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Abstract—Drivers’ fatigue has been implicated as a causal
factor in many accidents. The development of human cognitive
state monitoring system for the drivers to prevent accidents behind
the steering wheel has become a major focus in the field of safety
driving. It requires a technique that can continuously monitor
and estimate the alertness level of drivers. The difficulties in
developing such a system are lack of significant index for detecting
drowsiness and the interference of the complicated noise in a
realistic and dynamic driving environment. An adaptive alertness
estimation methodology based on electroencephalogram, power
spectrum analysis, independent component analysis (ICA), and
fuzzy neural network (FNNs) models is proposed in this paper for
continuously monitoring driver’s drowsiness level with concurrent
changes in the alertness level. A novel adaptive feature selection
mechanism is developed for automatically selecting effective fre-
quency bands of ICA components for realizing an on-line alertness
monitoring system based on the correlation analysis between the
time-frequency power spectra of ICA components and the driving
errors defined as the deviation between the center of the vehicle
and the cruising lane in the virtual-reality driving environment.
The mechanism also provides effective and efficient features
that can be fed into ICA-mixture-model-based self-constructing
FNN to indirectly estimate driver’s drowsiness level expressed by
approximately and predicting the driving error.

Index Terms—Alertness estimation, electroencephalogram
(EEG), independent component analysis (ICA), ICA-mixture--
model-based self-constructing fuzzy neural networks (ICAFNN),
power spectrum analysis.
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I. INTRODUCTION

DEVELOPMENT of the drowsiness monitoring technology
for preventing accidents behind the steering wheel has

become a major interest in the field of safety driving since
drivers’ fatigue is a causal factor in many accidents because
of the marked decline in the drivers’ abilities of perception,
recognition, and vehicle control abilities while sleepy. Thus,
developing accurate and noninvasive real-time driver drowsi-
ness monitoring system would be highly desirable, particularly
if this system can be further integrated into an automatic
warning system. It is known that abundant information on
physiological changes such as eye activity measures, heart rate
variability (HRV), or particularly, the electroencephalogram
(EEG) activities can relate with drowsiness [1]–[5]. Previous
studies [6]–[8] showed that the eye blink duration and the
blink rate typically increases while blink amplitude decreases
as function of the cumulative time, and the saccade frequen-
cies and velocities of electrooculogram (EOG) decline when
people get drowsy. Although approaches based on EOG signals
showed that eye-activity variations were highly correlated
with the human fatigue and can accurately and quantitatively
estimate alertness levels, the step size (temporal resolution) of
those eye-activity based methods is relatively long (about 10 s)
to track slow changes in vigilance [9]. Contrarily, the step size
of the EEG-based methods can be reduced to about 2 s to track
second-to-second fluctuations in the subject’s performance
[10]–[17]. Since the computer power becomes faster and faster,
it is practicable and appealing to know what information about
human cognitive state and behavior are available through
analyzing complex EEG signals. In [18], we constructed a
virtual-reality (VR) based highway-driving environment to
study drivers’ cognitive changes during a long-term driving.
A lane-keeping driving experiment was designed to indirectly
quantify the driver’s drowsiness level and a drowsiness estima-
tion system combining the EEG power spectrum analysis, the
principle component analysis (PCA) and the linear regression
model was developed. In [19], the independent component
analysis (ICA) [20]–[24] was used in the similar experiments
to locate the optimal electrode placements for each individual.
A total of ten frequency bands in two ICA components are
selected and fed to the linear regression models to estimate
driver’s performance. In order to develop an on-line alertness
estimation system and improve its performance, we develop a
novel adaptive feature selection mechanism (AFSM) based on
the correlation analysis between the subjects’ driving errors
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and power spectra of the ICA components to automatically
select effective features in this paper. In addition, the ICA-mix-
ture-model-based fuzzy neural networks (ICAFNN) developed
in [25] are employed as the drowsiness estimator to improve
the prediction performance.

