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Asymptotic Newton Method for the ICA

Mixture Model with Adaptive Source Densities
Jason A. Palmer, Ken Kreutz-Delgado, and Scott Makeig

Abstract

We derive an asymptotic Newton algorithm for Quasi Maximum Likelihood estimation of the ICA

mixture model, using the ordinary gradient and Hessian. Theprobabilistic mixture framework can

accommodate non-stationary environments and arbitrary source densities. We prove asymptotic stability

when the source models match the true sources. An application to EEG segmentation is given.

Index Terms

Independent Component Analysis, Bayesian linear model, mixture model, Newton method, EEG

I. INTRODUCTION

The linear model,

x = As

is widely used in statistics (regression, classification, detection), signal processing (source coding, channel

coding, denoising), and machine learning (data mining, etc.). In early statistics research, the linear model

was proposed as Factor Analysis. In general the assumption was made for tractability purposes that

distributions were Gaussian and conjugate distributions.This assumption was natural given the close

relationship between linear dependence and the covariancestructure of a Gaussian distribution.

The Gaussian distribution, however, has a singular disadvantage in terms of the linear model, namely

that in general it leads tonon-identifiabilityof the matrixA. This arises from the fact that a positive

definite matrix can be factored in an infinite number of ways, leading to an infinite number of possibleA
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matrices and Gaussians yielding the same distribution forx. However, while the Gaussian distribution

arises naturally in limits of sums, typical real worlds signals or random variables are generallynot

Gaussian.

It turns out that non-Gaussianity ofs does in fact lead to identifiability ofA, and hence to identifiability

of s given a sample ofx [1], [2]. Thus non-Gaussianity, rather than being a disadvantage, is in fact a

necessity and a great aid to identification.

Here there is a bridge betweenlinear representations, focusing on the matrixA as a basis with given

source density characteristics (such as sparsity), andsource separation, focusing on the estimation of

W = A−1 and s = Wx, where the distributions are in fact assumed to be unknown. Thus it is seen

that the source separation problem can formulated in the linear model framework if the source densities

are modeledquasi-parametrically, and the estimation of the source parameters is viewed aslearning the

source densities.

The latter formulation is referred to asQuasi Maximum Likelihoodestimation [3]. The likelihood cost

function can be interpreted in terms of mutual information via the Kullback-Leibler divergence, and the

estimation can be seen as minimizing the mutual informationor dependence of the estimated sources

over the model source densities and the linear modelW = A−1. The interpretation as minimizing mutual

information arises from the basic assumption on that the components of the sources or coefficientss are

independent random variables.

The main innovations in the modern formulation over the classical linear model are that the densities

of the sources, or coefficients,s, arenon-Gaussian, and their distributions may themselves be estimated.

As the Gaussian linear model was extended to a mixture of Gaussian linear models, so the Independent

Component Analysis (ICA) model was extended to mixtures of bases with independent sources.

Rather than adding basis sets in a mixture model, the matrixA may be taken to be non-squarem×n

with more columns than rows,n > m, in which caseA is said to beovercomplete. In this caseA is

not invertible, and a separate iterative optimization or approximate solution method must be undertaken

to produce an estimate of thes corresponding to a givenx andA. This increase in computational load

can be decisive in large scale sensor array applications.

The linear model often assumes the presence of noise,

x = As + ν

When s is non-Gaussian, the noise case, like the overcomplete case, again leads to indeterminacy of

the sources or coefficientss given x andA. Indeed the noise case can be seen as a special case of the

November 7, 2008 DRAFT



3

overcomplete noiseless case [4].

When the observationsx are of relatively the small dimension, the computational overhead of iterative

MAP estimates of coefficients may be feasible. However, in large dimensional cases, such as that of high-

density EEG [5], [6], where the number of channels (hundreds) with a modest sampling rate (tens of Hz)

makes the determination of the sources a crucial bottleneck. Even direct multiplication of the observed

datax by the inverseW takes non-trivial time. Thus the computational savings gained by assuming

a complete or undercomplete noiseless mixture seem to greatly outweigh the advantage one may incur

from modeling noise. Approximate one-step shrinkage techniques [7] for estimating the sources given

noise can also be considered.

ICA mixture models [8], [9] offer a useful compromise between the efficiency of (conditional) in-

vertibility of the model, and the need for richer representations e.g. in non-stationary environments.

