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Abstract. We consider the Independent Subspace Analysis problem from the
point of view of contrast functions, showing that contrast functions are able to
partially solve the ISA problem. That is, basic ICA can solve the ISA problem
up to within-subspace separation/analysis. We define sub- and super-Gaussian
subspaces and extend to ISA a previous result on freedom of ICA from local
optima. We also consider new types of dependent densities that satisfy or violate
the entropy power inequality (EPI) condition.

1 Introduction

The mutual information minimization approach to blind source separation has proved
very effective at separating linear mixtures of independent, nongaussian sources [1].
This approach is equivalent to a maximum likelihood approach in which the source
density models are adapted as well [2]. In general, however, some “sources” sources
may exhibit mutual dependence, e.g. in signal power, leading to what has been variously
called Multidimensional ICA [3], independent subspace analysis [4], and independent
vector analysis [5]; or the dependent subspaces may not be further decomposable into
unique components, as is the case with non-Gaussian subspaces with radial symmetry.

In a foundational paper on ICA [6], Comon defined the contrast functions to be
those (statistical) functions of which are capable of separating or extracting indepen-
dent sources from a linear mixture. This definition is actually very similar to the idea
expressed by P. Huber in his work on projection pursuit [7, 8]. Basic ICA, i.e. the max-
imization of a contrast function, is often found to successfully separate sources of the
variance dependence type, with the subspace dependence structure ascertainable after
the separation. The good performance of basic ICA in the dependent subspace context
has led to the conjecture that the minimization of mutual information of the output is
able to perform separation of certain dependent sources as well [3].

Theis has considered the ISA problem in a number of articles, proposing the joint
block-diagonalization approach [9], considering conditions for separation of non-Gaussian
subspaces from Gaussian subspaces in complete mixtures [10], and using the autocor-
relation structure of temporally correlated sources or subspaces to perform ISA [11].
Gutch [12] defined the concept of “irreducible subspaces” to be those containing no
extractable Gaussian component, and showed that the solution to the ISA problem is
unique in this case.

Castella and Comon [13] have also investigated ISA with known dependent sub-
space structure, and determined specific cases in which cumulant-based contrasts pre-
serve separability and when they fail. Here again the emphasis is on separability of
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dependent sources (dependent component analysis) rather than the separation of depen-
dent subspaces from one another.

Szabo [14] has shown using the entropy power inequality (EPI), that dependent
sources can be separated by minimum mutual information as long as all one-dimensional
projections of the dependent sources satisfy the EPI. Szabo’s emphasis is on the com-
plete solution to the dependent component analysis problem, the EPI sufficient con-
dition guaranteeing this possibility (in the case of non-radial symmetry). The EPI ap-
proach is shown to be successful when the EPI condition is satisfied by the sources,
without requiring prior knowledge of the subspace structure or dimensions.

We show here that dependent subspaces can be separated, i.e. the pairwise mutual
information can be block-diagonalized, in a more general setting than that considered
in [14]. We take the fact that basic ICA can perform ISA (without necessarily further
analyzing the subspaces) as significant in and of itself, since it shows that independent
subspaces can be separated from one another as a preliminary processing step, with
further analysis of the subspaces themselves carried out subsequently.

This result is significant because it immediately provides an answer for the common
criticism of ICA-based methods as being naively misspecified, potentially calling in to
question the validity of the results. Essentially we are expanding the concept of a source
component to be a potentially multidimensional subspace, with the new “ICA model”
that is to be presupposed in the often encountered linear model being that subspaces of
components are independent. Thus we generalize basic ICA in which all subspaces are
one-dimensional, and guarantee the ability of ICA approaches to extract independent
sources even in the context of interfering dependent subspaces, as well as guaranteeing
that estimated dependent subspaces contain all information pertaining to the subspace
that is present in the data.

We also define sub- and super-Gaussian subspaces to be those in which all uni-
variate projections are sub- or super-Gaussian in the Benveniste sense, and show using
a previous result [15] that ISA of strongly super-Gaussian subspaces is free of local
optima.