II. EXPERIMENTAL SETUP

A. Virtual-Reality (VR)-Based Driving Environment

A virtual-reality (VR) based highway-driving environment
that was developed in our previous studies [18], [19] to investi-
gate drivers’ cognitive changes during a long-term driving was
also used in this paper. It includes 3-D surround scenes pro-
jected by seven projectors and a real car mounted on a 6-de-
gree-of-freedom Stewart platform. During the driving experi-
ment, all scenes are moving according to the displacement of
the car and the subject’s wheel handling. The driving speed is
fixed as 100 km/hr and the car is randomly and automatically
drifted away from the center of the cruising lane to mimic the
consequences of a non-ideal road surface. We asked the sub-
ject to keep the car on the third cruising lane (from left to right
counted). While the subject is alert, his/her response time will
be short and deviation of the car will be small; otherwise the
subject’s response time and the car deviation will be slow and
long. In this driving experiment, the VR-based freeway scene
provides only one car driven on the road without any other event
stimuli to simulate a monotonous and unexciting task that will
make drivers fallen asleep.

B. Subjects

A total of ten subjects (ages from 20 to 40 years,
years old) participated in the VR-based highway driving exper-
iments. Each subject completed a training session in one day
and testing sessions on the other days. To maximize the oppor-
tunities to get valuable data for our study, all the experiments
were conducted in the early afternoons after lunch. Statistical
reports [26] showed that people often get drowsy within one
hour of continuous driving during these periods, indicating that
drowsiness is not necessarily caused by long driving-hours. On
the first day, participants were told of the general features of
the driving task, completed necessary informed consent mate-
rial, and then started with a 15 to 45-min practice to keep the
car at the center of the cruising lane by maneuvering the car
with the steering wheel. Subjects reported this amount of prac-
tice to be sufficient to train participants to asymptote on the task.
After practicing, participants were wired with EEG electrodes
and began a 45-min lane-keeping driving task. Participants re-
turned on a different day to complete the other 45-min driving
session for cross-session test.

C. Data Acquisition

The physiological data acquisition uses 33 sintered Ag/AgCl
EEG/EOG electrodes with a unipolar reference at right earlobe
and 2 ECG channels in bipolar connection placed on the chest.
All the EEG/EOG electrodes were placed based on a modi-
fied International 10–20 system and refer to right ear lobe. Be-
fore data acquisition, the contact impedance between EEG elec-
trodes and cortex was calibrated to be less than 5 k . We use the

Fig. 1. (a) VR-based freeway scene. (b) Driving error. Horizontal dashed line
means the “dangerous” boundary.

Scan NuAmps Express system (Compumedics Ltd., VIC, Aus-
tralia) to simultaneously record the EEG/EOG/ECG data and
the deviation between the center of the vehicle and the center of
the cruising lane triggered by the VR program. The EEG data
were recorded with 16-bit quantization level at sampling rate
500 Hz and the recording are down-sampled to sampling rate
250 Hz for the simplicity of data processing. Then, EEG data
were preprocessed using a simple low-pass filter with a cutoff
frequency of 50 Hz to remove the line noise (60 Hz and its har-
monic) and other high-frequency noise for further analysis.

D. Alertness Measurement

In order to investigate the relationship between the measured
EEG signals and subject’s cognitive state, and to quantify the
level of the subject’s alertness, we defined the subject’s alert-
ness level index as the deviation between the center of
the vehicle and the center of the cruising lane as an indirect
measurement of the subject’s alertness level. Our pilot studies
showed that when the subject is drowsy (checked from video
recordings and subjects’ reports), the derivation error of car drift
increases, and vice versa. Since the fluctuates of drowsiness
level with cycle lengths were longer than 4 min [12]–[15], the
alertness level index were smoothed using a causal 90-s square
moving-average filter advancing at 2-s steps to eliminate vari-
ance at cycle lengths shorter than 1–2 min as (1). It is noted that
the step size of eye-activity based approaches is about 10 s [9].
It means that the temporal resolution of our method is 5 times
higher than that of the eye-activity based approaches

(1)

where is the 90-s window length is the
sampling rate, and denotes the distance between the center
of the vehicle and the center of the cruising lane at time . Fig. 1
shows the designed VR-based freeway scene and the smoothed
alertness level index. The red numbers in Fig. 1(a) depict the
widths in pixels of the four lanes from left to right in VR frontal
scene. In our case, each lane covers 60 pixels and the width of
the car is 32 pixels. We can also convert the distance of each
pixel into the width of the real road. Fig. 1(b) plots the time
course of deviation (alertness level) across time (in seconds).
Each experiment lasted about 45-min (2700 s). The vertical axis
represents the deviation of the car in pixel. When the deviation
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Fig. 2. Flowchart of data processing procedures of the proposed drowsiness.

is greater than 32 pixels [horizontal dashed line in Fig. 1(b)], the
car was completely off the cruising lane which could easily lead
to accidents. Participants who demonstrated waves of drowsi-
ness containing two or more micro-sleeps in both sessions were
selected as successful subjects. Based on these criteria, five par-
ticipants (ten sessions) were selected for further modeling and
cross-session testing.