Mixture models provide the benefit of automatically grouping the components into basis sets that are

commonly active. However this is at a cost of efficiency in theestimation in the case of observations

being generated from arbitrarily combined basis vectors, such that a large number of overlapping mixture

bases would be necessary. In this case the overlapping components would be estimated based on only a

fraction of the data that they would be if they were identified, as e.g. in the overcomplete model. In real

data, however, the “largely non-overlapping basis sets” assumption is often approximately valid, yielding

computationally efficient, improved representation ability in the mixture model. Heuristic approaches to

identifying components across models and estimating them accordingly (without loss of efficiency) can

also be considered.

However, while feasible to optimize, the standard gradientand natural or relative gradient [10], [11]

formulations still require many iterations to converge, asthey are ultimately only linearly convergent.

For large scale problems, with non-negligible time per iteration, the time required for convergence may

be prohibitive.

Amari [12] derived a Newton-based method for optimization of a single ICA model in his stability

analysis of the ICA problem. The Newton method differs from the natural gradient, also developed by

Amari [10]. The natural gradient is still only linearly convergent, while Newton method is quadratically

convergent.

In this paper we derive the Newton algorithm for a multiple mixture model [8], [9], [13] and adaptive

mixture sources [14].
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A. Related Work

The Gaussian liner model approach is described [15]–[17]. Non-Gaussian sources in the form of

Gaussian scale mixtures, in particular Student’st distribution, were developed in [18]–[20]. A mixture of

Gaussians source model was employed in [9], [21]–[24]. Similar approaches were proposed in [25], [26].

These models generally include noise and involve computationally intensive optimization algorithms. The

focus in these models is generally on “variational” methodsof automatically determining the number

of mixtures in a mixture model during the optimization procedure. There is also overlap between the

variational technique used in these methods, and the Gaussian scale mixture approach to representing

non-Gaussian densities.

A model similar to that proposed here was presented in [8]. The main distinguishing features of the

proposed model are,

1) Mixtures of Gaussian scale mixture sources provide more flexibility than the Gaussian mixture

models of [9], [21], or fixed density models used in [8]. Accurate source density modeling is

important to take advantage of Newton convergence for the true source model, as well as to

distinguish between partially overlapping ICA models by posterior likelihood.

2) Implementation of the Amari Newton method described in [12] greatly improving the convergence,

particularly in the multiple model case, in which prewhitening is not possible (in general a different

whitening matrix will be required for each unknown model.)

3) The second derivative source density quantities are converted to first derivative quantities using

integration by parts related properties of the score function and Fisher Information Matrix. Again

accurate modeling of the source densities makes this conversion possible, and makes it robust in

the presence of other (interfering) models.

The proposed model is readily extendable to MAP estimation or Variational Bayes or Ensemble

Learning approaches, which put conjugate hyperpriors on the parameters. We are interested primarily

in the large sample case, so we do not pursue these extensionshere.

The probabilistic framework can also be extended to incorporate Markov dependence of state parameters

in the ICA and source mixtures.

We have also extended the model to include mixtures of linearprocesses [13], where blind deconvo-

lution is treated in a manner similar to [27]–[30], as well ascomplex ICA [31] and dependent sources

[31]–[33]. In all of these contexts the adaptive source densities, asymptotic Newton method, and mixture

model features can all be maintained.
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II. ICA M IXTURE MODEL

In the standard linear model, observationsx(t) ∈ R
m, t = 1, . . . , N , are modeled as linear combinations

of a set of basis vectorsA , [a1 · · · an] with random and independent coefficientssi(t), i = 1, . . . , n,

x(t) = As(t)

We assume for simplicity the noiseless case, or that the datahas been pre-processed, e.g.by PCA, filtering,

etc., to remove noise. The data is assumed however to be non-stationary, so that different linear models

may be in effect at different times. Thus for each observation x(t), there is an indexht ∈ {1, . . . ,M}, with

corresponding complete basis setAh with “center” ch, and a random vector of zero mean, independent

sourcess(t) ∼ qh(s), where,

qh(s) =
n
∏

i=1

qhi(si)

such that,

x(t) = Ahs(t) + ch

with h = ht. We shall assume that only one model is active at each time, and that modelh is active with

probability γh. For simplicity we assume temporal independence of the model indicesht, t = 1. . . . , N .

