Electrocortical source imaging of intracranial EEG data in epilepsy
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Abstract—Here we report first results of numerical meth- in the skull and the plastic sheets in which the subdural
ods for modeling the dynamic structure and evolution of electrodes are embedded cannot be neglected [2]. Here, we
epileptic seizure activity in an intracranial subdural electrode used the Boundary Element Method (BEM) to solve the

(IEEG, ECoG) recording from a patient with partial refrac- - .
tory epilepsy. A 15-min dataset containing two seizures was forward problem using the NFT head modeling toolbox [3].

decomposed using up to five competing adaptive mixture ICA A custom head model included the non-conducting plastic
(AMICA) models. Multiple models modeled early or late ictal, sheets in which the subdural electrodes were attached and th
or pre-or post-ictal periods in the data, respectively. To localize |arge opening left in the skull during implantation to reduc
sources, a realistic Boundary Element Method (BEM) head 5iient discomfort from associated brain tissue swellig [

model was constructed for the patient with custom open skull Another factor that affect localizati f ictal
and plastic (non-conductive) electrode holder features. Souec nother tactor that affects source localization ot icta

localization was performed using Sparse Bayesian Learning activity is the degree of isolation of ictal activity frometh
(SBL) on a dictionary of overlapping multi-scale cortical spontaneous EEG background. In earlier studies we have

patches constructed from 80,130 dipoles in gray matter perpen- shown Infomax Independent Component Analysis (ICA)
dicular to the cortical surface. Remaining mutual information developed by Makeiget al [4] can successfully separate

among seizure-model AMICA components was dominated by . d . tivities 21, H d
two dependent component subspaces with largely contiguous seizure and non-seizure source activities [2]. Here we ase

source domains localized to superior frontal gyrus and precen- recently developed extension, adaptive multiple-mixt@a
tral gyrus; these accounted for most of the ictal activity. Simila ~ (AMICA) to model the nonstationarity in the data [5] we

though much weaker dependent subspaces were also revealed inhave found to return components whose time courses are

pre-ictal data by the associated AMICA model. Electrocortical more independent than infomax or other ICA methods tested
source imaging appears promising both for clinical epilepsy .

research and for basic cognitive neuroscience research using (Delorme et al., TSme'ttEd)' . )

volunteer patients who must undergo invasive monitoring for ~ Source modeling and choice of the inverse method also

medical purposes. affect cortical source localization. Parametric ‘equévdl
current dipole’ methods assume that potential maps of in-
l. INTRODUCTION terest can be approximated by a few dipolar sources. ‘Dis-

Epilepsy is one of the most common neurological disortributed source’ methods assume that potentials are gedera
ders, affecting 50 million people worldwide, and in approxi by a large number of dipolar sources distributed across
mately 30% of these patients the seizures are not controll#fte cortical surface [6]. Other source models that may be
by any available medical therapy. About 4.5% of all pamore physiologically accurate model an EEG source as a
tients with epilepsy are thus potential candidates forisatg cortical patch with a fixed relative source intensity profile
treatment. Epilepsy surgery has a good chance of succes®inactivity synchronously produced across the patch [7].
this patient group, but only if the brain region initiatinget Plummeret al (2010) compared the effect of various forward
ictal activity can be accurately localized and safely reetbv models, distributed inverse source localization algomih
For this purpose, in selected cases, recordings are adquiand subspace constraints [8]. They used data from four
from implanted subdural and/or depth electrode (intrdatan patients with benign focal epilepsy of childhood plus four
during pre-surgical evaluation. Here, we model and image timesial temporal lobe epilepsy patients. Three realistadhe
source dynamics of electrocorticographic (ECoG, iEEGadatmodels derived from the MNI template brain were used
before, during and after occurrence of epileptic seizurdbi for forward solutions. These researchers reported that the
min of data from a patient with an implanted ECoG electrodsLORETA algorithm, constrained to find cortical patches
grid and strips. The accuracy of source localization is ligav or cortical rotating dipoles, generated the most robust and
influenced by the electrical head model used. Applying alinically meaningful results. A recent study by Wipf et al.
best-fitting sphere or average-template head model may gigempared Sparse Bayesian Learning (SBL) methods with
mis-estimates of seizure onset location of up to 2-3 cmther distributed localization methods including sSLORETA
[1]. The influences on current flow of post-surgical defectbeamforming, and minimum current estimation, reporting

