Asymptotic Newton Method for the ICA

Mixture Model with Adaptive Source Densities

Jason A. Palmer, Ken Kreutz-Delgado, and Scott Makeig

Abstract

We derive an asymptotic Newton algorithm for Quasi Maximuikelihood estimation of the ICA
mixture model, using the ordinary gradient and Hessian. phababilistic mixture framework can
accommodate non-stationary environments and arbitrargceadensities. We prove asymptotic stability

when the source models match the true sources. An applicati@EG segmentation is given.
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. INTRODUCTION

The linear model,

x = As

is widely used in statistics (regression, classificatiatedtion), signal processing (source coding, channel
coding, denoising), and machine learning (data mining).dit early statistics research, the linear model
was proposed as Factor Analysis. In general the assumptanmade for tractability purposes that
distributions were Gaussian and conjugate distributidrigs assumption was natural given the close
relationship between linear dependence and the covarstneeture of a Gaussian distribution.

The Gaussian distribution, however, has a singular dis#tdge in terms of the linear model, namely
that in general it leads toon-identifiability of the matrix A. This arises from the fact that a positive

definite matrix can be factored in an infinite number of wagading to an infinite number of posside
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matrices and Gaussianyielding the same distribution fax. However, while the Gaussian distribution
arises naturally in limits of sums, typical real woridsignals or random variables are generailyt
Gaussian.

It turns out that non-Gaussianity sfdoes in fact lead to identifiability oA, and hence to identifiability
of s given a sample ok [1], [2]. Thus non-Gaussianity, rather than being a disathge, is in fact a
necessity and a great aid to identification.

Here there is a bridge betweénear representationdocusing on the matriA as a basis with given
source density characteristics (such as sparsity),saace separationfocusing on the estimation of
W = Al ands = Wx, where the distributions are in fact assumed to be unknownsTt is seen
that the source separation problem can formulated in tleatimodel framework if the source densities
are modeledjuasi-parametricallyand the estimation of the source parameters is viewdeaasing the
source densities

The latter formulation is referred to &uasi Maximum Likelihoo@stimation [3]. The likelihood cost
function can be interpreted in terms of mutual informatioa the Kullback-Leibler divergence, and the
estimation can be seen as minimizing the mutual informationiependence of the estimated sources
over the model source densities and the linear m8dek A~!. The interpretation as minimizing mutual
information arises from the basic assumption on that thepmorants of the sources or coefficientare
independent random variables.

The main innovations in the modern formulation over the sitzed linear model are that the densities
of the sources, or coefficients, arenon-Gaussian, and their distributions may themselves be atdimn

As the Gaussian linear model was extended to a mixture of €kuinear models, so the Independent
Component Analysis (ICA) model was extended to mixturesadds with independent sources.

Rather than adding basis sets in a mixture model, the matniray be taken to be non-squarex n
with more columns than rows; > m, in which caseA is said to beovercompleteln this caseA is
not invertible, and a separate iterative optimization goragimate solution method must be undertaken
to produce an estimate of thecorresponding to a giver and A. This increase in computational load
can be decisive in large scale sensor array applications.

The linear model often assumes the presence of noise,
x=As+v
When s is non-Gaussian, the noise case, like the overcomplete egsin leads to indeterminacy of

the sources or coefficientsgivenx and A. Indeed the noise case can be seen as a special case of the
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overcomplete noiseless case [4].

When the observations are of relatively the small dimension, the computationarbead of iterative
MAP estimates of coefficients may be feasible. However, igdalimensional cases, such as that of high-
density EEG [5], [6], where the number of channels (hundradih a modest sampling rate (tens of Hz)
makes the determination of the sources a crucial bottlertee&n direct multiplication of the observed
datax by the inverseW takes non-trivial time. Thus the computational savingmediby assuming
a complete or undercomplete noiseless mixture seem tolygm@ativeigh the advantage one may incur
from modeling noise. Approximate one-step shrinkage teghas [7] for estimating the sources given
noise can also be considered.