Since the model is conditionally linear, the conditional density of the observations is given by,

p(x(t) |h) = |detWh| qh

(

Wh(x(t) − ch)
)

whereWh , A−1

h .

The sources are taken to be mixtures of (generallynongaussian) Gaussian Scale Mixtures (GSMs), as

in [14],

qhi

(

si(t)
)

=
m
∑

j=1

αhij

√

βhij qhij

(
√

βhij(si(t) − µhij) ; ρhij

)

where eachqhij is a GSM parameterized byρhij.

Thus the density of the observationsX , {x(t)}, t = 1, . . . , N , is given by,

p(X; Θ) =

N
∏

t=1

M
∑

h=1

γhp(x(t) |h),

γh ≥ 0,
∑M

h=1
γh = 1. The parameters to be estimated are,

Θ =
{

Wh, ch, γh, αhij , µhij, βhij , ρhij

}

,

h = 1, . . . ,M, i = 1, . . . , n, andj = 1, . . . ,m.
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A. Invariances in the model

Besides the accepted invariance to permutation of the component indices, invariance or redundancy

in the model also exists in two other respects. The first concerns the model centers,ch, and the source

density location parametersµhij. Specifically, we havep(X; Θ) = p(X; Θ′), Θ = {. . . , ch, µhij, . . .},

Θ′ = {. . . , c′h, µ′

hij, . . .}, if

c′h = ch + ∆ch, µ′

hij = µhij − [Wh∆ch]i, j = 1, . . . ,m

for any ∆ch. Puttingc′h = E{x(t) |h}, we make the sourcess(t) zero mean given the model. The zero

mean assumption is used in the calculation of the expected Hessian for the Newton algorithm.

There is also scale redundancy in the row norms ofWh and the scale parameters of the source densities.

Specifically,p(X; Θ) = p(X; Θ′), whereΘ = {Wh, µhij, βhij , . . .}, Θ′ = {W′

h, µ′

hij, β
′

hij , . . .}, if for

any τhi > 0,

[W′

h]i: = [Wh]i:/τhi,

µ′

hij = µhij/τhi, β′

hij = βhijτ
2
hi, j = 1, . . . ,m

where [Wh]i: is the ith row of Wh. We use this redundancy to enforce at each iteration that therows

of Wh are unit norm by puttingτhi = ‖[Wh]i:‖.

These “reparameterizations” constitute the only updates for the model centersch. The centers are

redundant parameters given the source means, and are used only to maintain zero posterior source mean

given the model.

III. M AXIMUM L IKELIHOOD

In this section we assume that the model is given and suppressthe subscripth. Given i.i.d. data

X = {x1, . . . ,xN}, we consider the ML estimate ofW = A−1. For the density ofX, we have,

p(X) =

N
∏

t=1

|detW| ps(Wxt)

Let yt = Wxt be the estimate of the sourcesst, and letqi(yi) be the density model for theith source,

with q(yt) =
∏

i qi(yit). We define,

fi(yit) , − log qi(yit)

andf(yt) ,
∑

i fi(yit). For the negative log likelihood of the data then (which is tobe minimized), we

have,

L(W) =

N
∑

t=1

− log |detW| + f(yt) (1)
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The gradient of this function is proportional to,

∇L(W) ∝ −W−T +
1

N

N
∑

t=1

∇f(yt)x
T
t (2)

Note that if we multiply (2) byWT W on the right, we get,

∆W =

(

I −
1

N

N
∑

t=1

gty
T
t

)

W (3)

wheregt , ∇f(yt). This transformation is in fact a positive definite linear transformation of the matrix

gradient. Specifically, using the standard matrix inner product inR
n×n, 〈A,B〉 = tr(ABT ), we have for

nonzeroV,
〈

V,VWT W
〉

=
〈

VWT ,VWT
〉

> 0 (4)

whenW is full rank. The direction (3) is known as the “natural gradient” [10].

