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Gwin JT, Gramann K, Makeig S, Ferris DP. Removal of move-
ment artifact from high-density EEG recorded during walking and
running. J Neurophysiol 103: 3526–3534, 2010. First published April
21, 2010; doi:10.1152/jn.00105.2010. Although human cognition of-
ten occurs during dynamic motor actions, most studies of human brain
dynamics examine subjects in static seated or prone conditions. EEG
signals have historically been considered to be too noise prone to
allow recording of brain dynamics during human locomotion. Here we
applied a channel-based artifact template regression procedure and a
subsequent spatial filtering approach to remove gait-related movement
artifact from EEG signals recorded during walking and running. We
first used stride time warping to remove gait artifact from high-density
EEG recorded during a visual oddball discrimination task performed
while walking and running. Next, we applied infomax independent
component analysis (ICA) to parse the channel-based noise reduced
EEG signals into maximally independent components (ICs) and then
performed component-based template regression. Applying channel-
based or channel-based plus component-based artifact rejection sig-
nificantly reduced EEG spectral power in the 1.5- to 8.5-Hz frequency
range during walking and running. In walking conditions, gait-related
artifact was insubstantial: event-related potentials (ERPs), which were
nearly identical to visual oddball discrimination events while stand-
ing, were visible before and after applying noise reduction. In the
running condition, gait-related artifact severely compromised the EEG
signals: stable average ERP time-courses of IC processes were only
detectable after artifact removal. These findings show that high-
density EEG can be used to study brain dynamics during whole body
movements and that mechanical artifact from rhythmic gait events
may be minimized using a template regression procedure.

I N T R O D U C T I O N

A noninvasive method for recording human electrocortical
brain dynamics during mobile activities could have far-reach-
ing benefits (Makeig et al. 2009). Cognitive neuroscientists
exploring embodied cognition could study brain dynamics
associated with cognitive processes during whole body inter-
actions within natural environments. Studies of human motor
control would no longer be limited to studies of constrained
movements. Bioengineers might be able to use such a method
to derive control signals for neurorehabilitation and prosthetic
technologies. An unanswered question in neuroscience is to
what extent human cortex participates in the generation of
rhythmic motor behaviors, in particular those motor behaviors
associated with locomotion. The answer seems to lie in a
multifaceted control strategy including descending, peripheral,
and central control (Yang and Gorassini 2006). An ability to
measure brain dynamics during locomotion may provide addi-

tional information regarding the significance of descending
control.

EEG is the only noninvasive brain imaging modality that
uses sensors that are light enough to wear during locomotion
and have sufficient time resolution to record brain activity on
the time scale of natural motor behavior. However, EEG has
historically been considered to be too noise prone to allow such
recordings. Mechanical artifact in EEG signals, associated with
head movements during locomotion, can have amplitude that is
an order of magnitude larger than the underlying brain related
EEG signals.

A similar phenomenon occurs during simultaneous EEG and
functional MRI (fMRI). In this situation, alternating magnetic
fields (gradients) of the MR scanner cause large repetitive
artifact in EEG signals. Artifact template subtraction proce-
dures have been used successfully to remove fMRI gradient
artifact from EEG signals (Allen et al. 2000). Unlike fMRI
gradient artifact, which is relatively invariant over time (Gar-
reffa et al. 2004), mechanical artifact associated with locomo-
tion is time varying. Kinematics and kinetics of human walking
exhibit both short-term (step to step) and long-term (over many
steps) variability (Hausdorff et al. 1995, 1996; Jordan et al.
2006, 2007). Time-varying sources of EEG noise, such as the
ballistocardiogram artifact in EEG recorded in a strong mag-
netic field, have been extracted from EEG signals using chan-
nel-based template subtraction procedures and subsequent spa-
tial filtering (Debener et al. 2005, 2007). This combined
method was shown to be more effective than channel-based
template subtraction (Niazy et al. 2005) or spatial filtering
(Benar et al. 2003; Eichele et al. 2005) alone.