ICA mixture models [8], [9] offer a useful compromise betwethe efficiency of (conditional) in-
vertibility of the model, and the need for richer repres@ates e.g. in non-stationary environments.
Mixture models provide the benefit of automatically grogpilme components into basis sets that are
commonly active. However this is at a cost of efficiency in #simation in the case of observations
being generated from arbitrarily combined basis vectarshdhat a large number of overlapping mixture
bases would be necessary. In this case the overlapping c@nfgowould be estimated based on only a
fraction of the data that they would be if they were identifiad e.g. in the overcomplete model. In real
data, however, the “largely non-overlapping basis setstiaption is often approximately valid, yielding
computationally efficient, improved representation &piln the mixture model. Heuristic approaches to
identifying components across models and estimating thecordingly (without loss of efficiency) can
also be considered.

However, while feasible to optimize, the standard gradamd natural or relative gradient [10], [11]
formulations still require many iterations to converge,tlagy are ultimately only linearly convergent.
For large scale problems, with non-negligible time peraitiein, the time required for convergence may
be prohibitive.

Amari [12] derived a Newton-based method for optimizatidnacsingle ICA model in his stability
analysis of the ICA problem. The Newton method differs frdm natural gradient also developed by
Amari [10]. The natural gradient is still only linearly cagngent, while Newton method is quadratically
convergent.

In this paper we derive the Newton algorithm for a multipleximie model [8], [9], [13] and adaptive

mixture sources [14].
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A. Related Work

The Gaussian liner model approach is described [15]-[16p-8aussian sources in the form of
Gaussian scale mixtures, in particular Studentistribution, were developed in [18]-[20]. A mixture of
Gaussians source model was employed in [9], [21]-[24]. I@imgsipproaches were proposed in [25], [26].
These models generally include noise and involve commutally intensive optimization algorithms. The
focus in these models is generally on “variational” methoflautomatically determining the number
of mixtures in a mixture model during the optimization prdaee. There is also overlap between the
variational technique used in these methods, and the Geussale mixture approach to representing
non-Gaussian densities.

A model similar to that proposed here was presented in [8¢ fiain distinguishing features of the

proposed model are,

1) Mixtures of Gaussian scale mixture sources provide manahbility than the Gaussian mixture
models of [9], [21], or fixed density models used in [8]. Acatgr source density modeling is
important to take advantage of Newton convergence for the source model, as well as to
distinguish between partially overlapping ICA models bystewior likelihood.

2) Implementation of the Amari Newton method described @] [dreatly improving the convergence,
particularly in the multiple model case, in which prewhitenis not possible (in general a different
whitening matrix will be required for each unknown model.)

3) The second derivative source density quantities areertew to first derivative quantities using
integration by parts related properties of the score fonctind Fisher Information Matrix. Again
accurate modeling of the source densities makes this cgiovepossible, and makes it robust in

the presence of other (interfering) models.

The proposed model is readily extendable to MAP estimatiorVariational Bayes or Ensemble
Learning approaches, which put conjugate hyperpriors enpdrameters. We are interested primarily
in the large sample case, so we do not pursue these extem&ons

The probabilistic framework can also be extended to incagaViarkov dependence of state parameters
in the ICA and source mixtures.

We have also extended the model to include mixtures of lipeacesses [13], where blind deconvo-
lution is treated in a manner similar to [27]-[30], as wellasnplex ICA [31] and dependent sources
[31]-[33]. In all of these contexts the adaptive source diss asymptotic Newton method, and mixture

model features can all be maintained.
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1. ICA MIXTURE MODEL

In the standard linear model, observatiernis) € R™, ¢t =1,..., N, are modeled as linear combinations
of a set of basis vectorA = [a; - - - a,] with random and independent coefficientét), i = 1,...,n,
x(t) = As(t)

We assume for simplicity the noiseless case, or that thetdeté®een pre-processed, e.g.by PCA, filtering,
etc., to remove noise. The data is assumed however to betationsry, so that different linear models
may be in effect at different times. Thus for each obserwati@), there is an indek; € {1,..., M}, with
corresponding complete basis et with “center” ¢;,, and a random vector of zero mean, independent

sourcess(t) ~ qn(s), where,

qn(s) = Hth(Si)

i=1

such that,

x(t) = Aps(t) + ¢y,
with h = h;. We shall assume that only one model is active at each tintethat model is active with
probability v,. For simplicity we assume temporal independence of the iad&Eesh,, t =1....,N.

Since the model is conditionally linear, the conditionahsigy of the observations is given by,
p(x(t)| h) = | det Wy | gn,(Wh(x(t) — cp))

whereW,, £ A1,
The sources are taken to be mixtures of (generadiggaussian) Gaussian Scale Mixtures (GSMs), as
in [14],

ani(si(t)) = Z hij\/ Bhij Qhij (\/Brij (si(t) — 1hiz) 5 phij)
=

where eachy,;; is a GSM parameterized by,;;.