A. Hessian

Denote the gradient (2) byG with elementsgij , each a function ofW. Taking the derivative of (2),

we find,
∂gij

∂wkl

= [W−1]li[W
−1]jk +

〈

f ′′

i

(

[Wxt]k
)

xjtxltδik

〉

N

whereδik is the Kronecker delta symbol, and
〈

·
〉

N
denotes the empirical average1

N

∑

·. To see how

this linear Hessian operator transforms an argumentB, let C = H(B) be the transformed matrix. Then

we calculate,

cij =
∑

k

∑

l

[W−1]li[W
−1]jkbkl +

〈

f ′′

i (yit)xjt

∑

l

bilxlt

〉

N

The first term ofcij can be written,

∑

l

[W−1]li[W
−1B]jl =

∑

l

[W−T ]il[B
T W−T ]lj

= [W−TBT W−T ]ij

Writing the second term in matrix form as well, we have for thelinear transformationC = H(B),

C = W−TBT W−T +
〈

diag(f ′′(yt))Bxtx
T
t

〉

N
(5)

where diag(f ′′(yt)) is the diagonal matrix with diagonal elementsf ′′

i (yit). Assuming that the model

holds, the source estimates at the optimalW will be independent. We also assume that the mean has

been removed, so that the sources are zero mean, as noted in§II-A.
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It will be easier to calculate the asymptotic value of the Hessian if we rewrite the transformation (5)

in terms of the source estimatesy since the sources are assumed to be independent and zero mean. At

the optimum, we may assume that the source density modelsqi(yi) are equivalent to the true source

densitiespi(si). We first write,

C = (BW−1)T W−T +
〈

diag
(

f ′′(yt)
)

BW−1yty
T
t W−T

〉

N

Now if we defineC̃ , CWT andB̃ , BW−1, then we have,

C̃ = B̃T +
〈

diag
(

f ′′(yt)
)

B̃yty
T
t

〉

N
(6)

Writing this equation in component form and lettingN go to infinity we find for the diagonal elements,

[C̃]ii = [B̃]ii + E
{

f ′′

i (yi)
∑

k[B̃]ikykyi

}

= [B̃]ii(1 + ηi) (7)

where we defineηi , E{f ′′(yi)y
2
i }. The cross terms drop out since the expected value off ′′(yi)yiyk is

zero fork 6= i by the independence and zero mean assumption on the sources.Now we note [11], [12]

that the off-diagonal elements of the equation (6) can be paired as follows,

[C̃]ij = [B̃]ji + E
{

f ′′

i (yi)
∑

k[B̃]ikykyj

}

= [B̃]ji + κiσ
2
j [B̃]ij

[C̃]ji = [B̃]ij + E
{

f ′′

j (yj)
∑

k[B̃]jkykyi

}

= [B̃]ij + κjσ
2
i [B̃]ji

where we defineκi , E{f ′′

i (yi)} andσ2
i , E{y2

i }. Again the cross terms drop out due to the expectation

of independent zero mean random variables. Putting these equations in matrix form, we have,




[C̃]ij

[C̃]ji



 =





κiσ
2
j 1

1 κjσ
2
i









[B̃]ij

[B̃]ji



 (8)

If we denote the linear transformation defined by equations (7) and (8) byC̃ = H̃(B̃), then we have,

C = H(B) = H̃
(

BW−1
)

W−T (9)

Thus by an argument similar to (4), we see thatH is asymptotically positive definite if and only if̃H is

asymptotically positive definite andW is full rank.

The conditions for positive definiteness of̃H can be found by inspection of equations (7) and (8).

With the definitions,

ηi , E{y2
i f

′′

i (yi)}, κi , E{f ′′

i (yi)}, σ2
i , E{y2

i }

the conditions can be stated [12] as,

1) 1 + ηi > 0, ∀ i
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2) κi > 0, ∀ i, and,

3) κiκjσ
2
i σ

2
j − 1 > 0, ∀ i 6= j

B. Asymptotic stability

Using integration by parts, it can be shown that the stability conditions are always satisfied when

f(y) = − log p(y), i.e.q(y) matches the true source densityp(y). Specifically, we have the following.

Theorem 1:If fi(yi) , − log qi(yi) = − log pi(yi), with
∫

pi(y) = 1, i = 1, . . . , n, i.e. the source

density models match the true source densities, andpi(y) is twice differentiable withE{f ′′

i (y)} and

E{y2
i } finite, i = 1, . . . , n, and at most one source is Gaussian, then the stability conditions hold.

