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a b s t r a c t

In a recent study, Becker and Elliott [Becker, C., & Elliott, M. A. (2006). Flicker induced color
and form: Interdependencies and relation to stimulation frequency and phase. Consciousness
& Cognition, 15(1), 175–196] described the appearance of subjective experiences of color and
form induced by stimulation with intermittent light. While there have been electroenceph-
alographic studies of similar hallucinatory forms, brain activity accompanying the appear-
ance of hallucinatory colors was never measured. Using a priming procedure where
observers were required to indicate the presence of one of eight target colors we compared
electrophysiological correlates of hallucinatory color with brain states associatedwith other
visual phenomena. Different target colors were accompanied by different patterns of EEG
activation. However, in general, we found that the appearance of hallucinatory colors is pre-
ceded by a power decrease in the lower alpha band alongside an increase in gammaband fre-
quencies. We argue that decreasing activity in the lower alpha band acts as a gating
mechanism, inducing a switch inperception betweendifferent colors. The increasing gamma
activation may correlate with the formation of a coherent conscious percept.

! 2008 Elsevier Inc. All rights reserved.

1. Introduction

Conscious visual experience relies on the interaction of our nervous system with light reflected from spatial structures in
the environment. It is often assumed that the visual experience is directly related to spatial or spectral characteristics of the
external stimulus, so that, for example, spatial properties of the external stimulus are directly mapped onto spatial proper-
ties of the internal experience. However and as recently shown by Becker and Elliott (2006), hallucinatory visual experiences
are a class of phenomenal experience which cannot necessarily be mapped directly onto the spatial and spectral properties of
a stimulus. Becker and Elliott showed that experience of hallucinatory colors and forms can be reliably induced by the uni-
form stimulation of the visual field with flickering light. These hallucinatory phenomena were highly complex in nature, and
seemed, on the basis of participants’ reports to be relatively uniformly distributed across the whole visual field. Analysis of
the number of reported hallucinatory experiences over a range of stimulation frequencies revealed that the report distribu-
tion for each class of hallucinatory experiences was restricted to particular subranges. In addition, peak frequencies, i.e. those
most effective in inducing hallucinatory phenomena were found to vary according to the type and set (form or color) within
which a given hallucinatory phenomenon could be naturally classified (Becker & Elliott, 2006). Taken as a whole, forms were
reported across the 8–40 Hz range (median frequency: 25 Hz) while colors were reported across the range 5–56 Hz (median
frequency: 30 Hz). Of particular interest was the relationship between hallucinatory form and color, with forms often de-
fined by either having colored contours or appearing entirely filled with color.
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While there have been some electroencephalographic (EEG) studies of hallucinatory form (Shevelev, Kamenkovich, & Sha-
raev, 1996; Shevelev et al., 2000), the electrophysiological correlates of hallucinatory color have not yet been investigated. In
most models, experience of hallucinatory color is attributed to early stages of visual processing (e.g. Courtney & Buchsbaum,
1991; Grunfeld & Spitzer, 1995). However, for conscious experience of the hallucination processing that extends to later, ex-
tra-sensory cortical areas would be necessary: This is evidenced by Billock and Tsou (2007) who showed that (flicker-in-
duced) hallucinatory-pattern formation is strongly influenced by the presentation of adjacent geometrical forms, thereby
indicating that similar cortical processes cooperate to bring about both normal vision, and hallucinatory perception.

Weaimed to investigate theEEGrecorded fromthescalp forevidenceof thecorticalprocessescorrelatedwith theemergenceof
hallucinatory color and to compare these findings against electrophysiological processes described for a variety of well-studied
visual phenomena. The scalp recorded EEG is an index of the synchronized activation of neuronal assemblies in the brain and
the extent of synchronization at particular frequencies can bemeasured in the EEG power spectra. Here, increased power accom-
panies stronger synchronizationwhile desynchronization ismarkedby a decrease in power (Klimesch, 1999). By convention, EEG
activity is divided into several frequency bands with different authors delimiting slightly different bands with slightly different
functional characteristics. However, Klimesch (1997, 1999) has recommended determining each band individually for each sub-
ject becauseof natural variation in the rangesoverwhich the EEGbandsvary. This recommendation carrieswith it the implication
that using standardized bands for the EEG analysis would lead to noisy signals and a loss of information on their functional char-
acteristics due to an incorrect assignment of the frequency of EEG activity to a particular bandwidth. Individually derived bands
allow detection of band-specific activations even with individually differing EEG-frequency distributions.