Thus the density of the observatioks= {x(t)}, t = 1,..., N, is given by,

N M
p(X;0) = [[D_ mp(x()| h),

t=1h=1

>0, S3L 4, = 1. The parameters to be estimated are,

O = {Wh, Ch, Vs Qhijs hijs Bhij» Phij }»

h=1,...,.M,i=1,...,n,andj =1,...,m.
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A. Invariances in the model

Besides the accepted invariance to permutation of the coergadndices, invariance or redundancy
in the model also exists in two other respects. The first corscthe model centers,,, and the source
density location parameteys,;;. Specifically, we have(X;0) = p(X;0’), © = {...,ch, thij,-- -}

O ={....ch M-} O
cj, = cp + Acy, ,uﬁu-j = pnij — [WrAcpli, j=1,...,m

for any Acy,. Puttingc), = E{x(t) | h}, we make the sourcest) zero mean given the model. The zero
mean assumption is used in the calculation of the expectadiéte for the Newton algorithm.

There is also scale redundancy in the row norm®\of and the scale parameters of the source densities.
Specifically,p(X; ©) = p(X;0'), where© = {Wy, 1isij, Brij,-- -}, ©' = {W;L,#;”j,ﬁ;nj,...}, if for
any ; > 0,

(Wil = [Whli:/Thi,
Hhi; = Phij/This Bhij = BrijThis §=1,....,m
where[W}];. is theith row of W;,. We use this redundancy to enforce at each iteration thataive
of Wy, are unit norm by putting; = ||[Wx]: |-
These “reparameterizations” constitute the only updatesttie model centers;. The centers are

redundant parameters given the source means, and are Ugdd amaintain zero posterior source mean

given the model.

. M AXIMUM LIKELIHOOD

In this section we assume that the model is given and supphessubscripth. Given i.i.d. data

X = {x1,...,Xy}, we consider the ML estimate & = A~!. For the density ofX, we have,
N

p(X) = [ ] |detW|ps(Wx,)
t=1

Lety;, = Wx, be the estimate of the sourcgs and letg;(y;) be the density model for thé&h source,
with q(y:) = 1, ¢i(vit). We define,

fiyir) = —1og ¢i(yir)
and f(y:) £ 3, fi(yit). For the negative log likelihood of the data then (which iseéminimized), we

have,
N

L(W) = > —log|det W| + f(y:) (1)
t=1
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The gradient of this function is proportional to,
| XN
W w-T Z T
VL( ) xX — + N — Vf(yt)xt (2)

Note that if we multiply (2) byW”W on the right, we get,

N
1 T
AWz(I—N;gtyt>W (3)

whereg; £ Vf(y;). This transformation is in fact a positive definite linearsformation of the matrix
gradient. Specifically, using the standard matrix innedpat inR™*", (A, B) = tr(AB”), we have for
nonzerov,

(V,.VW'W) = (VW' VWT) >0 (4)

whenW is full rank. The direction (3) is known as the “natural gexti’ [10].

A. Hessian

Denote the gradient (2) b with elementsy;;, each a function oW. Taking the derivative of (2),

we find,
agij

awkl B [W_l]li[w_l]jk + <fi”([th]k)wjtwlt5ik>]v

whered;, is the Kronecker delta symbol, ard ), denotes the empirical average)_ . To see how
this linear Hessian operator transforms an arguni@net C = H(B) be the transformed matrix. Then

we calculate,
Cij = Z Z[W_l]li[w_l]jkbkl + <fi”(yz't)96jt Z bizwlt>N
koo !
The first term ofc;; can be written,