Proof: For the first condition, we use integration by parts to evaluate,

E{y2f ′′(y)} =

∫

∞

−∞

y2f ′′(y)p(y)dy

with u = y2p(y) anddv = f ′′(y)dy. Using the fact thatv = f ′(y) = −p′(y)/p(y), we get

−y2p′(y)
∣

∣

∞

−∞
−

∫

∞

−∞

f ′(y)
(

2y − y2f ′(y)
)

p(y) dy (10)

The first term in (10) is zero ifp′(y) = o(1/y2) as y → ±∞. This must be the case for integrable

p(y), since otherwise we would havep′(y) → C/y2, andp(y) = O(1/y) and non-integrable. Then, since
∫

p(y)dy = 1, we have,

1 + E{y2f ′′(y)} =

∫

∞

−∞

(

y2f ′(y)2 − 2yf ′(y) + 1
)

p(y)dy

= E
{(

yf ′(y) − 1
)2}

≥ 0

where equality holds only ifp(y) = 1/y, so strict inequality must hold for integrablep(y).

For the second condition,

E{f ′′(y)} > 0

using integration by parts withu = p(y), dv = f ′′(y)dy, and the fact thatp′(y) must tend to 0 as

y → ±∞ for integrablep(y), we get,

E{f ′′(y)} =

∫

∞

−∞

f ′(y)2 p(y)dy = E
{

f ′(y)2
}

> 0

Finally, for the third condition, we have,

E{y2}E{f ′′(y)} = E
{

y2
}

E
{

f ′(y)2
}

≥
(

E{yf ′(y)}
)2

= 1

by the Cauchy Schwartz inequality, with equality only forf ′(y) ∝ y, i.e. p(y) Gaussian. Thus,

E{y2
i }E{f ′′

i (yi)}E{y2
j }E{f ′′

j (yj)} > 1

whenever at least one ofyi andyj is nongaussian.
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C. Newton method

The inverse of the Hessian operator, from (9), will be given by,

B = H−1(C) = H̃−1
(

CWT
)

W (11)

The calculation ofB̃ = H̃−1(C̃) can again be carried out by inspection of (7) and (8),

[B̃]ii =
[C̃]ii
1 + ηi

, i = 1, . . . , n (12)

[B̃]ij =
κjσ

2
i [C̃]ij − [C̃]ji

κiκjσ
2
i σ

2
j − 1

, ∀ i 6= j (13)

The Newton direction is given by takingC = −G, the gradient (2),

∆W = H̃−1
(

− GWT
)

W (14)

Let,

Φ ,
1

N

N
∑

t=1

gty
T
t (15)

We have−GWT = I − Φ. If we let B̃ = H̃−1(−GWT ), then

b̃ii =
1 − [Φ]ii
1 + ηi

, i = 1, . . . , n (16)

b̃ij =
[Φ]ji − κjσ

2
i [Φ]ij

κiκjσ2
i σ

2
j − 1

, ∀ i 6= j (17)

Then

∆W = B̃W (18)

IV. EM PARAMETER UPDATES

We defineht to be the random variable denoting the index of the model chosen at timet, producing

the observationx(t), and define the random variablesvht,

vht ,











1, ht = h

0, otherwise

We definejhit to be the random variable indicating the source density mixture component index that is

chosen at timet (independently ofht) for the ith source of thehth model, and we define the random

variablesuhijt by,

uhijt ,











1, jhit = j

0, otherwise
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We employ the EM algorithm by writing the density ofX as a marginal integral over “complete” data,

which includesU andV,

p(X; Θ) =
∑

U,V

N
∏

t=1

M
∏

h=1

γvht

h |detWh|
vht

n
∏

i=1

m
∏

j=1

Q
uhijtvht

hijt

where we make the definitions,

bht , Wh(xt − ch)

yhijt ,
√

βhij

(

[bht]i − µhij

)

Qhijt , αhij

√

βhij qhij

(

yhijt

)

The function to be minimized in the EM algorithm, sometimes referred to as the variational free energy,

is,

F l(Θ) =

N
∑

t=1

M
∑

h=1

[

v̂l
ht

(

−log γh−log |detWh|
)

+

n
∑

i=1

m
∑

j=1

ẑl
hijt

(

−log αhij−
1

2
log βhij+fhij(yhijt)

)

]

wherefhij , − log qhij. The v̂l
ht , E{vht|xt; Θ

l} are given by,

v̂l
ht = P

[

vht = 1|xt; Θ
l
]

=
Ll

ht
∑M

h′=1
Ll

h′t

(19)

where we define,

Ll
ht , γl

h

∣

∣detWl
h

∣

∣

n
∏

i=1

m
∑

j=1

Ql
hijt (20)