that SBL methods were the most successful in estimating

This work is supported by The Swartz Foundation (Old Fiel¥)nd  gjistributed sources [9]. In a previous report, we showed tha
by grant (NS 047293-06S1) from the National Institutes ofilfe USA. . .

Z. Akalin Acar, Jason Palmer and S. Makeig are with theUSINg @ multi-scale patch-based source space, SBL was able
Swartz Center for Computational Neuroscience, INC, Univto find both sulcal and gyral sources of standard ECoG grid
of California San Diego, CA, USA. Gregory Worrell is with gatg [10]. The following section describes the head modelin
the Department of Neurology, Mayo Clinic, Rochester, MN, . . .
USA. [ zeynep, j ason, scott] @ccn. ucsd. edu, AMICA, component clustering based on mutual information,
Worrel | . G egory@myo. edu and inverse solution steps.



Il. METHODS We have previously shown source localization results
using Infomax ICA [10]. Here, we used a recently developed
epilepsy patient adaptive mixture ICA (AMICA) method in which a number
of models compete with each other to fit the data. This allows

When a patient is hospitalized for epilepsy surgery, scalps to model non-stationarity in the data source structure by
EEG is monitored and a magnetic resonance (MR) healowing different models to account for different time jper
image is acquired. Before epilepsy surgery, a pre-surgicatls. The data are segmented by AMICA in an unsupervised
procedure is applied in which a portion of their skull ismanner using a variational EM algorithm combined with a
removed and areas around the suspected epileptogenic zdofevton method for updating the model bases. The AMICA
are recorded and sometimes stimulated to determine whethmeodel:
the seizure generating region is localized and suitable for z(t) = A"s™(t), m=1,...,n (1)
operation, e.g. not within or too close to eloquent cortek. C . ] o )
images of the head are then acquired to locate the intratranj'herez () is the dataA™ is the mixing matrix for then'”
electrodes. model, ands™(t) is the activation for then!” model. n

To generate an electrical forward head model, first thi$ the total number of models. Given the estimated model,
MR and CT images of the patient were co-registered. Thr‘_gle _segment_anon is performed using the maximum posterior
skull, intracranial electrodes, and the plastic sheet ificwh lIkelihood, given by,
the subfjural electrodes.were embedded were segmented from p(z|My) = | det A,j1|ph(A,jlxt) )
the CT images. The brain and the scalp were segmented from
the MR images using an open source Matlab toolbox, NFWe applied AMICA to 16 minutes of 78-channel iEEG
(Neuroelectromagnetic Forward Head Modeling Toolboxylata (Figure 2) from subdural electrodes recorded from an
[3]. Figure 1 shows the BEM meshes for the skull, plastiepilepsy patient and including two brief ictal (seizure)ipe
sheet, and the scalp. Here, the CSF was not modeled feds (Figure 3). We compared AMICA decompositions using
simplicity. The resulting model was used in forward- andl-5 models. Multiple models allowed individual adaptation
inverse-problem (FP/IP) calculations to localize indefmert  differeces in spatiotemporal source structures duringusei
sources of IEEG data from their respective projection paste and nonseizure periods. The temporal segmentation returne
to the grid channels returned by AMICA. by AMICA was consistent across varying model numbers.
Additional models adapted to some time-local features ex-
pressed in the data. In the five-model decomposition, the
two seizures were segmented consistently into early and
late phases. The logarithm of the posterior likelihood give
in equation (2) is plotted over all time points in Figure
4 for the 1-model and 5-model decompositions. In the 1-
model decomposition, overall data likelihood (given the
model) drops severely during seizure periods, while in the 5
model decomposition the seizure periods are better acedunt
by other models that represent pre-seizure, early seizure,

Fig. 1. BEM model of the scalp, skull and the plastic sheetesgnted by late seizure, early post-seizure, and later post-seizate, d
10,000, 30,000, and 7,000 faces, respectively. The rightdigs the plastic respectively.
sheet model of the plastic grid and strip electrode matrices.