Different frequency bands have been ascribed different cognitive or perceptual functions (see, e.g. the review by Bas!ar,
Bas!ar-Eroglu, Karakas!, & Schürmann, 1999) with two frequency bands attributed a particular role in perceptual processing.
These are the alpha and gamma EEG bands representing synchronized cortical activity between approximately 8–12 Hz and
30–70 Hz, respectively. Alpha activity accompanies a relaxed awake state with closed eyes (Niedermeyer, 1999) and sensory
stimulationusuallybrings aboutadecrease in alphapowerand is thus claimed to represent a stateof cognitiveactivation (Klim-
esch, 1999). It has been shown that the alpha band (8–13 Hz) can be divided into two bands, the lower and upper alpha bands
which cover the ranges 8–10 Hz and 11–13 Hz, respectively. These frequency bands present themselves as statistically inde-
pendent (Mecklinger, Kramer, & Strayer, 1992) and are claimed to have precise functional non-equivalence (Klimesch, 1997).

More generally the alpha band is associated with visual detection and discrimination performance including the percep-
tion of multistable figures; Ergenoglu et al. (2004) have shown that the relative power of the EEG alpha band was low in
trials in which a near-threshold stimulus was detected as compared to trials in which the stimulus could not be detected
by the participants. The finding that good perceptual performance is related to low alpha power has also been shown by Han-
slmayr et al. (2005). A variety of studies have shown that decreasing alpha power precedes the transitions between alterna-
tive perceptual representations of a multistable visual stimulus (Isoglu-Alkaç et al., 2000; Müller, Federspiel, Fallgatter, &
Strik, 1999; Müller et al., 2005), findings confirmed in using magnetoencephalographic (MEG) measurements by Strüber
and Herrmann (2002). Evidence for the potential of alpha activity for binding separate neural processes has been provided
by von Stein and Sarnthein (2000, also von Stein, Chiang, & König, 2000) who have reported long-range fronto-parietal inter-
actions in the theta and alpha frequency band during working memory retention and mental imagery. Gamma band syn-
chronization during visual processing appeared to be largely confined to localized interactions and is more generally
associated with the perceptual binding of stimulus features and memory processing (Bas!ar-Eroglu, Strüber, Schürmann, Sta-
dler, & Bas!ar, 1996b). One set of findings by Tallon, Bertrand, Bouchet, & Pernier, 1995, also Tallon-Baudry & Bertrand, 1999)
support this hypothesis, in revealing an increase in 30-Hz power following the presentation of relatively good visual group-
ings, but not when non-good groupings were presented. Gamma activity is often considered in relation to attentional de-
mands. This follows the popular idea that coherent visual perception is a function of attentional deployment and finds
some support in recordings of a larger EEG response at around 40 Hz when attentional resources are engaged (Engel, Fries,
& Singer, 2001; Herrmann & Mecklinger, 2001; Tiitinen et al., 1993). However, increases in gamma coherence also accom-
pany states of high expectancy and feature attention, even before any stimulus is presented (see Engel et al., 2001, for a re-
view). Gamma activity may be distributed rather widespread over the brain, and may be thus assumed to be a generalizable
functional bandwidth with, perhaps different functional correlates in perception depending on its location and generators.

In summary, a desynchronization of alpha combined with the synchronization of gamma activity may be a prerequisite
for conscious perception, including the registration, or availability in phenomenal awareness of internal representations gen-
erated by external visual stimuli. Here and in relation to hallucinatory flicker-induced experiences the question arises as to
whether changes in alpha and gamma activity are involved during experience of flicker-induced hallucinatory colors. The
aim of this study is to investigate EEG responses during and immediately preceding experience of hallucinatory colors with
a view to determining the particular contributions of EEG alpha and gamma activity to the experience of hallucinatory color.

2. Materials and methods

2.1. Participants

Three healthy practiced volunteers (all female, mean age 26 years) participated in the experiment. All participants had
prior experience with the experimental paradigm and were chosen on the basis of being reliable reporters of hallucinatory
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color experiences under flicker conditions. All had normal or corrected to normal vision. Participant CB and KM were left-
handed, participant KO was right-handed. Participants KM and KO were paid for their participation at a rate of 8 Euro per
hour.