Here, we implemented a two-step approach to removing
locomotion-induced mechanical artifact in high-density EEG
signals recorded while subjects walked and ran on a treadmill
while simultaneously performing a visual oddball discrimina-
tion task. We first removed stride phase-locked mechanical
artifact using a channel-based template regression procedure.
To address slow fluctuations (over many strides) in the time
profile of the gait-related artifact, we used moving time-
window averaging of the stride phase-locked data to compute
an artifact template for each stride and each channel. To
address step-to-step fluctuations in the phase and amplitude of
the gait-related artifact resulting from variability in gait kine-
matics and kinetics, we regressed out the artifact template
signals from each EEG signal. Next, we applied an adaptive
independent component analysis (ICA) mixture model algo-
rithm (AMICA) (Palmer et al. 2006, 2008), generalizing info-
max (Bell and Sejnowski 1995; Lee et al. 1999a), and multiple
mixture (Lee et al. 1999b; Lewicki and Sejnowski 2000) ICA
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approaches, to parse EEG signals into spatially static, maxi-
mally independent component (IC) processes (Makeig et al.
1996).

Unlike more spatially stationary artifacts in EEG signals arising
from eye movements, scalp muscles, fMRI gradients, etc. (De-
bener et al. 2005, 2007; Jung et al. 2000a,b), which may be
resolved by ICA decomposition into a subspace of one or more
ICs, we found that gait-related movement artifact remained in
many if not most of the independent components. This prevented
us from removing only a small subset of components capturing
the movement artifacts. Instead, we applied the template regres-
sion procedure (previously applied to the channel data) to the IC
processes, reversed the time-warping to produce artifact-reduced
ICs, and applied the ICA mixing matrix to recover a second set of
artifact-reduced EEG signals.

To evaluate the combined effects of channel-based and
channel-based plus component-based artifact removal, we
computed the power spectral density of the resulting signals
and compared spectral power in the 1.5- to 8.5-Hz frequency
band before and after artifact removal, finding no sign of
overcorrection of the EEG signals. We also compared the
artifact-reduced stimulus event-related potentials (ERPs) in
walking and running conditions to uncorrected ERPs recorded
while standing. For the walking conditions, ERPs that were
nearly identical to ERPs while standing were visible before and
after applying noise reduction. For the running condition,
stable ERPs were only detectable after artifact removal.

M E T H O D S

Subjects

Eight healthy volunteers with no history of major lower limb injury
and no known neurological or locomotor deficits completed this study
(7 males and 1 female; age range, 21–31 yr). All subjects provided
written informed consent before the experiment. All procedures were
approved by the University of Michigan Internal Review Board and
complied with the standards defined in the Declaration of Helsinki.

Task

Subjects stood, walked (0.8 and 1.25 m/s), and ran (1.9 m/s) on a
force measuring treadmill facing a monitor placed at eye level �1 m
in front of them. Standard (80%) and oddball (20%) stimuli (vertical
or 45° rotated black crosses on a white background, respectively) were
displayed for 500 ms. The stimuli occupied about 75% of the display

area (14° of visual angle). The interstimulus interval between succes-
sive presentations varied randomly between 500 and 1,500 ms. For
each gait condition (standing, slower walking, faster walking, run-
ning), subjects performed two experimental blocks. In the first block,
subjects were asked to press a button on a wireless Wii controller
(Nintendo, Kyoto, Japan) held in their right hand whenever the target
(oddball) stimulus appeared. In the second block, subjects were asked
to silently count the number of target stimuli presented, without
producing a manual response. Each session began with the standing
condition, followed by the other three conditions in random order. The
standing blocks lasted 5 min each, whereas walking and running
blocks lasted 10 min each.

Recording brain and body dynamics

EEG was recorded using a compact ActiveTwo amplifier and
248-channel active electrode array (BioSemi, Amsterdam, The Neth-
erlands). Electrodes were affixed to the scalp using a custom made
whole head cap (Fig. 1). During the experimental setup, electrode
impedance was measured, and electrode gel was used to ensure that
the impedance was �20 K� for each channel. EEG signals were
sampled at 512 Hz and after collection were high-pass filtered above
1 Hz. All processing and analysis was performed in Matlab (The
Mathworks, Natick, MA) using scripts based on EEGLAB 7.1.4
(//www.sccn.ucsd.edu/eeglab), an open source environment for pro-
cessing electrophysiological data (Delorme and Makeig 2004).