> W WB) = W B W,
! !
= [WTB'"W™;
Writing the second term in matrix form as well, we have for tinear transformatiorC = H(B),

c=wTIB'WT <diag( F(y¢))BxexF >N (5)

where diagf”(y:)) is the diagonal matrix with diagonal element(y;:). Assuming that the model
holds, the source estimates at the optirWél will be independent. We also assume that the mean has

been removed, so that the sources are zero mean, as ndilehin
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It will be easier to calculate the asymptotic value of the s$ilws if we rewrite the transformation (5)
in terms of the source estimatgssince the sources are assumed to be independent and zero Atean
the optimum, we may assume that the source density maglgls are equivalent to the true source

densitiesp;(s;). We first write,
C = (BW)TW T+ (diag(f"(y)) BW lyy/ WT)
Now if we defineC 2 CW7T andB £ BW1, then we have,
C = BT + (diag(f" (y:)) By ), (6)
Writing this equation in component form and lettidg go to infinity we find for the diagonal elements,
[Clii = Blis + E{f (yi) X [Blinyryi } = Bl (1 +m:) (7)
where we define; = E{f"(y:)y?}. The cross terms drop out since the expected valug’@f; )y vy is
zero fork # 1 by the independence and zero mean assumption on the soNm&sve note [11], [12]
that the off-diagonal elements of the equation (6) can beegaas follows,
[é]ij = Blyi + E{f{'(y:)>_Blixwry; } = [B]ji + HiUJZ'[B]ij

[C,; = Blij + B{ ] (y;) X Bljruryi } = Blij + rj07 [Blji

where we define; = E{f/(y;)} ando? £ E{y?}. Again the cross terms drop out due to the expectation

of independent zero mean random variables. Putting thasatieqs in matrix form, we have,

[?]z‘y} _ {ﬁﬂj 1 } [B]m} ®)
[Clji 1 wjof

Bl
If we denote the linear transformation defined by equatighsagd (8) byC = H(B), then we have,

C = HB) = HBW HYw 7 (9)

Thus by an argument similar to (4), we see thats asymptotically positive definite if and only # is
asymptotically positive definite anW is full rank.
The conditions for positive definiteness #f can be found by inspection of equations (7) and (8).

With the definitions,

m 2 B ()}, w2 E{f{ ()}, of £ E{yi}
the conditions can be stated [12] as,

1) 1+mn >0, Vi
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2) k; >0, Vi, and,
3) m,m]aa—1>0 Vi#j

B. Asymptotic stability

Using integration by parts, it can be shown that the stgbdiinditions are always satisfied when
fly) = —logp(y), i.e.q(y) matches the true source densitfy). Specifically, we have the following.

Theorem L:If f;(y;) = —logq;(y;) = —logp;i(y;), with [pi(y) = 1,7 =1,...,n, ie. the source
density models match the true source densities, a(¢) is twice differentiable withE{f/(y)} and
E{yf} finite, i = 1,...,n, and at most one source is Gaussian, then the stability tomslihold.

Proof: For the first condition, we use integration by parts to eviaua
E{y2f”(y)}=/ v* " (y)p(y) dy
with u = y?p(y) anddv = f”(y)dy. Using the fact that = f'(y) = —p'(y)/p(y), we get

P /f (2 — v/ () ply) dy (10)

The first term in (10) is zero if/(y) = o(1/y?) asy — +oo. This must be the case for integrable
p(y), since otherwise we would hayéy) — C/y?, andp(y) = O(1/y) and non-integrable. Then, since
[ p(y)dy = 1, we have,

1+ E{y*f"(y)} = /_Oo (V*f'()* —2yf () + 1) p(y)dy
= B{u/' -1} > 0

where equality holds only if(y) = 1/y, so strict inequality must hold for integrabiéy).

For the second condition,
E{f"(y)} >0

using integration by parts witk = p(y), dv = f”(y)dy, and the fact thap’(y) must tend to 0 as

y — too for integrablep(y), we get,

E{f"(y) / FW)?ply)dy = E{f'(y)*} >0

Finally, for the third condition, we have,

E{*YE{f"(v)} = E{*}E{f'(v)*} > (E{uf' (v)})* =1

by the Cauchy Schwartz inequality, with equality only §(y) v, i.e. p(y) Gaussian. Thus,

E{y?YE{f (i) Y EAw; YEAS (y5)} > 1

whenever at least one @f andy; is nongaussian. [ |
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C. Newton method

The inverse of the Hessian operator, from (9), will be givgn b
B = H!(C) = H'(CW')W (11)

The calculation ofB = H~'(C) can again be carried out by inspection of (7) and (8),

B], = 1[(1]’;;, i=1,....n (12)
e 02161 — 1CT .
[B]w _ 30 [C];]2 [C]]z’ \V/Z#j (13)

KikjO; 05 — 1

The Newton direction is given by takinG = —G, the gradient (2),
AW =H (- GWT)W (14)