III. DATA ANALYSIS

The proposed data analysis procedure for drowsiness estima-
tion is shown in Fig. 2. Analytical modules are detailed below.

A. Independent Component Analysis

ICA is a signal processing technique that finds a linear map-
ping matrix or unmixing matrix such that the unknown un-
mixed signals of the dimension
could be separated from their mixtures, , that is

. The ICA methods were extensively applied to blind
source separation problem since 1990s [17], [20]–[24]. Subse-
quent technical reports [27]–[33] demonstrated that ICA was
a suitable solution to the problem of EEG source segregation,
identification, and localization.

In this study, we used an extended version of informax algo-
rithm of Bell and Sejnowski [19], [22] that can separate sources
with either super- or sub-Gaussian distributions, to decompose
distinct brain activities. It has also been used in our previous
study [19]. Fig. 3 shows the scalp topographies of ICA back-pro-
jection matrix of subject 2 and the log bandpower spectra
of all ICA components. As shown in Fig. 3, most of the eye-
movement artifacts are isolated to components 1–3, while ICA
components 8, 17, 27 and etc. are drowsiness related (based on
the correlation analysis below).

B. Power Spectrum Analysis

Analysis of changes in spectral power and phase can charac-
terize the perturbations in the oscillatory dynamics of ongoing
EEG. Moving-averaged spectral analysis of the drowsiness re-
lated component data was then accomplished using a 750-point
Hanning window with 250-point overlap, i.e., stepping in
2 s. Each 750-point epoch was further divided into several
125-point frames using Hanning windows with 25-point step

size again. Windowed 125-point frames were extended to
256 points by zero-padding to calculate its power spectrum
by using a 256-point fast Fourier transform (FFT), resulting
in power-spectrum density estimation with a frequency reso-
lution near 1 Hz. Then, we averaged the power spectrum of
all the sub-epochs within each epoch. Previous studies [18],
[19] showed that the EEG spectral amplitudes correlated with
the wake-sleep transition more linearly in the logarithmic
scale than in the linear scale. Therefore, the averaged power
spectrum of each epoch was normalized to logarithmic scale
to linearize these multiplicative effects. Since the fluctuates of
drowsiness level with cycle lengths were longer than 4 min
[13], [14], the alertness level was smoothed using a causal 90-s
square moving-average filter advancing at 2-s steps to eliminate
variance at cycle lengths shorter than 1–2 min.

C. Correlation Analysis

In order to find the relationship between the brain activities
and the subject’s alertness level and to extract the effective fre-
quency bands of drowsiness related components, we computed
the correlation coefficient between two time courses of the alert-
ness level index and the concurrent power changes at each fre-
quency of the ICA components by using the Pearson correlation
coefficient to form a correlation spectrum as follows:

...
...

. . .
...

(2)

and

(3)

where is the time series of the alertness level index,
is the time-frequency series of the th ICA component,

is the time stepping size in 2 s, and is the frequency index
. and are the expected value of

and .

D. Adaptive Feature Selection Mechanism

In order to automatically select the drowsiness related fea-
tures, an adaptive feature selection mechanism based on the
correlation coefficients between log bandpower of the drowsi-
ness related components and the subject’s alertness level index
(SALI) is proposed.

We use the correlation spectra of subject 2 as an example to
illustrate the proposed adaptive feature selection mechanism
(Fig. 4). First, we compute the correlation coefficient between
two time series in alertness level index and the concurrent
changes in the ICA power spectrum at each frequency band
(1–60 Hz in 33 ICA components) by (2). Then, we sort the
correlation coefficients in each row vectors of matrix Corr
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Fig. 3. Scalp topographies and the corresponding log bandpower spectra of all ICA components.