2.2. Stimulation

Flicker was presented using a specially constructed box with four diodes placed in the upper and lower left and right of a
single viewing aperture. The diodes were screened from view and projected onto a uniformly white screen (of 10 ! 20 cm)
mounted within the box some 12 cm from the viewing aperture. Aside from the viewing aperture, which was molded to fit a
standard facial physiognomy, there were no sources of external light in the box. During stimulation, the screen was illumi-
nated by rapid and intermittent square-wave light pulses of 13 cd/m2 emitted simultaneously from each of the four diodes.
Using the viewing aperture, participants viewed the projection of these pulses of light on the white screen, which for all pre-
sentation frequencies was experienced as a ganzfeld of uniform (that is spatially homogeneous) flicker. Verbal instructions
via headphones, stimulus generation, and response collection were all ensured by a PC running under MSDOS and generated
in the C programming language. The precise temporal delivery of light pulses was achieved using a PCI technology timer card
(CIO-CTR05 with CTS9513 chip capable of temporal resolutions of up to 5 kHz) mounted in a conventional IBM compatible
PC running under MSDOS and connected to the four LEDs (light emitting diodes; Type WU-2-310SWC-UR, luminous inten-
sity 900 mcd, 3 mm diameter, emission color white, CIE 1931 Standard: x = 0.29, y = 0.30, Conrad Electronic GmbH, 92240
Hirschau, Germany, Order No. 153881-62).

All experiments were conducted in accordance with the code of ethics of the World Medical Association (the Declaration
of Helsinki, 2000), under the guidelines of the American Psychological Association, and following the approval of the Depart-
mental Research Ethics Committee. All participants gave written informed consent to their participation in the study and had
no prior history of neurological or neuroleptic disorders.

2.3. Design and procedure

The study used a paradigm in which participants were asked to press a response key with the left index finger as quickly
as possible on first experiencing a particular target color which was announced before the beginning of the trial. This par-
adigm was employed with the aim to directly link EEG-frequency changes to the occurrence and report of a specific hallu-
cinatory color. Previous experiments (Becker & Elliott, 2006) have shown that the distribution of color experiences over
stimulation frequency are comparable for a free-report and a primed response-time paradigm with a slight overall increase
in reports for the primed response-time design.

The target color was announced to participants in their native language which was German in the form of a verbal
instruction (red [rot], blue [blau], green [grün], yellow [gelb], purple [violett or lila], white [weiss], black [schwarz], gray
[grau], German names given in square brackets). The target was announced via headphones and immediately prior to trial
onset. Target colors were those colors reported most reliably in the free-report study described in Becker and Elliott (2006,
Experiment 1). These colors have also been tested successfully in a primed response-time paradigm similar to the one em-
ployed in the present study (Becker & Elliott, 2006, Experiment 2) and distributions over flicker frequency were found to be
very similar. Participants were reminded before each session that a response should only be given to the unequivocal expe-
rience of the target color. In the case of a response the flicker presentation terminated with the button press. When the par-
ticipant did not experience the target color the trial was allowed to time out and no response-time was recorded. After
completion of a trial (with or without response) the participants were asked to name all other colors which they experienced
during the flicker. These experiences were then transcribed by the experimenter who was not aware of the target color or of
the flicker frequency for the trial concerned.

Each trial consisted of a 20-s epoch of no stimulation serving as a baseline for the EEG recording, followed by an epoch of
no more than 20 s of flicker. The verbal instruction was always given before the baseline, ensuring that the memory load of
remembering the target color was similar during baseline and epochs of flicker. The beginning of the next trial was always
initiated by the experimenter. Frequencies between 13 and 20 Hz which were shown to be the most effective in inducing
hallucinatory color were tested (Becker & Elliott, 2006). The frequency of flicker was maintained as trial-wise constant
but was varied between trials. Both the presentation order of the eight different flicker frequencies and the eight different
target hallucinatory colors were varied pseudo-randomly over trials on a participant by participant and session by session
basis. Every frequency ! color combination was tested twice in the course of the experiment resulting in 128 trials over the
entire experiment for each participant.

2.4. EEG recordings

The EEG was recorded from 64 Ag–AgCl electrodes placed according to the extended 10–20 system. EEG was sampled at a
rate of 500 Hz. The electrodes were mounted in an elastic cap (Easy Cap, Munich, Germany) and were referenced to Cz with
electrode impedance kept below 5 kX. The EOG was registered with standard electrodes F9 and F10 at the outer canthi of
each eye serving as horizontal EOG. Electrodes Fp1 and one additional electrode below the left eye served as vertical
EOG. EEG activity was amplified using BrainAmpMR amplifiers (BrainProducts, Munich, Germany) and were lowpass filtered

C. Becker et al. / Consciousness and Cognition xxx (2008) xxx–xxx 3

ARTICLE IN PRESS

Please cite this article in press as: Becker, C. et al., Electrophysiological correlates of flicker-induced color hallucinations,
Consciousness and Cognition (2008), doi:10.1016/j.concog.2008.05.001



at 1 Hz and highpass filtered at 100 Hz. The following 18 electrodes were included in the later analyses: F5, Fz, F6, T7, C5, C6,
T8, P5, Pz, P6, PO7, PO3, Poz, PO4, PO8, O1, Oz, and O2.