Let,

N
1
@2 > iyt (15)
t=1

We have—GWT =1 — ®. If we let B = H~}(—GWT), then

~ 1—[®)y .
by = ——2% i=1,..., 16
14+ n; ! " (16)

Bij _ [(I,]JZ — ’fjo'?[(I’]ij’ Vi 7& j (17)

/-imjaizajz —1

Then
AW = BW (18)

IV. EM PARAMETER UPDATES

We defineh, to be the random variable denoting the index of the model@had timet, producing
the observatiorx(t), and define the random variables,
1, hy=h

A
Vht =
0, otherwise

We definej,;; to be the random variable indicating the source density ureéxtcomponent index that is

chosen at time (independently ofy;) for the ith source of thehth model, and we define the random

variablesuy;;; by,

A 17 jhit = j

Uhijt =
0, otherwise
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We employ the EM algorithm by writing the density & as a marginal integral over “complete” data,

which includesU andV,

N M n m
[T [T wi T T 2™

U,Vit=1h=

where we make the definitions,

A
by =
N
Yhijt =
A
Qnijt =

i=1j=1

Wi(x; —cp)
v/ Brij ([Preli — tnis)
Ahij\/ ﬁhz’j qhij (Z/hijt)

11

The function to be minimized in the EM algorithm, sometimeterred to as the variational free energy,

is,
N M
=Y {@ —log v, —log | det W) + Z Z £hiji(—108 hij— 3108 Buij+ Fuij (Unije))
t=1 h=1 i=1 j=1
where fp;; £ _log Qhij- Theo vht 2 E{vn|xi; ©'} are given by,
1 [ ‘ l] Lﬁzt
Opy = Plog = 1]xy; 0] = = 2— (19)
> hi=1 Lhn
where we define,
Liy = 7, |det Wi, \HZQW (20)
i=1j5=1
For thezhm £ Elunijivn|xe; ©1], we have,
Zﬁwt = P[Uhtzl,uhz’jtzﬂxt;@q
= P[uhiﬁ: 1 ’ Vht = 1, Xt; @l]P[vht =1 ’ Xt; @l]
ulhmt{}ét (21)
Whereuhm = E{uhijtlvhtzl,xk, : @l},
N l Qhije
Upiip = P[uh-'t = 1|x¢, vp = 1;@] =" (22)
Y Y > 51 Qg
Minimizing F* over~; and apj Subject toy,, api; >0, >, v, =1 and Zj api; = 1, we get,
1 SN Al
+1 __ I+1 t=1 hzyt
T = thta Qpii = (23)
N = A SRR
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We make the following definitions, in which th@; are arbitrary functions ok,
v . E )
Bcly = Bl g gy 5y & T

t “ht Zt hzyt
We can then write the function to be minimized over the reingiparameters as,

ZVHI [ — log |det Wy| + Z Z aﬁ;{}( — 3108 Brij + Ex{ fhij(Ynije) | h,j})}
i=1 j=1
A. ICA mixture model Newton updates

Since F! is an additive function of th@V,,, the Newton updates can be considered separately. The

cost function forwy, is,

—log | det Wy| + Z Z Ev{ﬂénjjt SnijWnaje) | b}
i=1 j=1

The gradient of this function is,
—W;T + Ey{ gn(x¢ — cn)’ | h} (24)
whereg;,; is defined by,

ght Z UhijtV/ Bhij f}{” (yhijt) (25)

Denote the matrix gradient (24) b§y,. Taklng the derivative ofGy);, with respect tofWy i\, we

get,
0 [Gh]iu — — = ~
Wil (W, W3 + 5ik]2::15hijEv{”§ujtff,{ij(yhijt)(%t— [ealu)(@xe — [en]n) [ b}

For the linear transformatio@ = H(B), we have,
C=W;"B"W; " + E,{D};B(x; — c,)(x¢ — cp)” | h} (26)
whereDy; is the diagonal matrix with diagonal elements
Dt Zuhmﬂhzg nij (Unije) (27)

To simplify the calculation of the asymptot|c value of theddimn, we rewrite the second term on the
right-hand side of (26) as,
E,{DyBW; 'byb}, W, T | h}

If we defineC £ CW] andB 2 BW, !, then we have,
C=B"+ E,{DyBbyb}, | h} (28)
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Writing the ith row of the second term in (28) as,

