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Abstract— Here we report first results of numerical meth-
ods for modeling the dynamic structure and evolution of
epileptic seizure activity in an intracranial subdural electrode
(iEEG, ECoG) recording from a patient with partial refrac-
tory epilepsy. A 15-min dataset containing two seizures was
decomposed using up to five competing adaptive mixture ICA
(AMICA) models. Multiple models modeled early or late ictal,
or pre-or post-ictal periods in the data, respectively. To localize
sources, a realistic Boundary Element Method (BEM) head
model was constructed for the patient with custom open skull
and plastic (non-conductive) electrode holder features. Source
localization was performed using Sparse Bayesian Learning
(SBL) on a dictionary of overlapping multi-scale cortical
patches constructed from 80,130 dipoles in gray matter perpen-
dicular to the cortical surface. Remaining mutual information
among seizure-model AMICA components was dominated by
two dependent component subspaces with largely contiguous
source domains localized to superior frontal gyrus and precen-
tral gyrus; these accounted for most of the ictal activity. Similar
though much weaker dependent subspaces were also revealed in
pre-ictal data by the associated AMICA model. Electrocortical
source imaging appears promising both for clinical epilepsy
research and for basic cognitive neuroscience research using
volunteer patients who must undergo invasive monitoring for
medical purposes.

I. INTRODUCTION

Epilepsy is one of the most common neurological disor-
ders, affecting 50 million people worldwide, and in approxi-
mately 30% of these patients the seizures are not controlled
by any available medical therapy. About 4.5% of all pa-
tients with epilepsy are thus potential candidates for surgical
treatment. Epilepsy surgery has a good chance of success in
this patient group, but only if the brain region initiating the
ictal activity can be accurately localized and safely removed.
For this purpose, in selected cases, recordings are acquired
from implanted subdural and/or depth electrode (intracranial)
during pre-surgical evaluation. Here, we model and image the
source dynamics of electrocorticographic (ECoG, iEEG) data
before, during and after occurrence of epileptic seizures in 15
min of data from a patient with an implanted ECoG electrode
grid and strips. The accuracy of source localization is heavily
influenced by the electrical head model used. Applying a
best-fitting sphere or average-template head model may give
mis-estimates of seizure onset location of up to 2–3 cm
[1]. The influences on current flow of post-surgical defects
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in the skull and the plastic sheets in which the subdural
electrodes are embedded cannot be neglected [2]. Here, we
used the Boundary Element Method (BEM) to solve the
forward problem using the NFT head modeling toolbox [3].
A custom head model included the non-conducting plastic
sheets in which the subdural electrodes were attached and the
large opening left in the skull during implantation to reduce
patient discomfort from associated brain tissue swelling [2].

Another factor that affects source localization of ictal
activity is the degree of isolation of ictal activity from the
spontaneous EEG background. In earlier studies we have
shown Infomax Independent Component Analysis (ICA)
developed by Makeiget al [4] can successfully separate
seizure and non-seizure source activities [2]. Here we useda
recently developed extension, adaptive multiple-mixtureICA
(AMICA) to model the nonstationarity in the data [5] we
have found to return components whose time courses are
more independent than infomax or other ICA methods tested
(Delorme et al., submitted).

Source modeling and choice of the inverse method also
affect cortical source localization. Parametric ‘equivalent
current dipole’ methods assume that potential maps of in-
terest can be approximated by a few dipolar sources. ‘Dis-
tributed source’ methods assume that potentials are generated
by a large number of dipolar sources distributed across
the cortical surface [6]. Other source models that may be
more physiologically accurate model an EEG source as a
cortical patch with a fixed relative source intensity profile
of activity synchronously produced across the patch [7].
Plummeret al (2010) compared the effect of various forward
models, distributed inverse source localization algorithms,
and subspace constraints [8]. They used data from four
patients with benign focal epilepsy of childhood plus four
mesial temporal lobe epilepsy patients. Three realistic head
models derived from the MNI template brain were used
for forward solutions. These researchers reported that the
sLORETA algorithm, constrained to find cortical patches
or cortical rotating dipoles, generated the most robust and
clinically meaningful results. A recent study by Wipf et al.
compared Sparse Bayesian Learning (SBL) methods with
other distributed localization methods including sLORETA,
beamforming, and minimum current estimation, reporting
that SBL methods were the most successful in estimating
distributed sources [9]. In a previous report, we showed that
using a multi-scale patch-based source space, SBL was able
to find both sulcal and gyral sources of standard ECoG grid
data [10]. The following section describes the head modeling,
AMICA, component clustering based on mutual information,
and inverse solution steps.