2 The ISA Problem

Let A ∈ Rn×n, be an invertible matrix consisting of m subspaces, and let s ∈ En
2 be a

finite covariance random vector with m corresponding subvectors:

A = [A1A2 · · ·Am], sT = [sT1 sT2 · · · sTm],

where Aj ∈ Rn×dj ,
∑m

j=1 dj = n, and the sj ∈ Edj

2 are mutually independent, i.e.
ps(s) =

∏m
j=1 psj(sj). Let x be the random vector given by,

x = As

so that x ∈ En
2 .

The ultimate goal of ISA is to reproduce the source vectors, sj , j = 1, . . . ,m,
given a set of observations {x1,x2, . . .}. That is, we would like to produce a matrix
W ∈ Rn×n such that WA = I, where I is the identity matrix.

However, ISA can be divided logically into two problems:
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P1: Separate the independent subspaces from one another.
P2: Separate the dependent sources within each subspace.

Most of the work on the ISA problem has been concerned with solving both prob-
lem simultaneously. The ISA separation theory of Szabo gives an entropy condition on
dependent sources that allows them to be separated using entropy contrasts. We take it,
however, that the well known conjecture that basic ICA also performs ISA, is in fact
largely concerned with P1, separating the subspaces, or in the particular case of extract-
ing an independent source of interest from a mixture that includes interfering dependent
source subspaces.

It should also be noted that P2 of the ISA problem may not have a solution, as
in the case of dependent source subspaces with spherically symmetric distributions.
These sources are shown in [14] to satisfy the entropy constraint allowing “solution”
of the ISA problem. However, as in the case of Gaussian sources in ICA, spherically
symmetric subspaces can only be separated up to an arbitrary rotation. Therefore an
ISA problem with spherically symmetric dependent subspaces only consists of P1.

3 Deflationary Contrast Functions, ICA, and ISA

In the deflationary approach to basic ICA (where dj = 1, j = 1, . . . ,m,) the matrix W
is constructed one row wT

j at a time, i.e. the sources are estimated sequentially. This is
usually done by sequentially determining maxima of a contrast function, Φ : E2 → R,

ŵj = arg max
wTRxxw=1

Φ(wTx)

The process ensures successive estimates are unique by restricting ŵT
j Rxxŵj′ = 0 for

all previously estimated ŵj′ .

3.1 Contrast functions

We define contrast functions as follows [6, 8].

Definition 1 A contrast function is a functional, Φ : E2 → R, defined on random
variables, satisfying the condition,

Φ
(
cos(θ)X + sin(θ)Y

)
≤ max

(
Φ(X),Φ(Y )

)
, X, Y independent

If the condition is satisfied for all X,Y ∈ S ⊂ E2, and strictly satisfied only when θ is
a multiple of π/2, then the contrast is said to discriminate over S.

Examples. Well known contrasts include the following:

1. Inverse entropy power. The entropy power functional, N(X) is defined by

N(X) , (2πe)−1 exp(2h(X))
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where h(X) , E{− log pX(X)}. The entropy power satisfies, N(aX) = a2N(X),
and the entropy power inequality (EPI), N(X + Y ) ≥ N(X) + N(Y ). We thus
have for the inverse,

N
(
cos(θ)X + sin(θ)Y

)−1 ≤
(
N
(
cos(θ)X

)
+N

(
sin(θ)Y

))−1

=
(
cos2(θ)N

(
X
)
+ sin2(θ)N

(
Y
))−1

≤ cos2(θ)N(X)−1 + sin2(θ)N(Y )−1

≤ max
(
N(X)−1, N(Y )−1

)
2. Fisher Information. The Fisher information J(X) is given by,

J(X) = E

{
d2

dx2
− log pX(x)

}
= E

{(
d

dx
log pX(x)

)2
}

The Fisher information satisfies, a2J(aX) = J(X). It also satisfies an inequality
related to the EPI [16]:

J
(
cos(θ)X + sin(θ)Y

)
≤ cos2(θ)J(X) + sin2(θ)J(Y )

≤ max
(
J(X), J(Y )

)
3. Cumulant magnitude. The nth cumulant functional κn(X) is defined by the nth co-

efficient of the Taylor expansion of the log characteristic function, logφ(t), where
φ(t) , E{exp(itX)}. Cumulants satisfy the property,

κn

(
cos(θ)X + sin(θ)Y

)
= cosn(θ)κn(X) + sinn(θ)κn(Y )

For n even, and X,Y of the same cumulant sign,

|κn

(
cos(θ)X + sin(θ)Y

)
| = cosn(θ)|κn(X)| + sinn(θ) |κn(Y )|
≤ cos2(θ) |κn(X)| + sin2(θ) |κn(Y )|
≤ max

(
|κn(X)|, |κn(Y )|

)
Thus even cumulant magnitude defines a contrast discriminating over sets of ran-
dom variables with the same cumulant sign.