Fig. 4. Using subject 2 as an example to illustrate the adaptive feature selection mechanism. Note that the band power of ICA component 8 between 9 and 13 Hz
and component 17 between 7 and 11 Hz are selected as input feature of the estimators.

by descending order so that each element in the first column
of is the maximum correlation coefficient of the row it
belongs to. is the corresponding index matrix of . After
summing the first five elements in each row of SC, we get
the vector. According to , which is the sorted version
of , we can find that the averaged correlation coefficients
of two most drowsiness-related ICA components of subject 2
are 0.93 and 0.88. Referring to the index matrix , these two

components are ICA components 8 and 17 and their selected
frequency bands are 9–13 and 7–11 Hz, respectively.

E. ICAFNNs

An ICAFNN [25] shown in Fig. 5 was developed and
performed as the alertness level estimator in the study. The
ICAFNN is a novel FNN and it can construct itself with an
economic network size, and the learning speed as well as the
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Fig. 5. Five layers of ICAFNN performing the functions of input clustering,
fuzzy-rule reasoning, and parameter/structure learning.

modeling ability [25]. This five-layered network realizes a
fuzzy inference system (FIS) of the following form:

and and

(4)

where the current input data vector is is
the number of input dimension, is a fuzzy set, is the
center of a symmetric membership function on , and is
a consequent parameter. The functions of each layer are illus-
trated as follows.

Layer 1: It only transmits input values to the next layer
directly.

Layer 2: In this layer, the output from Layer 1 is projected
into the independent axes obtained by the on-line ICA mixture
model such that

(5)

where , and are the basis matrix and
mean vector, respectively, determined by the on-line ICA mix-
ture model [25], and is the number of
clusters at time .

With the choice of non-Gaussian membership function, the
operation performed in this layer is

and (6)

where is inputs to node in layer 2, is an integration func-
tion provides the node input for this node, the is propor-
tional to super-Gaussian or sub-Gaussian, and the node output
is a function of its node input

(7)

where denotes the activation function. These notations will
be used in the following equations. With the transformation of
input coordinates, rule format in (4) should be modified as

and

and

(8)

where the th element of is the trans-
formation matrix for rule , and are the newly generated
input variables and it is called the sources in ICA.

The linguistic implication is now implicated by the new
variable , which is a linear combination of the original vari-
ables. It is observed that the membership functions cover distri-
bution of transformed data well such that a single fuzzy rule can
associate the transformed region with its output region (conse-
quent) properly.

Layer 3: A node in this layer represents one fuzzy rule and
performs precondition matching of a rule. Here, we use the fol-
lowing AND operation for each Layer-2 node

and (9)

The output of a Layer-3 node represents the firing strength of
the corresponding fuzzy rule.

Layer 4: This layer is called the consequent layer. Two types
of nodes are used in this layer as shown in Fig. 5. The node
denoted by a blank circle is the essential node representing a
fuzzy set of the output variable. As to the shaded node, each
node in Layer 3 has its own corresponding shaded node in Layer
4. One of the inputs to a shaded node is the output delivered from
Layer 3 and the other inputs are the input variables from Layer
1. Combining these two types of nodes in Layer 4, we obtain
the whole function performed by this layer as

and

(10)

where is the center of output membership function
and is the corresponding parameter.

Layer 5: Each node in this layer corresponds to one output
variable and acts as a defuzzifier with

and (11)

Two types of learning—structure and parameter learning
are used concurrently for constructing the ICAFNN [25]. The
on-line ICA mixture model is used to realize the precondi-
tion and consequent structure identification of the proposed
FNN. For the parameter learning, the parameters of the linear
equations in the consequent parts are adjusted by the back-
propagation rule to minimize a given cost function and the
parameters in the precondition part are adjusted by the on-line
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Fig. 6. Alertness level estimates for training/testing sessions of subject 2, based on a linear regression model (dot line, top panels) with subband log power of
ICA components at 8–12 Hz, over plotted against actual driving performance time series for the session (solid line). The correlation coefficient between the two
time series is r = 0:91 in the training session and r = 0:89 in the testing session. Bottom panels show the results in the same subject based on ICAFNN, the
correlation coefficient between the two time series (dot and solid lines) increase to 0.989 in the training session, and 0.94 in the testing session, respectively.

ICA mixture model. There are no rulesin this network ini-
tially. They are created dynamically as learning proceeds upon
receiving on-line incoming training data by performing the
following learning processes simultaneously: 1) input/output
space partitioning; 2) construction of fuzzy rules; 3) optimal
consequent structure identification; 4) parameter identification.
In the above, learning processes steps 1)– 3) belong to the
structure learning phase and step 4) belongs to the parameter
learning phase [25].