2.5. Methods of analysis

To account for the individual differences in electrophysiological responses, analyses were conducted separately for each
participant and then compared for inter-individually consistent responses.

The flicker frequencies presented in this study are associated with a very high probability of color hallucinations (for the
colors studied), however the results of Becker and Elliott (2006) suggest that no differences in the distributions of different
color hallucinations over flicker frequency were to be expected and, consistent with this expectation no significant differ-
ences were found [Friedman test, v2(7) = 6.661; the median frequencies being of 15 Hz (gray), 16 Hz (white, black, green,
purple) and 17 Hz (red, blue, yellow)]. The data was collapsed over the different stimulation frequencies for subsequent
analyses.

Target colors were reported on 75% (participant CB), 76.6% (KM) and 53.9% (KO) of the 128 trials. Additional, non-target
colors freely reported following 90.5% of these trials with participants reporting on average 1.13 (CB), 1.93 (KM) or 1.55 (KO)
additional colors.

On 97.5% of all trials where the target color was not reported, other colors than the target color were perceived and re-
ported following the trial. The mean number of colors per trial reported in trials where no target color was reported, was 2.16
(CB), 2.03 (KM) and 2.34 (KO). On this basis and because the pattern of emergence of particular colors over stimulation fre-
quency can only be guessed on the strength of previous data (i.e. Becker & Elliott, 2006) the no-report trials were not con-
sidered suitable as control data and were excluded from further analysis.

Three stimulation epochs were defined within each trial: (i) a baseline epoch which lasted 2000 ms starting 10 s after
trial onset and during which there was no stimulation, (ii) a baseline epoch of flicker during which no response was
given. (Reports of hallucinatory color were given during this epoch on only 7% of the trials and so this epoch is char-
acterized by a low probability of hallucinatory color being experienced: these trials were removed for the purposes of
baseline calculation). To avoid artefacts induced by the flicker onset, this epoch started 500 ms after flicker onset and
lasted for 2000 ms. (iii) The flicker epoch immediately preceding the response to a hallucinatory color with a duration
of 2000 ms.

A fast Fourier transformation (FFT) using a Hanning window (10%) was calculated on these three epochs for each trial
separately. The frequency resolution of the FFT was set to 0.5 Hz, and applied to the normalized data for the frequency range
1–100 Hz. The FFT was calculated on time windows of 512 ms shifted along the 2000 ms epochs in 100 ms steps. Following
the FFT the mean power values for all trials were calculated separately for each participant, each color, each EEG-frequency
bin (of 0.5 Hz) and each of the 20 periods of the three stimulation epochs.

The individual alpha frequency (IAF) ranges were determined by the method developed and described by Klimesch
(1997). For the baseline epoch, power spectra were calculated for each participant and each of the 18 electrodes, collapsed
over all trials. By visual inspection, the beginning of the ascent and the end of the descent of the alpha peak were derived for
each participant and electrode. The individual alpha bandwidths were calculated as the mean of the thus determined IAF
ranges over all electrodes. The lower and upper limits of the individual alpha bandwidths are 7–12.5 Hz (participant CB),
8–13.5 Hz (KM) and 7–14 Hz (KO).

The IAF range was divided into two equal parts to form the lower alpha frequency range and the upper alpha frequency
range (i.e. 7–9.5 and 10–12.5 Hz, respectively, for participant CB, 8–10.5 and 11–13.5 Hz for KM, 7–10.5 and 11–14 Hz for
KO). Based on the literature (e.g. Bas!ar et al., 1999; Klimesch, 1999), the gamma EEG-frequency range was defined on the
basis of the IAF ranges as consisting of a 30 Hz range 10 Hz above the upper alpha frequency range (i.e. 23.5–53.5 Hz for par-
ticipant CB, 24.5–54.5 Hz for KM, 25–55 Hz for KO).

As the study aimed to investigate electrophysiological correlates of hallucinatory color, it was necessary to eliminate
extraneous variance in the EEG arising from procedural aspects of the experiment (e.g. the rehearsal of prespecified target
colors) and the first order effects of flicker on visual and other brain systems. As described above, activity during the baseline
epoch (i.e. no stimulation) was used to determine the individual frequency bands based on the IAF (Klimesch, 1997, 1999).
The flicker baseline epoch may account for individual activation differences and activations due to memory processes during
the holding of the target color in memory and is assumed to generate activity which is specific to stimulation with flickering
light that is not (yet) accompanied by hallucinatory experience. In contrast, activation during the flicker epoch shortly before
a response is given is thought to contain additional activity specific for the experience of hallucinatory color. The power val-
ues for each participant, each color, each frequency bin and each of the 20 periods were corrected by subtraction of the flick-
er baseline activation from the activity in the flicker epoch preceding a response.