For two of eight subjects, EEG signals could not be recorded during
the running condition because the electrode cap did not stay in place
during running (i.e., it was too big for the subject). For the remaining
six subjects, channels exhibiting substantial noise throughout the
collection were removed from the data in the following manner. First,
channels with SD �1,000 �V were removed; then any channel whose
kurtosis was �5 SD from the mean was removed; finally, channels
that were uncorrelated (r � 0.4) with nearby channels for �1% of the
time samples were removed. On average, 130 EEG channel signals
were retained after visual inspection and removal of noisy channels
(range, 89–164; SD, 24.6). The data were re-referenced off-line to the
average of the remaining channels. Visual stimulus events were
delivered, and their latencies were incorporated into the EEG data
stream using DataSuite (A. Vankov, //www.sccn.ucsd.edu/wiki/
DataSuite).

Subjects walked and ran on a custom built, dual-belt, force mea-
suring treadmill with two 24-in-wide belts mounted flush with the
floor (Collins et al. 2009). The distance between the belts was 0.75 in.
The average belt speed variation while adult subjects walk on this
treadmill at 1.25 m/s is 1.8%. The lowest natural frequency of the
force treadmill is 41 Hz (for mediolateral forces). Each belt has a
separate force platform mounted as its base for measuring ground

FIG. 1. Left: subject wearing a custom whole head 248-
channel electrode cap. Right: a sketch of the experimental setup
showing (A) motion capture cameras and (B) markers, (C) lower
limb EMG (not used in this study), (D) the EMG amplifier, (E)
the dual-belt in-ground force measuring treadmill, (F) the elec-
trode head-cap, (G) the EEG amplifier, and (H) the display for
the visual stimuli.
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reaction forces for each leg independently, with a sample rate of
1,200 Hz.

We used an eight-camera, 120 frames/s, motion capture system
(Motion Analysis, Santa Rosa, CA) to record the position of 25
reflective markers (low-pass filtered at 6 Hz to remove movement
artifact) on the lower limbs and pelvis. From these marker positions,
the kinematics of the ankle, knee, and hip joints were computed using
Visual-3D software (C-Motion, Germantown, MD). Event detection
algorithms within Visual-3D were used to determine when heel strikes
occurred based on vertical ground reaction forces. If force platform
signals were compromised because the subject drifted across the
centerline of the dual belt treadmill, a kinematic-based pattern recog-
nition technique within Visual-3D was used to identify heel strikes
(Stanhope et al. 1990).

Removal of gait-related movement artifact

EEG signals were epoched, time-locked to single gait cycles
(left heel strike to left heel strike), and linearly time-warped using
EEGLAB processes (Makeig et al. 2007) so that, after time-warping,
heel strike events (left then right) occurred at the same adjusted
latencies in each epoch. For each channel and each stride, a gait-
related artifact template was created by averaging the neighboring 20
time-warped stride-locked epochs (10 future epochs and 10 past
epochs). This artifact template was linearly scaled to best fit the
time-warped EEG signal in a least-squares sense and was subtracted
from the data to form artifact-reduced time-warped data. These
cleaned data were reverse time-warped to produce artifact-reduced
continuous time EEG channel signals. We refer to this process as
channel-based artifact removal (Fig. 2).

In addition, we performed ICA decomposition on the concatenated
single-trial data (including all experimental conditions) for each
subject separately using AMICA. Before performing ICA decompo-
sition, time periods of EEG with substantial artifact, based on the
z-transformed power across all channels at a given time-point being
�0.8, were rejected using EEGLAB. The rejected frames were in-
spected visually, and regions of �50 accepted frames between any
two sets of rejected frames were also rejected. The resulting ICA
unmixing matrix was multiplied with the cleaned EEG channel
signals, giving a set of maximally independent component (IC)
process time courses. These ICs were subjected to the same noise
reduction algorithm that was first applied to the channel data. Multi-

plying the further artifact-reduced ICs by the ICA mixing matrix (the
inverse of the unmixing matrix) resulted in a second set of further
cleaned EEG channel signals. We refer to this process as IC-based
artifact removal (Fig. 2).

Power spectral density

For each gait condition (standing, slower walking, faster walking,
running) and each method of artifact removal (before artifact removal,
after channel-based removal, after further IC-based removal), we
computed the power spectral density for each EEG channel using
Welch’s method. For illustrative purposes, we computed the power
spectral envelope for each subject, defined as the maximum and
minimum spectral density at each frequency over all EEG channels.
We analyzed spectral power in the 1.5- to 8.5-Hz range to assess the
efficacy of the gait-related artifact removal methods. This frequency band
was selected because 1) in all gait conditions for all subjects, it encom-
passed the step frequency and the first two harmonics of the step
frequency; 2) its lower cut-off (1.5 Hz) was greater that the high-pass
filter cut-off frequency (1 Hz) that was applied to all EEG signals before
analysis; and 3) frequencies �8.5 Hz accounted for �6% of the total
spectral power in the artifact templates for all gait conditions (slow
walking, 6.2%; faster walking, 5.1%; running, 5.5%; Fig. 3).