II. M ETHODS

A. Forward problem solution and head modeling of the
epilepsy patient

When a patient is hospitalized for epilepsy surgery, scalp
EEG is monitored and a magnetic resonance (MR) head
image is acquired. Before epilepsy surgery, a pre-surgical
procedure is applied in which a portion of their skull is
removed and areas around the suspected epileptogenic zone
are recorded and sometimes stimulated to determine whether
the seizure generating region is localized and suitable for
operation, e.g. not within or too close to eloquent cortex. CT
images of the head are then acquired to locate the intracranial
electrodes.

To generate an electrical forward head model, first the
MR and CT images of the patient were co-registered. The
skull, intracranial electrodes, and the plastic sheet in which
the subdural electrodes were embedded were segmented from
the CT images. The brain and the scalp were segmented from
the MR images using an open source Matlab toolbox, NFT
(Neuroelectromagnetic Forward Head Modeling Toolbox)
[3]. Figure 1 shows the BEM meshes for the skull, plastic
sheet, and the scalp. Here, the CSF was not modeled for
simplicity. The resulting model was used in forward- and
inverse-problem (FP/IP) calculations to localize independent
sources of iEEG data from their respective projection patterns
to the grid channels returned by AMICA.

Fig. 1. BEM model of the scalp, skull and the plastic sheet, represented by
10,000, 30,000, and 7,000 faces, respectively. The right figure is the plastic
sheet model of the plastic grid and strip electrode matrices.

B. Adaptive mixture independent component analysis (AM-
ICA)

Infomax Independent Component Analysis (ICA) has
proven to be an effective method for removing eye and
muscle activity artifacts from scalp EEG data, thus increasing
the potential signal-to-noise ratio of subsequent analyses [4].
ICA can also identify and separate functionally independent
components, which for normal scalp EEG prove to be most
often associated with scalp maps matching the projection
of a single equivalent current dipole. ICA decomposition
returns a vector of weights giving the relative strength and
polarity of the projection of each IC source process to each
of the electrodes, and an activation time series giving the
time course of activity of each IC process during the data
time period.

We have previously shown source localization results
using Infomax ICA [10]. Here, we used a recently developed
adaptive mixture ICA (AMICA) method in which a number
of models compete with each other to fit the data. This allows
us to model non-stationarity in the data source structure by
allowing different models to account for different time peri-
ods. The data are segmented by AMICA in an unsupervised
manner using a variational EM algorithm combined with a
Newton method for updating the model bases. The AMICA
model:

x(t) = Amsm(t), m = 1, . . . , n (1)

wherex(t) is the data,Am is the mixing matrix for themtℎ

model, andsm(t) is the activation for themtℎ model. n
is the total number of models. Given the estimated model,
the segmentation is performed using the maximum posterior
likelihood, given by,
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We applied AMICA to 16 minutes of 78-channel iEEG
data (Figure 2) from subdural electrodes recorded from an
epilepsy patient and including two brief ictal (seizure) peri-
ods (Figure 3). We compared AMICA decompositions using
1-5 models. Multiple models allowed individual adaptationto
differeces in spatiotemporal source structures during seizure
and nonseizure periods. The temporal segmentation returned
by AMICA was consistent across varying model numbers.
Additional models adapted to some time-local features ex-
pressed in the data. In the five-model decomposition, the
two seizures were segmented consistently into early and
late phases. The logarithm of the posterior likelihood given
in equation (2) is plotted over all time points in Figure
4 for the 1-model and 5-model decompositions. In the 1-
model decomposition, overall data likelihood (given the
model) drops severely during seizure periods, while in the 5-
model decomposition the seizure periods are better accounted
by other models that represent pre-seizure, early seizure,
late seizure, early post-seizure, and later post-seizure data,
respectively.

Fig. 2. CT image of the implanted grid electrodes. The two grids(6 ×

8, 4×6) and one medial strip (1×8) implanted in the patient for monitoring.

C. Sparse patch-based inverse problem solution

Next, we generated a realistic cortical source space in-
corporating 80,130 dipole elements oriented perpendicular
to the local cortical surface, located from the subject MR
head images using tessellated FreeSurfer gray and white
matter surfaces (surfer.nmr.mgh.harvard.edu). The lead field
matrix (LFM) for this source space was calculated using
the BEM tools in the NFT toolbox. To create a multi-scale



Fig. 3. The iEEG data. All channels are plotted on the same axis. The
seizure periods are highligtened.