The corrected power values were then subject to regression analyses against time. These analyses were done separately
for each participant, each color, each of the 18 electrodes and each of the 3 analyzed frequency bands (lower alpha, upper
alpha, gamma). The aim of these analyses was to determine changes in the power of different EEG-frequency bands over the
time interval of 2000 ms preceding the hallucinatory experience. The EEG power values were assumed to increase or de-
crease significantly when the slope of the regression had a positive or negative sign (for increases or decreases, respectively)
and was significant with a < .05 (see Fig. 1 for an example).
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3. Results

3.1. Electrophysiological correlates of different hallucinatory colors

3.1.1. Individual analyses
The probabilities of report for all target colors and all participants are given in Table 1. A contingency v2-test revealed

significant differences between participants in the probabilities of report for the different target colors. CB was more likely
to report black and blue compared to the expected average between observers, but less likely to report yellow. KM showed
fewer reports of red than expected, while KO was less likely to report black and blue, but had a higher likelihood of reporting
red and yellow than expected. Complex patterns of power changes for the different colors, frequency bands and electrodes
were observed for each participant and are detailed in Tables 2–4.

3.1.2. Between-participants comparisons
The aim of the between-participants comparisons was to derive indices of inter-individual reliability as regards changes

in EEG power for each of the frequency bands of interest. For each color, at each electrode and in each frequency band, a
change in EEG power was assumed to be reliable if it was present and had the same sign in all three participants. The results
of the analysis are displayed in Fig. 2. The report of white, black, blue and yellow was accompanied by a right parieto-occip-
ital increase in gamma synchronization, while the report of black and purple was marked by a left parieto-occipital increase
in gamma power. Gamma power decreased fronto-centrally for the perception of black. A decrease of power in the upper
alpha range was observed for black and yellow at parieto-central electrodes. The report of gray and red was marked by a
left temporal decrease of lower alpha activation, while red was also accompanied by a lower alpha desynchronization at
right parieto-occipital electrodes. Black and blue were similarly marked by a right parieto-occipital decrease of lower alpha
activation, with blue showing a rather widespread lower alpha desynchronization over the entire parieto-occipital and right
temporal cortex. A right temporal decrease of lower alpha synchronization was observed for purple.

3.2. Electrophysiological correlates of hallucinatory color independent of color category

A second analysis was conducted without differentiation between the different colors: responses to different colors were
collapsed and treated in terms of a singular variable ‘color’. As such, this analysis targets neural correlates of the experience
of hallucinatory color independent of the precise color category. This analysis, while violating clear phenomenological dis-
crepancies between the experience of different colors is nonetheless consistent with the distribution of reports which did not
differ in frequency over flicker frequency. As such, this analysis examines for a generalizable neural correlate of hallucinatory
color experience. The methods of analysis were equivalent to the analyses outlined above, with the difference that the mean
power values were calculated separately for each participant, each EEG-frequency bin (of 0.5 Hz) and each of the 20 periods
of the three stimulation epochs, but were collapsed over all target colors.
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Fig. 1. Regression of the corrected EEG power over time for participant KM in the gamma frequency band at electrode O2. The regression analysis was
conducted over 2000 ms of the flicker epoch preceding the response (and the corresponding periods for the baseline flicker epoch). The response occurred at
time zero. The correlation coefficient, the coefficient of determination and the significance of the regression are given in the upper left of the figure.

Table 1
Probabilities of report in % for all target colors and all participants

White Black Gray Red Green Blue Yellow Purple

CB 63 94 56 63 100 100 50 75
KM 88 63 69 50 81 75 100 88
KO 44 0 63 94 75 25 94 38

The total number of trials for each target color and each participant was 16.
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3.2.1. Individual analyses
The target colors were reported in 75%, 76.6% and 53.9% of all trials by participant CB, KM and KO, respectively. 22.9%,

4.1% and 2.9% of these responses were not accompanied by other color reports. The mean number of about two non-target
colors (CB 2.16, KM 2.03 and KO 2.34) being reported in trials where no target color was reported indicates a higher likeli-
hood for report of the target color than any non-target color (the probability of report for a non-target color being roughly 2
out of 7, i.e. 30%). However, this increased likelihood of report does not necessarily imply a higher likelihood for target colors
to be perceived. The hallucinatory experiences being highly complex and dynamic in nature (Becker & Elliott, 2006), it is con-
ceivable that while any color will be experienced in about 54–77% of all trials, only about half of these experiences will be
reported using a free-report paradigm.