A. Forward problem solution and head modeling of the

B. Adaptive mixture independent component analysis (AM-
ICA)

Infomax Independent Component Analysis (ICA) has
proven to be an effective method for removing eye angig. 2. CT image of the implanted grid electrodes. The two gl
muscle activity artifacts from scalp EEG data, thus indr@as 8,4 x6) and one medial stripl(x 8) implanted in the patient for monitoring.
the potential signal-to-noise ratio of subsequent analj4ke
ICA can also identify and separate functionally independen ) .
components, which for normal scalp EEG prove to be mo$t: SParse patch-based inverse problem solution
often associated with scalp maps matching the projection Next, we generated a realistic cortical source space in-
of a single equivalent current dipole. ICA decompositiorcorporating 80,130 dipole elements oriented perpendicula
returns a vector of weights giving the relative strength antb the local cortical surface, located from the subject MR
polarity of the projection of each IC source process to eadiead images using tessellated FreeSurfer gray and white
of the electrodes, and an activation time series giving thmatter surfaces (surfer.nmr.mgh.harvard.edu). The ledd fi
time course of activity of each IC process during the datmatrix (LFM) for this source space was calculated using
time period. the BEM tools in the NFT toolbox. To create a multi-scale




Fig. 3. The iEEG data. All channels are plotted on the same dkie
seizure periods are highligtened.

(d) (e) (®

Fig. 6. Projection maps (interpolated on the electrode grid atrip
surfaces) and patch-basis SBL localization of the cortszalrce domain,
shown on the whole cortical surface and in close-up.

Fig. 4. Likelihood graphs for single model and 5-model Amicaatepo-
sition.

D. Component pairwise mutual information and dependency

cortical patch basis on this brain mesh surface, we select«gléI stering o _ _

for each single voxel dipoles, three conformal, gaussian- We calculated the pairwise mutual information (PMI)
tapered cortical patches of three sizes with geodesic oadii between the component processes to better understand how
10 mm, 6 mm, and 3 mm [11]. Figure 5 shows the threéhe component time courses differ. The PMI calculation is

gaussian patches centered on a single cortical voxel. Vp@sed on estimating the entropies of the signal using the
usual binning method in which channel value histograms

and a simple Riemann integral approximation are used to
compute the entropies. This approach is generally suifable
larger sample sizes like those encountered for EEG data. We
then clustered the components using a heuristic method of
Fig. 5. Three Gaussian patches of different size centered oartical SearChI.ng for permutations .m component OrP'er that produce
mesh voxel with radius 10 mm, 6 mm, and 3 mm. approximately more block diagonal PMI matrix. We searched
for component position swaps, or pairs of swaps, that most
solved the EEG inverse problem for each AMICA componerdecrease a cost function penalizing the magnitudes of the
by identifying a sparse collection of cortical patches tiedt off-diagonal elements. This was done iteratively until eglio
accounted for its grid map using sparse Bayesian learnimginimum was reached. Figure 7 shows the sorted PMI of
(SBL) [12]. Figure 6 shows projection maps for six ICcomponents in the 5-model decomposition (a) for the pre-
processes to the model subdural electrode sheet and stripsizure model, and (b) for the first part of the seizure. We
and their associated source localization estimates. Thetben imaged the activations and source estimates of the
components were selected from the early-seizure model of Eevealed component subspaces. Figures 8 and 9 show the
model AMICA decomposition; all participate in the seizureactivations of the subspace components during 5 seconds of
Component (d) is the seizure onset component as well pse-ictal or ictal period data and and their summed source
the component accounting for inter-ictal spikes observed iocation estimates.
the data by our clinical collaborators. Most of the seizure- The activations of the components in each AMICA cluster
related component locations are compact gyral patches, had similar time patterns, and the components were lochlize
there are also sulcal components as shown in Figure 6 (by SBL to nearby or partly overlapping cortical patches.
This IC process projects to two separate broad pools dhere were two main active regions during seizure as shown
electrodes with opposite polarities and has a compact sourin the first and last columns of Figure 9. The first active
area estimate located in a sulcus. The spatial extent of thegion was on the superior frontal gyrus and the second
source regions (a), (b), and (c) look similar, but the degreie@ the precentral gyrus. We computed PMI on those data
of focality of the source projections to the recording gridpboints best accounted by each model. Thus, the pre-seizure
differs according to the estimate source location. PMI clusters were trained predominantly on pre-seizure dat