Z ﬁhijEU{aﬁlijtf}{;j(yhijt) [Bby); by |} (29)
j=1
Sinceby; is zero mean conditioned on the model, the Hessian matrixcexito & x 2 block diagonal

form as in the single model case. In the multiple model casge&te

m
Nhi = Zaﬁ;jlﬂhijEz{f}/:ij(yhijt)[bht]?‘hui}
i=1

(1>

m
Khi Z OéfgjlﬂhijEz{f/{ij(yhijt) | hyj}
j=1
Uizli 2 Ev{[bht]?’h}
If we define,
Thij = Ez{f;[ij(yhijt)yf%ij’h7j}
Khij = Ez{f},:z’j(yhijt)’h7j}

or, using integration by parts to rewrite the integrals,

Mnij = L4mng = E{(frisWnije) ynije — 1)2 |h,j}
Khij = Ez{ff/nj(yhijt)z |h,j}
then the expressions can be simplified to the following,

m

Ahi = Z Oéﬂjl (Anij + ﬁhij’{hijﬂ}%ij)
j:Ll

Kni = Yt Buijhnig
j=1

o = Eu{[bul7|h}
Define,

®;, £ E,{gnb}; | h} (30)
We have—G, Wi =1— &, If we let,

B=H'(-G,WiL)=H""(1- &)

then we have,

- L —[®plii .

B, = 1- @i L i=1,....n (31)
Ahi

- Dy — knjor [ ®nli o,

[B]w — [ ]J 2] Zh[ ]]7 VZ#] (32)
’%hi"ihjo-hiahj -1

November 7, 2008 DRAFT



14

Then
AW, = BW,, (33)

B. Density parameter EM updates

The location parameters are updated by (see [14])

Iu’ 7 - 7 (34)
hij h] /ﬂl E{f}n] Yhijt /yh2jt|h]}
The scale parameters are updated by,
Bkt = Bhij | B=d Fhig Wnige) Ynige | 1 5} (35)
The Generalized Gaussian shape parameters are updated by,
E={[ynije|*ro10g [ynijel s | B, j

\Il(l ™ piij )

The log likelihood of©! given X is calculated as,
L(6'X) = Zlog <ZL ) (37)

V. EXPERIMENTS

In Figure 1, we plot the ratid W' — W*|| / ||[W! — W*||, versus iteration/, where W* is the
optimum andW! is the estimate at iteratioh For linearly convergent algorithms, this ratio tends to a
constant [34]. For superlinear algorithms, this ratio tetw zero, and the order of convergences the
power of the denominator which yields a finite nonzero liritthe ratio|| W1 — W*|| / || W! — W ||,

For Newton’s methodg = 2.

We also present an example of segmentation using the mirtodel. Figure 3 shows the result of
segmenting an EEG experiment according to the most likelgehgiven the data (MAP). The trials
are stacked vertically with time on the horizontal axis,ditocked to the feedback at= 175. Time
points are plotted in the color of the model most likely fortttpoint. Muscle activity (red and light
blue spanning lines) as well as post-feedback theta acfiyéllow) are segmented. There appears to be

consistency in th& and4 model segmentations, with increased resolution indtimeodel segmentation.
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a5k |

Fig. 1. Newton convergence rate versus gradient and naguaalient in a simulation with 40 x 10 mixing matrix with
Laplacian sources. Ordinary gradient (top line) and namradient (middle line) are linearly convergent with higbyeptotic
rate, while Newton method (bottom line) is tending towargestlinearity.

Fig. 2. Toy experiment with three models. True model baseshown in red, and learned bases are in yellow, centeree at th
learned centers. Three Generalized Gaussian source midansities are used with fixed shape parameteys 6f1.5 (other
choices also work, as does adapting the shape parameterfydénsources are Laplacian and Generalized Gaussian heifie s
parameterp = 5. The adaptive sources are able to separate this combinattisab- and super-gaussian sources. The Newton
method greatly speeds convergence, allowing the step sientl to 1, whereas the natural gradient requires reductidhe
step size near the optimum, inducing very slow linear caysece.
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(@) (b)

Fig. 3. Segmentation of EEG trials: (a) three models (b) fowodels. The subject is shown a sequence of letters and
responds whether current letter is the same as letter bkfsteTrials (letter presentation, response, feedbaak}iare-locked

(synchronized): at = 175 there is feedback as to whether the response was correctaréaot.
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