For the ẑl
hijt , E[uhijtvht|xt; Θ

l], we have,

ẑl
hijt = P

[

vht =1, uhijt =1 |xt; Θ
l
]

= P
[

uhijt =1 | vht =1,xt; Θ
l
]

P
[

vht =1 |xt; Θ
l
]

= ûl
hijtv̂

l
ht (21)

whereûl
hijt , E

{

uhijt|vht =1,xk, ; Θ
l
}

,

ûl
hijt = P

[

uhijt = 1|xt, vht = 1;Θl
]

=
Ql

hijt
∑m

j′=1
Ql

hij′t

(22)

Minimizing F l over γh andαhij subject toγh, αhij ≥ 0,
∑

h γh = 1 and
∑

j αhij = 1, we get,

γl+1

h =
1

N

N
∑

t=1

v̂l
ht , αl+1

hij =

∑N
t=1

ẑl
hijt

∑N
t=1

v̂l
ht

(23)
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We make the following definitions, in which theGt are arbitrary functions ofxt,

Ev{Gt |h} ,

∑

t v̂l
htGt

∑

t v̂l
ht

, Ez{Gt |h, j} ,

∑

t ẑl
hijtGt

∑

t ẑl
hijt

We can then write the function to be minimized over the remaining parameters as,

F l(Θ) ∝

M
∑

h=1

γl+1

h

[

− log |detWh| +

n
∑

i=1

m
∑

j=1

αl+1

hij

(

− 1

2
log βhij + Ez

{

fhij(yhijt) |h, j
}

)

]

A. ICA mixture model Newton updates

SinceF l is an additive function of theWh, the Newton updates can be considered separately. The

cost function forWh is,

− log |detWh| +
n
∑

i=1

m
∑

j=1

Ev

{

ûl
hijtfhij(yhijt) |h

}

The gradient of this function is,

−W−T
h + Ev

{

ght(xt − ch)T |h
}

(24)

whereght is defined by,

[ght]i ,

m
∑

j=1

ûl
hijt

√

βhij f ′

hij

(

yhijt

)

(25)

Denote the matrix gradient (24) byGh. Taking the derivative of[Gh]iν with respect to[Wh]kλ, we

get,

∂ [Gh]iν
∂ [Wh]kλ

=
[

W−1

h

]

λi

[

W−1

h

]

νk
+ δik

m
∑

j=1

βhijEv

{

ûl
hijtf

′′

hij(yhijt)(xνt − [ch]ν)(xλt − [ch]λ)
∣

∣ h
}

For the linear transformationC = H(B), we have,

C = Wh
−TBT Wh

−T + Ev

{

Dl
htB(xt − ch)(xt − ch)T

∣

∣ h
}

(26)

whereDht is the diagonal matrix with diagonal elements

[

Dht

]

ii
=

m
∑

j=1

ûl
hijtβhijf

′′

hij

(

yhijt

)

(27)

To simplify the calculation of the asymptotic value of the Hessian, we rewrite the second term on the

right-hand side of (26) as,

Ev

{

DhtBW−1

h bhtb
T
htW

−T
h

∣

∣ h
}

If we defineC̃ , CWT
h andB̃ , BW−1

h , then we have,

C̃ = B̃T + Ev

{

DhtB̃bhtb
T
ht

∣

∣ h
}

(28)
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Writing the ith row of the second term in (28) as,
m
∑

j=1

βhijEv

{

ûl
hijtf

′′

hij

(

yhijt

)

[B̃bht]i b
T
ht

∣

∣ h
}

(29)

Sincebht is zero mean conditioned on the model, the Hessian matrix reduces to a2× 2 block diagonal

form as in the single model case. In the multiple model case weget,

ηhi ,

m
∑

j=1

αl+1

hij βhijEz

{

f ′′

hij(yhijt)[bht]
2
i

∣

∣ h, j
}

κhi ,

m
∑

j=1

αl+1

hij βhijEz

{

f ′′

hij(yhijt)
∣

∣ h, j
}

σ2
hi , Ev

{

[bht]
2
i |h

}

If we define,

ηhij , Ez

{

f ′′

hij(yhijt)y
2
hij |h, j

}

κhij , Ez

{

f ′′

hij(yhijt) |h, j
}

or, using integration by parts to rewrite the integrals,

λhij , 1 + ηhij = Ez

{(

f ′

hij(yhijt)yhijt − 1
)2

|h, j
}

κhij = Ez

{

f ′

hij(yhijt)
2 |h, j

}

then the expressions can be simplified to the following,

λhi =

m
∑

j=1

αl+1

hij

(

λhij + βhijκhijµ
2
hij

)