Regression analysis of EEG power over time revealed patterns of significant power increases and decrease for the different
frequency bands of the EEG as illustrated in Fig. 3 (dark gray values indicate a decrease in EEG band power while white val-
ues indicate an increase).

3.2.2. Comparative analyses between participants
At each electrode and in each frequency band, a change in EEG power was assumed to be reliable if it was present and had

the same sign in all three participants. No inter-individually reliable changes in power over time were found for EEG re-
sponses in the upper alpha band. In the lower alpha band a generalizable pattern of EEG activity immediately preceding
the response was present, characterized by a bilateral decrease of activation under frontal, central, temporal and occipital
electrodes, and a right-hemispheric decrease under parietal, and parieto-occipital electrodes (Fig. 4). In addition, increasing
gamma power was observed under central, temporal, parieto-occipital, and occipital electrodes. Slight differences in activa-
tion were revealed between the two hemispheres in the lower alpha band with a more widespread decrease of power over
the right hemisphere. In contrast, changes of activation in the gamma band were not hemisphere-specific, but distributed
widely over the cortex.1

Table 2
Electrodes showing significant increases (+) and decreases (") of corrected EEG power for the different frequency bands and colors in participant CB

F5 T7 C5 P5 PO7 PO3 O1 Fz Pz POz Oz O2 PO4 PO8 P6 C6 T8 F6

Lower alpha
White " " " " " " " " " " " " "
Black " " " " " " " " " " " " " " " "
Gray " " "
Red " " " " " " " " " "
Green " " " "
Blue " " " " " " " + " " " " " " " " " "
Yellow + + + + + + + +
Purple " " " " " " " " " " " " " " " " "

Upper alpha
White " " " " " " + " " " " " " " " "
Black + " + + +
Gray + + + + + + + + + + + + + + + +
Red " " " " " " " " " " " " " " " "
Green " "
Blue " + " "
Yellow + " " " "
Purple " " " " " + " " " " "

Gamma
White " + +
Black + + + + " + + + + + + +
Gray + " " " " "
Red + + + + + + + " + + + + + + + + + +
Green + " " +
Blue + + + + " + + + + +
Yellow + + + + + + + + + + + + + +
Purple + + + + + + + " + + + + + + +

1 An alternative analysis taking into account the dominant hand of the observer yields slightly different results. While CB and KM were left-handed, KO was
right-handed. Therefore, responses on the left hemisphere in CB and KM were matched to right hemispheric responses in KO with the analysis otherwise being
the same as before. Consistent activity patterns found in all three participants are now defined in terms of ipsi- or contralaterality to the dominant hand of the
observer. No inter-individually reliable changes of activity were found in the upper alpha frequency band. In the lower alpha band EEG activity immediately
preceding the response was characterized by a bilateral decrease of activation under frontal (F5, F6), central (C5, C6), temporal (T7, T8) and occipital electrodes
(O1, O2), and a decrease under parietal, and parieto-occipital electrodes ipsilateral to the dominant hand (P6 and PO8, or P5 and PO7). Increasing gamma power
was observed under parieto-central electrodes (Pz), bilateral under parieto-occipital (PO7, PO8) and occipital electrodes (O1, O2), and contralateral to the
dominant hand under temporal and central electrodes (C6 and T8, or C5 and T7).
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4. Discussion

Previous studies have indicated that while some hallucinatory colors are clearly associated with the experience of hallu-
cinatory form, other colors do no co-occur with forms. Instead, they appear to represent an ambient change in color or illu-

Table 3
Electrodes showing significant increases (+) and decreases (") of corrected EEG power for the different frequency bands and colors in participant KM

F5 T7 C5 P5 PO7 PO3 O1 Fz Pz POz Oz O2 PO4 PO8 P6 C6 T8 F6

Lower alpha
White " + + + " "
Black + + + " " + +
Gray " " " + " "
Red " " " " " " " " " "
Green " " " " " " "
Blue + + " " " " " " " " " " " " "
Yellow " " " + + " " " "
Purple + " " " " " " "" " "

Upper alpha
White + + + + + + +
Black " " " " " " " +
Gray + "
Red + + + " + +
Green " " " " " " " " " " " "
Blue " " " " " " " " " " " " " " " "
Yellow " " " " " " " " " " " "
Purple " " "