We used a 4-by-1 analysis of covariance (ANCOVA) to assess
changes in the power spectra of the EEG signals across gait conditions
before performing gait-related artifact removal. Spectral frequency
was treated as a covariate. To test the hypothesis that the gait-related
artifact removal procedures would decrease the spectral power in
the EEG signals for all locomotion conditions (slower walking,
faster walking, and running), we used the same ANCOVA model
and introduced method of artifact removal (before artifact removal,
after channel-based removal, after further IC-based removal) as a
repeated measure. All statistical analysis was performed in SPSS
17.0 (SPSS, Chicago, IL). Significance was set at � � 0.05 a priori.
Bonferroni correction was used to address the problem of multiple
comparisons.

Stimulus-locked ERPs

EEG signal epochs were extracted, time-locked from �600 to
�1,000 ms relative to visual stimulus onsets. Epochs containing
artifacts not related to locomotion (such as eye movements and line

FIG. 2. Flow chart of the channel-based (solid black arrows)
and component-based (dotted gray arrows) artifact removal
procedures. For component-based artifact removal, the inde-
pendent components were derived from channel-based artifact
removed EEG signals.
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noise) were excluded from further analysis using EEGLAB routines
that determined the probability of occurrence of each trial by com-
puting the probability distribution of EEG channel signals. Epochs
with a probability of occurrence �3 SD from the mean across all
epochs were rejected from further analysis (Delorme et al. 2007). The
remaining epochs were averaged to form EEG channel-based ERPs.
Additionally, these epochs were multiplied by the ICA unmixing
matrix to form IC activity epochs and averaged across epochs to form
IC-based ERPs.

Here, an alternative approach would have been to remove ocular,
electrocardiac, and other non–gait-related artifacts using ICA (Jung et
al. 2000a,b). However, if ICA-based artifact removal techniques had
been implemented, it would have been difficult to isolate the effects of
the template regression procedure on the channel power spectra from
the effects of ICA-based artifact removal techniques. The artifact
rejection procedure that we implemented ensured that gait-related
artifact, which was present in all trials, remained, whereas other
artifact events such as eye blinks and line noise were minimized in the
data analyzed.

Next, ICs were clustered across subjects using EEGLAB routines
implementing k-means clustering on vectors jointly coding differ-
ences in IC scalp maps, power spectra, and ERPs; the resulting joint
vector was reduced to 10 principal dimensions using principal com-
ponent analysis (PCA) (Gramann et al. 2009; Jung et al. 2001).
Previous analysis of a similar visual oddball discrimination task for
seated subjects showed that brain processes projecting maximally to
the frontal midline would contribute substantially to the ERP, partic-
ularly to the postmotor positivity (Makeig et al. 2004). Visualizations
of grand average IC-based ERPs confirmed that the mediofrontal IC
cluster (comprised of components projecting maximally to the frontal
midline) had a clear and substantial stimulus-locked ERP. Addition-
ally, at least one IC from each subject was contained in this cluster.
Therefore the ICs in the mediofrontal cluster were selected for further
analysis of the artifact removal procedures. For all ICs in the medio-
frontal cluster, each gait condition, and each stage of artifact removal,
we computed stimulus-locked IC-based ERPs and compared their
time profiles across conditions.

R E S U L T S

Power spectral density of the recorded EEG signals in-
creased with step frequency (Fig. 4). A 4-by-1 ANCOVA, with
spectral frequency (1.5–8.5 Hz) as the covariate, showed
significant differences in spectral power across gait conditions
before gait-related artifact removal [F(3,1) � 14,824, P �
0.001]. Grand mean spectral powers were 3.45, 4.43, 5.49, and

65.01 �V2/Hz during standing, slow walking, faster walking,
and running, respectively. In the running condition, the ampli-
tude of EEG signals before artifact removal could be an order
of magnitude larger than after artifact removal (Fig. 5).