IV. RESULTS AND DISCUSSION

A. Adaptive Feature Selection

According to Fig. 2, after ICA training and spectral analysis
for each ICA components, we computed the spectral correla-
tions between changes in the ICA log subband power spectrum
and alertness level index. We then applied the proposed AFSM
(Section III-D) to automatically select the features for drowsi-
ness estimation. The selected features for five different subjects
are shown in Table I. The features selected by the method in [19]
are also included in Table I for comparison. As can be seen, two
methods might select different components.

In general, the drowsiness-related regions are mainly in the
parietal and occipital lobes. In [19], the optimal frequency bands
were selected according to the correlation coefficients between
ICA power spectra and drowsiness index and iteratively testing

TABLE I
COMPARISONS OF FEATURES SELECTED BY THE METHOD IN [19] AND THE

AFSM CORRESPONDING TO DIFFERENT SUBJECTS

by the linear regression model (LRM). On the contrary, the
proposed AFSM is developed for one-path selection of effec-
tive frequency bands and the ICA components for realizing an
on-line alertness monitoring system. In order to compare the
performance of these two feature selection methods, the features
are used as inputs of the linear regression models for driver’s
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TABLE II
COMPARISONS OF DIFFERENT ALERTNESS LEVEL ESTIMATION APPROACHES

INCLUDING LINEAR REGRESSION MODELS (LRM) USING THE FEATURES

SELECTED BY THE METHOD IN [19], BY AFSM, AND THE ICAFNN MODEL

USING THE FEATURES SELECTED BY AFSM FOR FIVE DIFFERENT SUBJECTS

alertness level estimation, as shown in Table II. The mean corre-
lation between actual alertness level time series and within-ses-
sion estimation by using the features selected by AFSM is 90%,
whereas the mean correlation coefficient between actual alert-
ness level and cross-session estimation is 86.6%. The average
performance of the AFSM is closed to the performance using
the optimal features. It can also be found that some testing re-
sults are better than the performance of the training sessions
due to the repeatedly testing procedure. Fig. 6 shows the es-
timated alertness level of training/testing sessions of subject 2
obtained by the linear regression model with the feature selected
by AFSM technique. These results demonstrate that the feature
selected by the one-path selection method AFSM can also reach
excellent performance in estimating driving error without the re-
peatedly testing process.

The performance of the proposed ICA-based AFSM is also
compared favorably to the principle component analysis (PCA)
based approach developed in [18] that used 50 PCA components
as the input features of the linear regression model for drowsi-
ness estimation. The mean correlation coefficient between ac-
tual alertness level and cross-session estimation of the PCA-
based method is for the same 10 sessions.

B. EEG-Based ICA-Mixture-Model-Based Fuzzy Neural
Networks (ICAFNN) for Driver Alertness Estimation

In this study, we fed the features selected by AFSM into
the ICAFNN for subject’s alertness level estimation. The ICA
weight matrices obtained from the training sessions were used to
spatially filter the features in the testing sessions so that training/
testing data were processed in the same way before feeding to
the estimation models for the same subject. Fig. 6 shows that
the estimated and actual alertness level index of training/testing
sessions of subject 2 matched well with the actual alertness level
( % in the training session and 94% in the testing ses-
sion, respectively). Table II (bottom row) summarizes the per-
formance of alertness level estimation obtained by the ICAFNN
model across ten sessions of five subjects. The mean correla-
tion between actual and estimated alertness level time series
is %, whereas the mean correlation coefficient in
cross-session testing is %.

V. CONCLUSION

In this study, an adaptive EEG-based drowsiness estimation
technology that combines ICA, power-spectrum analysis,
AFSM, and ICAFNN is proposed to continuously, indirectly
estimate/predict fluctuations in human alertness level indexed

by alertness level measurement, expressed as deviation between
the center of the vehicle and the center of the cruising lane in
a virtual-reality based driving environment. The AFSM can
automatically select effective features based on the correlation
analysis between the power spectra of drowsiness related
components and the driving errors. The proposed ICAFNN can
accurately estimate driver’s individual alertness level using ten
sub-band power spectra of two ICA components selected by
AFSM. The computational methods developed in this study
can lead to on-line monitoring of human operators’ cognitive
state in attention-critical settings.
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