3.2 Contrasts and ISA

We now show that every contrast function is also a subspace contrast in the sense that
deflationary ICA can be used to solve P1.

Let A ∈ Rn×n be invertible, A = [A1A2 · · ·Am], where Aj ∈ Rn×dj ,
∑m

j=1 dj =

n. Let s ∈ En
2 , sT = [sT1 sT2 · · · sTm], with the sj ∈ Edj

2 mutually independent. Let
x = As.

We prove specifically that for a deflationary contrast Φ, if,

ŵj′ = arg max
wTRxxw=1

Φ(wTx)

then wTAjA
T
j w = 0 for all j ̸= j′.
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Theorem 1 The deflationary contrast method solves P1.

Proof. Let y = wTx = wTAs = cT s, where c , ATw. Since Rxx = E{xxT } =
AAT , we have that wTRxxw = 1 implies cT c = 1.

We have y = cT s =
∑m

j=1 c
T
j sj . By the contrast function condition, we have,

Φ(cT s) = Φ

( m∑
j=1

cTj sj

)
= Φ

( ∑
∥cj∦=0

∥cj∥
cTj sj

∥cj∥

)
≤ max

j
Φ

(
cTj sj

∥cj∥

)

with equality only if ∥cj∥ = 0 for all but the maximizing j. But this implies that
wTAjA

T
j w = 0 for all but the maximizing j.

This theorem shows that the solution to a stage of the deflationary ICA process can
only be a linear combination of sources from within one and only one of the dependent
subspaces. Each subsequent source estimate will either be dependent with a previously
estimated source (having positive mutual information) and be a linear combination only
of sources in that subspace, or will be independent of previously estimated sources,
beginning the estimate of (one direction in) a new independent subspace. At the end of
the procedure, the matrix of pairwise mutual information values between the estimated
sources will be a block diagonal permutation.

4 Sub- and Super-Gaussian Subspaces

In this section we define particular classes of dependent subspaces in terms of linear
projections, and use a previously derived result on globally optimal ICA [15] to show
that the solution to P1 of the ISA problem is also free of local optima.

We first review the Benveniste definition of (strong) sub- and super-Gaussianity.

Definition 2 (Strongly Sub- and Super-Gaussian Random Variables) Let X be a ran-
dom variable with differentiable probability density function, pX(x). Define f(x) ,
− log pX(x). Then pX is a strongly super-Gaussian (sub-Gaussian) if pX(x) is sym-
metric about x = 0 and f ′(x)/x is strictly decreasing (increasing) on x > 0.

We define sub- and super-Gaussian subspaces to be spaces of dependent random
variables in which all linear projections are strongly sub- or super-Gaussian respec-
tively.

Definition 3 (Sub- and Super-Gaussian Subspaces) Let x ∈ Rd be a non-Gaussian
dependent random vector. Then x is a strongly super-Gaussian (sub-Gaussian) random
vector if, for all w ∈ Rd, we have y = wTx strongly super-Gaussian (sub-Gaussian).

In previous work [17], we have considered Generalized Gaussian scale mixtures as
an example of a non-radially symmetric dependent subspace. As a more general GSM-
based formulation dependent subspaces, let s have independent GSM components, i.e.
si = ξ1/2z for a non-negative finite variance ξi and Gaussian zi. Let,

y = η1/2s
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where a common nonnegative scalar η1/2 multiplies each (independent) GSM compo-
nent of s ∈ Ed

2 to form random vector y with dependent components. Then we have,

u = wTy = η1/2
∑
i

wi ξ
1/2
i zi

d
= η1/2

(
ξ1w

2
1 + · · ·+ ξdw

2
d

)1/2
z1

so that u is also a GSM, and thus strongly super-Gaussian. Dependent GSM subspaces
are thus strongly super-Gaussian as defined here.

Theorem 2 The ISA problem P1 with strongly super-Gaussian dependent subspaces
has no local optima when solved using a strongly super-Gaussian contrast.