Gamma
White + + + + + + +
Black " " + + + + " + + + + +
Gray " + + + + + + "
Red " + "
Green " " + "
Blue + + + + + + + +
Yellow " + + + + + + + + + + "
Purple " + + + + + + + + + + "

Table 4
Electrodes showing significant increases (+) and decreases (") of corrected EEG power for the different frequency bands and colors in participant KO

F5 T7 C5 P5 PO7 PO3 O1 Fz Pz POz Oz O2 PO4 PO8 P6 C6 T8 F6

Lower alpha
White " " " "
Gray " "" " " " " " " " " " " " "
Red " " " " " " " " " "" " " " " " " "
Green + + + + + + + + +
Blue " " " " " " " " " " " " " "
Yellow " " " " "" "
Purple + "

Upper alpha
White + + " " "
Gray
Red + + + + "
Green " + +
Blue + + + + + + + + + + + + + +
Yellow " " "
Purple + + " " " " " + +

Gamma
White " " + + + "
Gray " + + + + + + + +
Red + +
Green " " " +
Blue + + + + + + + + + + + + +
Yellow + + + + + + + +
Purple + + + "

KO did not report any occurrences of the color black during the experiment.
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mination (Becker & Elliott, 2006; Fig. 7). These colors are yellow and blue alongside white and gray. Interestingly, in this
experiment experience of these colors is, in each case, accompanied by an increase in gamma frequency power under right
parieto-occipital (PO8), and, to a lesser extent, parietal (P6) electrodes. The fact that this parieto-occipital increase in gamma

Lower alpha Upper alpha  Gamma

white

black

gray

red

green

blue

yellow

purple

Fig. 2. Changes of corrected EEG power over time for the different EEG bandwidths and the different colors. The effects displayed were found to be
significant in all three participants. The sign of the significant regression slopes is indicated by gray-scale: white represents electrodes at which a significant
increase in EEG power over time was found, black represents a significant decrease of EEG power over time. A key of all electrode positions is given in Fig. 4.
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power is also observed for the experience of the color black might be indicative of the coding of ambient or scene luminance
or contrast.

With respects to the experience of hallucinatory colors in general, changes in EEG power reveal a consistent picture across
participants that agrees very well with the functional role ascribed to the different frequency bands in the literature. In par-
ticular, decreases in alpha and increases in gamma power under occipital and parieto-occipital electrodes seem a likely cor-
relate of the formation of the hallucinatory, but nonetheless, clearly ‘visual’ representations induced by the flicker. The loci of
these activity changes are also well in accordance with brain activation to colored stimuli measured using PET (Chao & Mar-
tin, 1999) and fMRI (McKeefry & Zeki, 1997).

As detailed in the introduction, specific changes of alpha activity have been reported during the perception of multistable
figures (see for example, Müller et al., 2005 and Strüber & Herrmann, 2002). Strüber and Herrmann (2002) suggest that alpha
activity during the perception of one interpretation of a multistable figure constantly decreases until it reaches a critical
threshold following which a perceptual switch occurs and a second interpretation of the figure is perceived. In the brain, this
might be achieved by means of a decrease in alpha band synchronization, which would allow neurons to synchronize at
other frequencies (such as those in the gamma band), responsible for the coding and representation of a new percept or
event. The idea that low alpha activation might provide an endogenous and necessary condition for the conscious experience
of a stimulus is also emphasized in the studies of Ergenoglu et al. (2004) and Hanslmayr et al. (2005). These studies show
that a stimulus presented at threshold is more likely to be perceived when the alpha power is relatively low directly preced-
ing stimulus presentation, while alpha desynchronization was especially pronounced in parietal and occipital cortices
(Ergenoglu et al., 2004).

In our study, participants reported seeing a number of other colors preceding or co-occurring with the experience of the
target color in the majority (90.5%) of all trials. A multidimensional scaling of co-occurrent hallucinatory experiences in
Becker and Elliott (2006) gave indications for inhibitory relations between certain colors (for example between blue and pur-

CB

KO

KM

Lower alpha Upper alpha Gamma

Fig. 3. Changes of the corrected EEG power over time for the different EEG bandwidths for the individual participants with the data being collapsed over all
target colors. For information about the gray-scale coding see caption of Fig. 2. A key of all electrode positions is given in Fig. 4.