The gait-related artifact removed was quasi-periodic at the
stride frequency. The most pronounced gait-related artifacts
tended to be 180° out of phase with vertical center-of-mass
displacement as estimated from the displacement of motion-
capture markers on the pelvis (Gard et al. 2004). However,
spectral power in the gait-related artifact template was not isolated
to the mean step frequency and its harmonics. This likely reflects
the complex dynamic interaction between the EEG sensors, the
EEG wires, the head cap, and the head, as well as to step-to-step
variations in stride duration. For example, stride duration varied
from roughly 720 to 800 ms for the running subject shown in
Fig. 6. In addition, the amplitude of the movement artifact
steadily increased over many strides. The template regression
procedure was developed to account for these slow (over many
strides) and fast (stride-to-stride) fluctuations in gait-related
artifact (Fig. 6). After performing removal of gait-related
artifact, the EEG signals appeared much cleaner (Fig. 6).

To evaluate the effects of the artifact removal procedures on the
EEG signal power spectra, we introduced artifact removal method
into our ANCOVA model as a repeated measure. Across all gait
conditions, spectral power in the EEG signals decreased with each
iteration of the artifact removal procedure [F(2,1) � 16,797, P �
0.001]. In both walking conditions (0.8 and 1.25 m/s), gait-related
artifact removed from the EEG signals was minimal (Fig. 7, A and
B). However, in the running condition (1.9 m/s), the EEG signals
exhibited substantial increases in spectral power across a broad
spectrum and particularly at the mean step frequency and its
harmonics. This artifact was reduced but not eliminated by the
channel-based and IC-based artifact rejection procedures (Fig.
7C). After IC-based artifact removal, the grand mean spectral
powers were 3.5, 3.9, and 31.7 �V2/Hz for slow walking, faster
walking, and running, respectively. The differences in the grand
mean spectral power between the standing condition and the
movement conditions remained significant for running (P �
0.001) and fast walking (P � 0.001) but not for slow walking
(P � 0.756). There was a significant interaction between subject
and artifact removal method [F(5,2) � 644, P � 0.001]. Specif-
ically, further decreases in spectral power after IC-based removal
(compared with spectral power after channel-based artifact re-
moval) were evident for some (3) but not all (6) subjects (Fig. 8).

FIG. 4. Average spectral power in the 1.5- to 8.5-Hz band for each subject
and each gait condition plotted vs. the subject-specific step frequency: walking
at 0.8 m/s (circle), walking at 1.25 m/s (star), and running at 1.9 m/s (triangle).
The gray horizontal line indicates the grand mean spectral power in the 1.5- to
8.5-Hz range for the standing condition. The black dashed line indicates a best
fitting line through the data (R2 � 0.75).

FIG. 3. Grand average power spectral density (�SD) of the independent
component (IC)-based artifact templates that were removed from the EEG
signals during walking at 0.8 m/s (blue line), walking at 1.25 m/s (green line),
and running at 1.9 m/s (red line). The shaded region indicates the frequency
band (1.5–8.5 Hz) used in subsequent statistical analyses.
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EEG signal epochs were extracted from �600 ms before to
�1,000 ms after visual stimulus onsets; these epochs were
averaged to form EEG channel ERPs. In the running condition,
channel ERPs appeared cleaner after gait-related artifact re-
moval than before artifact removal (Fig. 9).

In both walking conditions, ERPs time-locked to visual
target (oddball) stimulus onsets for ICs in the mediofrontal
cluster, before and after artifact removal, appeared similar in
time profile and amplitude to ERPs for the same ICs recorded
in the standing condition. Before artifact removal, the ampli-
tudes and time profiles of the IC ERPs in the running condition
did not resemble those in the standing condition; after artifact

removal, the IC ERPs in the running and standing conditions
appeared similar (Fig. 10).

D I S C U S S I O N

To our knowledge, this is the first study of EEG and ERPs
from a cognitive task recorded during human locomotion.
Our results show the feasibility of removing gait-related
movement artifact from EEG signals so that electrocortical
processes that are associated with cognitive, motor, or
perceptual tasks performed during locomotion can be stud-
ied. Specifically, we showed that by using high-density EEG

FIG. 5. A 5-s sample of EEG data from a representative
subject running at 1.9 m/s (A) before and (B) after performing
channel-based and IC-based artifact removal. The correspond-
ing vertical center-of-mass displacement is shown in C. Vertical
lines indicate left toe off (red), right heel strike (green), right toe
off (blue), and left heel strike (black). Bottom: topographical
layout of the 11 displayed EEG channels.