0 2 4 6 8 10 12 14 16
−400

−350

−300

−250

−200

0 2 4 6 8 10 12 14 16
−1000

−800

−600

−400

−200

minutes

Fig. 4. Likelihood graphs for single model and 5-model Amica decompo-
sition.

cortical patch basis on this brain mesh surface, we selected
for each single voxel dipoles, three conformal, gaussian-
tapered cortical patches of three sizes with geodesic radiiof
10 mm, 6 mm, and 3 mm [11]. Figure 5 shows the three
gaussian patches centered on a single cortical voxel. We

Fig. 5. Three Gaussian patches of different size centered ona cortical
mesh voxel with radius 10 mm, 6 mm, and 3 mm.

solved the EEG inverse problem for each AMICA component
by identifying a sparse collection of cortical patches thatbest
accounted for its grid map using sparse Bayesian learning
(SBL) [12]. Figure 6 shows projection maps for six IC
processes to the model subdural electrode sheet and strips,
and their associated source localization estimates. These
components were selected from the early-seizure model of 5-
model AMICA decomposition; all participate in the seizure.
Component (d) is the seizure onset component as well as
the component accounting for inter-ictal spikes observed in
the data by our clinical collaborators. Most of the seizure-
related component locations are compact gyral patches, but
there are also sulcal components as shown in Figure 6 (e).
This IC process projects to two separate broad pools of
electrodes with opposite polarities and has a compact source
area estimate located in a sulcus. The spatial extent of the
source regions (a), (b), and (c) look similar, but the degree
of focality of the source projections to the recording grid
differs according to the estimate source location.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Projection maps (interpolated on the electrode grid and strip
surfaces) and patch-basis SBL localization of the corticalsource domain,
shown on the whole cortical surface and in close-up.

D. Component pairwise mutual information and dependency
clustering

We calculated the pairwise mutual information (PMI)
between the component processes to better understand how
the component time courses differ. The PMI calculation is
based on estimating the entropies of the signal using the
usual binning method in which channel value histograms
and a simple Riemann integral approximation are used to
compute the entropies. This approach is generally suitablefor
larger sample sizes like those encountered for EEG data. We
then clustered the components using a heuristic method of
searching for permutations in component order that produce
approximately more block diagonal PMI matrix. We searched
for component position swaps, or pairs of swaps, that most
decrease a cost function penalizing the magnitudes of the
off-diagonal elements. This was done iteratively until a local
minimum was reached. Figure 7 shows the sorted PMI of
components in the 5-model decomposition (a) for the pre-
seizure model, and (b) for the first part of the seizure. We
then imaged the activations and source estimates of the
revealed component subspaces. Figures 8 and 9 show the
activations of the subspace components during 5 seconds of
pre-ictal or ictal period data and and their summed source
location estimates.

The activations of the components in each AMICA cluster
had similar time patterns, and the components were localized
by SBL to nearby or partly overlapping cortical patches.
There were two main active regions during seizure as shown
in the first and last columns of Figure 9. The first active
region was on the superior frontal gyrus and the second
in the precentral gyrus. We computed PMI on those data
points best accounted by each model. Thus, the pre-seizure
PMI clusters were trained predominantly on pre-seizure data



only. Yet we observed that the source locations of the (much
weaker) PMI residual-dependency clusters for this model
were quite similar to those for the seizure model. To

(a) (b)

Fig. 7. Pairwise mutual information between maximally independent
components of two models in the 5-model decomposition. (a) Pre-seizure
model, (b) first part of the seizure. Component subspaces exhibiting partial
residual dependency are highlighted.

Fig. 8. Activations and sources of the components in the dependency
clusters shown in Figure 7(a) (pre-seizure period).

test the stability of this observation, we decomposed an
additional 15 minutes of non-seizure data using single-model
AMICA and again calculated the component PMI. We found
6 weak dependency clusters; two of them had grid maps and
source distributions again similar to the two principal early-
seizure model clusters for the seizure data, suggesting that
the seizures exploit background susceptibilities to dependent
interaction of these areas.

III. CONCLUSIONS AND FUTURE WORK

Here, we analyzed intracranial EEG recordings using
multi-model AMICA and numerical forward and inverse
source estimation methods and presented patch-based source
localization results for seizure data recorded from an epilepsy
patient during invasive pre-surgical monitoring. We calcu-
lated PMI between components and clustered components
exhibiting dynamic interdependency. We found two predom-
inant dependent clusters that accounted for much of the ictal
activity and were localized to contiguous cortical areas. In
a companion paper [13], the dynamic interactions of these
two regions are further modeled using multivariate causality
and information flow methods. It seems possible that elec-
trocortical source imaging may allow valuable insights into
the electrophysiological dynamics of the human brain (both
normal and abnormal).

Acknowledgments: The authors would like to thank to Tim
Mullen for the fruitful discussions on source and connectivity
analysis of the seizure activity.

Fig. 9. Activations and sources of the components in the dependency
clusters shown in Figure 7(b) (seizure period)
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