sub- and super-gaussianity if
we take the densitypX to be super-gaussian when− log pX

is square-concave (orpX negative log square-concave). In
addition, densities that are commonly taken to be super-
gaussian but do not have moments, like the Cauchy, are
amenable to the relative convexity measure. In the fol-
lowing we assume that the source componentsfi and the
noise componentsdj are square-concave (which includes
the cases of Gaussian noise and theL1-norm error). Defin-
ing e ≡ y −Ax, the problem can be written,

x̂ = arg min
x,e

n∑

i=1

fi(xi) +
m∑

j=1

dj(ej) s.t. Ax + e = y

Then definingC ≡ [A I ] andz ≡ [
xT eT

]T
, we have

ẑ = arg min
z

n+m∑

i=1

f̃i(zi) s.t. Cz = y

where we definẽfi to range over thefi anddj functions,
each of which is assumed square concave.

Now we can apply the algorithm to this problem to find
the estimatêx. If z is updated by,

zk+1 ← arg min
z

zT Πk z s.t. Cz = y

we can guarantee descent off̃ . This minimization can be
carried out by solving,




Πk(xk) 0 AT

0 Πk(ek) I
A I 0







xk+1

e
λ


 =




0
0
y




where Πk(xk) ≡ diag(W+
k ∇f(xk)) and Πk(ek) ≡

diag(V +
k ∇d(ek)), andW+

k andV +
k are pseudoinverses ob-

tained by inverting the non-zero components of diag(xk)
and diag(ek) respectively. We can writexk+1 in closed
form as,

xk+1 = Π+
k (xk)AT

(
A Π+

k (xk)AT + Π+
k (ek)

)−1
y

It is unnecessary to solve forek+1 as it is constrained to be
y −Axk+1. The recommended method of computingxk+1

is to first solve,

(
A Π+

k (xk)AT + Π+
k (ek)

)
λ = y

and then letxk+1 = Π+
k (xk)ATλ.



5 Conjugate Symmetry with respect to
Quadratic and Logarithmic Curvatures

As further evidence of the naturalness of the definition
of curvature in terms of relative convexity, we give a re-
lationship between square-convexity, convexity relative to
log, and Fenchel-Legendre conjugacy of one dimensional
functions. The relationship is also easily extended to separa-
ble functionals. We assume in the following thatf :R→ R
is twice differentiable and definite on(a, b). Definiteness of
f on (a, b), i.e. strict positivity or negativity off ′′ on (a, b)
ensures thatf ′ is invertible on(a, b) as it is then strictly
increasing or strictly decreasing.

The Fenchel conjugate of a convex functionf , denoted
f∗, is defined by [9],

f∗(φ) = sup
x

φx− f(x)

If f is concave, then the Fenchel conjugate is defined by,
f∗(φ) = infx φ x−f(x). Since we assume thatf is smooth
and definite on(a, b), the Fenchel conjugate is the same as
the Legendre transform [9]. For the derivatives, we have,

f∗′(φ) = f ′−1(φ) = x(φ)

f∗′′(φ) = f ′−1′(φ) =
1

f ′′
(
f ′−1(φ)

) =
1

f ′′
(
x(φ)

)

We now have the following theorem.

Theorem 2 (Fenchel-Legendre conjugate symmetry).
Let f be increasing and definite onD, with Fenchel con-
jugatef∗ defined onD∗ = {φ : f ′(x) = φ, x ∈ D}. Then
f is square-convex onD if and only iff∗ is square-concave
onD∗, andf is concave relative tolog onD if and only if
f∗ is convex relative tolog onD∗.
Proof. We have f square-convex if and only if
f ′′(x)/f ′(x) ≥ 1/x. Since under our assumptions
f∗ is twice differentiable onD∗, we havef square-convex
if and only if,

f∗′′(φ)
f∗′(φ)

=
1

x(φ)f ′′(x(φ))
≤ 1

f ′(x(φ))
=

1
φ

that is, if and only iff∗ is square-concave onD∗.
Similarly, f is concave relative tolog if and only if

f ′′(x)/f ′(x) ≤ −1/x. But this holds if and only if,

f∗′′(φ)
f∗′(φ)

=
1

x(φ)f ′′(x(φ))
≥ − 1

f ′(x(φ))
= − 1

φ

that is, if and only iff∗ is convex relative to log.

Since the Fenchel-Legendre conjugate is used in the
dual of the MAP optimization problem, we can turn a sub-
gaussian problem into a super-gaussian problem, and then

apply the globally convergent algorithm given here. This
theoretical global convergence is also shown to be useful in
deriving convergent dictionary learning and ICA algorithms
in [10]. The algorithm given is super-linear for log concave
densities, as can be seen by generalizing the convergence
rate results in [1], but it is linear forlog square-concave den-
sities that arelog convex, wither higher asymptotic constant
the closerf is to quadratic.

If we admit line search, we can also use Theorem 2 to
achieve stable quadratic convergence by applying Newton’s
method to the dual. This is the idea proposed in [11] for
discreteLp optimization with1 < p < 2. Newton’s method
is unstable when applied to the primal problem as the sec-
ond derivative of super-gaussian functions is generally un-
bounded at zero. The result given here regarding the con-
jugate operation and “reflection” about quadratic curvature,
yields insight into the effect on curvature of the conjugacy
operation, and may be used to derive a general alternative
theorem concerning the boundedness of the second deriva-
tive of either the primal or the dual.
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