FIG. 6. Single-stride EEG signals at channel C1 (Fig. 5)
during running at 1.9 m/s for a representative subject, plotted as
color-coded horizontal lines smoothed with a (vertical) moving
average of 5 strides. Strides are sorted chronologically; 0
latency represents a left heel strike (LHS) and the solid traces
represent the latency of the next right and then left heel strikes
(RHS and LHS, respectively). Top left: the EEG signals before
artifact removal. Top middle: the gait-related artifact templates
removed. Top right: the EEG signals remaining after channel-
and IC-based artifact removal. Bottom right: the EEG signals
remaining shown on a 10-times finer color scale than the top
panels.
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recordings with (�248) active electrodes synchronized to
motion capture and mechanical force measurements, it is
possible to analyze EEG and derived ERP signals during
walking and that for a visual oddball task, these have similar
continuous and event-related dynamics as in a standing
subject condition. Furthermore, in a more active locomotor
condition (1.9 m/s running), we showed successful applica-
tion of artifact removal techniques that take into account the
time-varying nature of the gait-related artifact to separate
brain EEG signals from gait-related noise. In the running
condition, similar average ERP time-courses of IC processes
were only detectable after artifact removal.

To do this, we modified existing artifact removal techniques,
designed for time-invariant noise sources (Allen et al. 2000),
and applied them to EEG signals containing time-varying
gait-related movement artifact. The artifact removal method
that we implemented was intended to remove artifacts that
were phase-locked to the gait cycle. Other artifacts (e.g., line
noise, eye movement, and muscle activities) were not removed
by these means. These artifacts can be addressed by other
methods, such as by identifying ICs that explain the portions of
the EEG associated with these processes (Jung et al. 2000a,b).

The artifact removal method implemented here involved
1) performing a linear time-warping procedure to align heel
strike events to a common latency template before performing
artifact removal, 2) computing an artifact template for each
stride based on the surrounding 20 strides, 3) using linear
regression to fit a channel-based artifact template to the re-
corded signals for each stride, 4) performing ICA decomposi-
tion on the continuous data, 5) using linear regression to
remove a component-based artifact template from recorded
signals for each stride, 6) applying reverse time warping to the
artifact-reduced component signals, and 7) applying the ICA
mixing matrix to recover the artifact-reduced channel signals
(Fig. 2). We found that, in three of the six subjects, applying
the second stage of artifact removal (IC-based artifact removal,
steps 4–7 above) provided a clear further reduction in gait-
related movement artifact. The head cap may have fit some
subjects better than others, and the running mechanics of
certain subjects may have lead to more dramatic head accel-
erations. Nevertheless, it is not entirely clear why these further
reductions were evident in some but not all subjects.

The artifact removal method that we implemented requires
considerable computational resources. To run ICA, enough

FIG. 7. EEG channel power spectral density envelopes (max
and min channel spectra): before artifact removal (dashed line),
after performing channel-based artifact removal (dash-dot line),
and after performing IC-based artifact removal for a represen-
tative subject (A) walking at 0.8 m/s, (B) walking at 1.25 m/s,
and (C) running at 1.9 m/s (solid line). Gray vertical lines
indicate the mean step frequency in each condition.

FIG. 8. During 1.9 m/s running, (A)
grand mean spectral power in the 1.5- to
8.5-Hz band for all channels and subjects
and (B) for all channels for each subject
separately: before artifact removal (black);
after channel-based artifact removal (gray);
and after subsequent IC-based artifact re-
moval (white). Error bars show �SD. *P �
0.01; **P � 0.001.
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RAM must be available to load all EEG signals for each
subject into the Matlab workspace (�248 channels 	 512
samples/s 	 70 min, occupying 2 GB in single precision).
Using 16-GB nodes of a compute cluster, we encountered no
memory problems. AMICA is designed to run in parallel over
several nodes and computation time scales near-linearly with
the number of nodes available. By processing in parallel over
eight nodes, we were able to run AMICA for each subject
overnight.