κhi =

m
∑

j=1

αl+1

hij βhijκhij

σ2
hi = Ev

{

[bht]
2
i |h

}

Define,

Φh , Ev

{

ghtb
T
ht

∣

∣h
}

(30)

We have−GhW
T
h = I − Φh. If we let,

B̃ = H̃−1
(

− GhW
T
h

)

= H̃−1
(

I − Φh

)

then we have,

[B̃]ii =
1 − [Φh]ii

λhi

, i = 1, . . . , n (31)

[B̃]ij =
[Φh]ji − κhjσ

2
hi[Φh]ij

κhiκhjσ
2
hiσ

2
hj − 1

, ∀ i 6= j (32)

November 7, 2008 DRAFT



14

Then

∆Wh = B̃Wh (33)

B. Density parameter EM updates

The location parameters are updated by (see [14]),

µl+1

hij = µl
hij +

1
√

β l
hij

Ez

{

f ′

hij(yhijt)
∣

∣ h, j
}

Ez

{

f ′

hij(yhijt)
/

yhijt

∣

∣h, j
} (34)

The scale parameters are updated by,

β l+1

hij = β l
hij

/

Ez

{

f ′

hij(yhijt)yhijt

∣

∣h, j
}

(35)

The Generalized Gaussian shape parameters are updated by,

∆ρhij = 1 − ρl
hij

Ez

{

|yhijt|
ρl

hij log |yhijt|
ρl

hij

∣

∣h, j
}

Ψ
(

1 + 1

ρl
hij

) (36)

The log likelihood ofΘl givenX is calculated as,

L
(

Θl|X
)

=
N
∑

t=1

log

(

M
∑

h=1

Ll
ht

)

(37)

V. EXPERIMENTS

In Figure 1, we plot the ratio
∥

∥Wl+1 − W∗
∥

∥ /
∥

∥Wl − W∗
∥

∥, versus iterationl, whereW∗ is the

optimum andWl is the estimate at iterationl. For linearly convergent algorithms, this ratio tends to a

constant [34]. For superlinear algorithms, this ratio tends to zero, and the order of convergenceq is the

power of the denominator which yields a finite nonzero limit for the ratio
∥

∥Wl+1 − W∗
∥

∥ /
∥

∥Wl − W∗
∥

∥

q
.

For Newton’s method,q = 2.

We also present an example of segmentation using the mixturemodel. Figure 3 shows the result of

segmenting an EEG experiment according to the most likely model given the data (MAP). The trials

are stacked vertically with time on the horizontal axis, time locked to the feedback att = 175. Time

points are plotted in the color of the model most likely for that point. Muscle activity (red and light

blue spanning lines) as well as post-feedback theta activity (yellow) are segmented. There appears to be

consistency in the3 and4 model segmentations, with increased resolution in the4 model segmentation.
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Fig. 1. Newton convergence rate versus gradient and naturalgradient in a simulation with a10 × 10 mixing matrix with

Laplacian sources. Ordinary gradient (top line) and natural gradient (middle line) are linearly convergent with high asymptotic

rate, while Newton method (bottom line) is tending toward superlinearity.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Fig. 2. Toy experiment with three models. True model bases are shown in red, and learned bases are in yellow, centered at the

learned centers. Three Generalized Gaussian source mixture densities are used with fixed shape parameters ofρ = 1.5 (other

choices also work, as does adapting the shape parameter.) The true sources are Laplacian and Generalized Gaussian with shape

parameterρ = 5. The adaptive sources are able to separate this combinationof sub- and super-gaussian sources. The Newton

method greatly speeds convergence, allowing the step size to tend to 1, whereas the natural gradient requires reductionof the

step size near the optimum, inducing very slow linear convergence.
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(a) (b)

Fig. 3. Segmentation of EEG trials: (a) three models (b) fourmodels. The subject is shown a sequence of letters and

responds whether current letter is the same as letter beforelast. Trials (letter presentation, response, feedback) are time-locked

(synchronized): att = 175 there is feedback as to whether the response was correct or incorrect.
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