This follows from the theorem proved in [15].

5 Other Types of Norm Dependence

We finally consider random vectors with somewhat more general dependent densities
to inquire as to which types of non-radially symmetric dependent subspaces violate the
EPI condition of [14]. That is, what kinds of dependent sources are and are not separated
by contrast functions in the solution of P1.

Consider a two dimensional dependent subspace with density,

p(x1, x2) = f
(
g(x1) + g(x2)

)
Let hy(θ) be the entropy of projections y = cos(θ)x1 + sin(θ)x2 as a function of θ.

Theorem 3 Let f be decreasing, with − log f(
√
x) concave. Let g(

√
x) be increasing

and concave on x ∈ (0,∞), then for θ ∈ (0, π/4), we have,

h′
y(θ) ≥ 0

This follows from a derivation similar to that in [15].

Definition 4 A density, p(x1, . . . , xn), is said to be sup-sup dependent (respectively
sub-sub dependent) if it is of the form,

p(x1, . . . , xn) = f
(
g1(x1) + · · ·+ gn(xn)

)
with f decreasing on (0,∞), − log f(

√
y) concave (respectively convex), gi(xi) non-

negative, symmetric, and increasing on (0,∞), and gi(
√
x) concave (respectively con-

vex) on (0,∞), for i = 1, . . . , n. Sup-sub and sub-sup dependence are defined by the
concave-convex and convex-concave scenarios respectively.

Corollary 1 Sup-sup and sub-sub dependent densities satisfy the EPI condition of [14]
and may thus be separated by contrast functions.
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If the convexity is not “homogeneous” but rather “conflicting” such that one of − log f
and − log g is concave and one is convex, then we have,

h′
y(θ) ≤ 0, θ ∈ (0, π/4)

In Figure 1, we present some experiments to verify the theory of this section. We
generate four sets of two-dimensional dependent sources, corresponding to the sup-sup,
sub-sub, sub-sup, and sup-sub cases respectively. The “sup” density is Laplacian, i.e.
p(x) ∝ exp(−|x|), and the “sub” density is Generalized Gaussian with shape parame-
ter 5, p(x) ∝ exp(−|x|5). The sup-sup data is generated by multiplying i.i.d. Laplacian
samples by a common instance dependent scaling, which is Gamma distributed. This
creates a supergaussian envelope dependence. The sub-sub data is generated by induc-
ing a slight variance dependence on i.i.d. subgaussian data by multiplying it by a com-
mon random Gamma scaling that is tightly concentrated about unity. The sub-sup data
is generated by multiplying uniform data over the diamond (Laplacian level curves) by
a slight common scaling to induce a subgaussian envelope over Laplacian level curves.
The sup-sub data is generated by multiplying i.i.d. uniform data by a strong scaling,
to induce a supergaussian envelope on uniform (subgaussian) level curves. The “time
series” are shown in the second row, shifted to improve visibility. The bottom row plots
the entropy of projections as a function of the rotation angle for θ ∈ (0, π/2). Sym-
metry is expected about π/4, and deviation gives an idea of the noise in the empirical
entropy calculation. Entropy is calculated by approximately integrating the histogram.

It can be seen that entropy increases with rotation for the sup-sup and sub-sub de-
pendent sources, while it decreases for the sub-sup and sup-sub dependent sources, as
predicted.
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gaussian envelope and level curve function.

9. Fabian J. Theis, “Blind signal separation into groups of dependent signals using joint block
diagonalization,” in ISCAS (6), 2005, pp. 5878–5881.

10. F.J. Theis and M. Kawanabe, “Uniqueness of non-gaussian subspace analysis,” in Proc. ICA
2006, Charleston, USA, 2006, pp. 917–925.

11. Fabian J. Theis, “Colored subspace analysis: Dimension reduction based on a signal’s auto-
correlation structure,” IEEE Trans. on Circuits and Systems, vol. 57-I, no. 7, pp. 1463–1474,
2010.

12. Harold W. Gutch and Fabian J. Theis, “Independent subspace analysis is unique, given
irreducibility,” in ICA, 2007, pp. 49–56.

13. Marc Castella and Pierre Comon, “Blind separation of instantaneous mixtures of dependent
sources,” in ICA, 2007, pp. 9–16.
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