Although 248 channels of EEG were recorded for each
subject, on average only 130 channels were retained for
analysis. A contributing factor here was that only a single
electrode cap was available. Whereas attempts were made to
recruit subjects with appropriately sized heads, in some
cases, the head cap was too large for the subject (particu-
larly in the posterior neck region). Because of unresolvable
artifact caused by loose electrode placements, particularly
noticeable in the running condition, 55 of the 248 electrodes
were rejected �75% of the time; these electrodes were
highly concentrated in the posterior neck region. The cus-
tom head cap was designed to cover regions of the head and
neck below the level of the inion (Fig. 1). This design was

useful for recording neck muscle contributions to ongoing
EEG in looking and pointing tasks (Gramann et al. 2009;
Makeig et al. 2009), but it was not optimal for recording
EEG during locomotor tasks, because it did not allow the
head and posterior neck portions of the cap to move with
respect to each other.

There are many areas for further study that arise from the
work presented here. We used active electrodes for this study
that passed high-level signals through the electrode cables.
Undoubtedly, passive electrodes would be more prone to
movement artifacts arising from cable sway. Whether the
artifact removal method that we implemented could be used to
remove movement artifact from EEG recorded with passive
electrodes during walking and running should be studied. In
addition, wireless EEG systems, now in development in many
places, would likely reduce, but likely not eliminate, move-
ment artifact. When possible, the artifact removal method
proposed here should be re-evaluated using wireless elec-
trodes. Furthermore, we selected a 20-stride moving window
for the artifact template because we found that this provided
enough steps to generate a smooth template yet was still
sensitive to the long-term (over many steps) variations in the

FIG. 9. Mean target event-related potentials (ERPs) of 5
EEG channels from a representative subject during running at
1.9 m/s. The scalp locations of the 5 EEG channels are shown
in the bottom left. In each panel, 3 stages of analysis are shown:
before artifact removal (blue trace); after performing channel-
based artifact removal (green trace); and after subsequent IC-based
artifact removal (black trace). Zero latency represents the onset of
the visual target stimulus.

FIG. 10. Mean target ERP of a mediofrontal IC from a
representative subject. The scalp topography of the selected IC
is shown below the legend. Traces show ERPs in 3 gait
conditions: (A) walking at 0.8 m/s; (B) walking at 1.25 m/s; and
(C) running at 1.9 m/s. In each panel, the ERP while standing
is shown (red traces) along with ERPs in 3 stages of analysis:
before artifact removal (blue traces); after performing channel-
based artifact removal (green traces); and after subsequent
IC-based artifact removal (black traces). Zero latency represents
the onset of the visual target stimulus. Vertical axis units:
root-mean square microvolt projection of the IC process to all
scalp electrodes.

Innovative Methodology

3532 J. T. GWIN, K. GRAMANN, S. MAKEIG, AND D. P. FERRIS

J Neurophysiol • VOL 103 • JUNE 2010 • www.jn.org

 on July 19, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


movement artifact. Further parametric analysis to determine
the optimal number of strides to include in the artifact template
is recommended. Finally, we applied the artifact removal
method to EEG collected during a visual oddball task. Future
studies should examine other types of tasks.

We evaluated the efficacy of the procedure on EEG collected
during treadmill walking and running, relatively rhythmic motor
tasks. However, the artifact removal procedure we implemented is
not inherently limited to removing quasi-rhythmic motor artifacts. It
may be possible to use a related procedure to remove mechanical
artifact from bio-electric signals recorded during other locomotor
tasks, such as tasks involving rapid directional changes or responses
to ground perturbations, provided enough trials are available for
creation of an appropriate set of artifact templates and movement-
related kinematic signals are available for performing appropriate
time-warping. Here, a simple stride-order based moving average
template was effective. In conditions involving locomotor challenges,
extraction of mean templates might for instance be based on moving
averages of trials sorted by challenge as well as time on task.
Furthermore, if head kinematics were recorded and synchronized to
the EEG data stream in real time, it might be possible to perform
mechanical artifact removal on-line, with a delay limited only by the
duration of the mechanical artifact template. These are avenues of
inquiry worthy of pursuit.

Mobile recordings of EEG signals during natural behaviors
may provide a foundation for further exploration into the complex
links between distributed brain dynamics and motivated natural
behavior. Makeig et al. 2009 proposed a wearable mobile brain/
body imaging (MoBI) system and new data-driven analysis meth-
ods to model the complex resulting data. The artifact removal
procedures shown here may enable the use of MoBI in more
dynamic environments than previously thought.
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