Lower alpha Gamma

F5 Fz F6

T7 C5 C6 T8

P5 Pz P6

PO7PO3 POz PO4PO8
O1 Oz O2

Fig. 4. Representation of changes of EEG power over time for the lower alpha and gamma EEG bandwidths found to be significant in all three participants.
The right picture shows all electrode positions included in the analysis. For information about the gray-scale coding see caption of Fig. 2.
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ple; see Becker & Elliott for a full description of the pattern of inter-relationships between colors), implying the impossibility
of these colors to be experienced at the same time. In this respect, the experience of hallucinatory color may be similar to the
perception of multistable figures (Müller et al., 2005; Strüber & Herrmann, 2002), where one interpretation of the figure is
deactivated and replaced by another interpretation. The decrease of alpha power preceding the report of hallucinatory color
may reflect such a transition.

The topographic distribution of increased gamma power immediately preceding experience of hallucinatory color corre-
sponds to the patterns of EEG activity observed during perception of multistable figures, e.g. Bas!ar-Eroglu, Strüber, Kruse,
Bas!ar, and Stadler (1996a) who reported enhanced gamma band activation at frontal, parietal, and occipital areas preceding
the switch in interpretation of a multistable percept. The combination of decreased alpha and increased gamma activity may
thus reflect the necessary brain state for the experience of hallucinatory color with the corollary that this combination of
brain states is a general, but contents-wise an almost entirely endogenous mechanism for color phenomenology. A more pre-
cise description of the mechanisms concerned remains speculative, particularly as concerns the tendency for hallucinatory
experiences to change in color. We might speculate that a form of alpha gating in which alpha activity may be induced in the
absence of specific perceptual stimuli, and thus in a similar fashion to that accompanying states of mental relaxation (Klim-
esch, 1999). One direct consequence would be the synchronization of cortical networks at alpha frequencies, which we argue
to inhibit the formation of novel representations. Nonetheless, the coherence of alpha activity would very likely be suscep-
tible to fluctuations due to the direct and indirect responses of neurons to the regular temporal patterning of the flickering
ganzfeld. Alpha activity might decrease in coherence until it reaches some coherence threshold at which it is no longer suf-
ficiently powerful to inhibit other neural networks. With a decrease in the inhibitory power brought about by alpha synchro-
nization, concurrent color-specific activity at other frequencies, perhaps generated as early as the retina and perhaps
represented by networks of synchronized gamma activity, would gain access to cortical processing mechanisms and emerge
into the ongoing phenomenology experienced in the ganzfeld. Thus, a form of ‘alpha gating’, based upon relative patterns of
synchronization and desynchronization across time and different neural networks might be responsible for the changes in
color experienced when viewing the flickering ganzfeld. Importantly, the highly dynamic nature of the hallucinatory expe-
riences induced by flicker stimulation requires a model of these conscious experiences that does not only allow a stationary
description of the relation between the conscious phenomenal content and its neural representation, but aims to describe
the relation between the two in its dynamic form encompassing all potential manifestations of the system. Fell (2004) out-
lined a promising approach to identify the neural correlates of conscious experience by equating the phenomenal state space
of experiences with a neural state space of brain processing. While the perception of hallucinatory colors might be repre-
sented in a one-dimensional phenomenal state space, at least a two-dimensional representation of hallucinatory color seems
more appropriate based on our data: This is because the relation of a hallucinatory color to a distinct spatial content can be
expressed along one dimension (e.g. ambient color vs. shape-related color), with the second (and possibly further) dimension
representing the actual color category produced by physiological color mechanisms. At least a three-dimensional neural
state space would be required to successfully correlate the phenomenal with the neural state space. While the topographical
distribution of electrophysiological brain responses is a vital component of this neural state space, more importantly, brain
activity in at least two temporal domains, the alpha and gamma frequency band, is necessary to describe changes in phe-
nomenal content that occur during an epoch of flicker. Further electrophysiological studies investigating the temporal suc-
cession of hallucinatory color need to be conducted in order to clarify the exact relation between a change of state in
phenomenal state space (i.e. a switch in the perception of hallucinatory color) and a change of state in neural state space
(e.g. changes in the topographical distribution of brain activity).

In summary, we show that EEG power changes preceding the experience of flicker-induced hallucinatory color are well in
accordance with electrophysiological patterns of activity described in the literature on conscious perceptual processing. The
perception of hallucinatory color is preceded by an inter-individually consistent decrease in power in the lower alpha fre-
quency band alongside an increase in gamma frequency power. Decreasing alpha activity may reflect processes related to
the generation of a new percept or a switch between different percepts. Increasing gamma band activation may similarly
correlate with a perceptual switch; it may also indicate the formation of a coherent percept preceding the response. While
the perception of hallucinatory color appears to be an entirely private experience of the observer, not accessible directly by
the experimenter, the measurement of electrophysiological markers indicates the existence of a common objective set of
brain processes underlying the highly subjective phenomenal content of consciousness.
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