only. Yet we observed that the source locations of the (much
weaker) PMI residual-dependency clusters for this model

were quite similar to those for the seizure model.

(b)

Fig. 7.

residual dependency are highlighted.
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Fig. 8.
clusters shown in Figure 7(a) (pre-seizure period).

Pairwise mutual information between maximally indepetid
components of two models in the 5-model decomposition. (a) Eirese
model, (b) first part of the seizure. Component subspaces igrbilpartial

Activations and sources of the components in the démwy
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9. Activations and sources of the components in the digrary

clusters shown in Figure 7(b) (seizure period)

(1]
(2]

(3]

test the stability of this observation, we decomposed ari ]
additional 15 minutes of non-seizure data using singleehod
AMICA and again calculated the component PMI. We found

6 weak dependency clusters; two of them had grid maps ang
source distributions again similar to the two principallgar

seizure model clusters for the seizure data, suggestirtg tha

the seizures exploit background susceptibilities to ddpeh

interaction of these areas.
II. CONCLUSIONS AND FUTURE WORK

(6]

(7]

Here, we analyzed intracranial EEG recordings using
multi-model AMICA and numerical forward and inverse

exhibiting dynamic interdependency. We found two predom-
inant dependent clusters that accounted for much of the icfd¥
activity and were localized to contiguous cortical areas. I[11)
a companion paper [13], the dynamic interactions of these
two regions are further modeled using multivariate catsali
and information flow methods. It seems possible that elegry)
trocortical source imaging may allow valuable insightoint
the electrophysiological dynamics of the human brain (botﬁg]

normal and abnormal).

Acknowledgments. The authors would like to thank to Tim

Mullen for the fruitful discussions on source and conneftiv

analysis of the seizure activity.

REFERENCES

Z. Akalin Acar, S. Makeig, Effects of head models on EEG rseu
localization, SFN 2010, San Diego.

Z. Akalin Acar, S. Makeig, G. Worrell, Head modeling andriical
localization in epilepsy,Proc. of IEEE EMBC 2008, Vancouver,
Canada.

Z. Akalin Acar, S. Makeig, Neuroelectromagnetic forwdread mod-
eling toolbox,J. of Neuroscience Methads, vol 190(2), 258-270, 2010.
S. Makeig, A. J. Bell, T-P. Jung, and T. J. Sejnowsdkigdependent
component analysis of electroencephalographic data, In: D. Touretzky,

M. Mozer and M. Hasselmo (Eds). Advances in Neural Information

Processing Systems 8:145-151 MIT Press, Cambridge, MA; 1996.

] J.A. Palmer, K. Kreutz-Delgado, B. D. Rao, S. Makeig, Mg

and Estimation of Dependent SubspacPsoceedings of the 7th
International Conference on Independent Component Analysis and
Sgnal Separation, 2007.

C.M. Michel, M.M. Murray, G.L. Lantz, S. Gonzalez, L. Silli, R.
G. de Peralta, EEG source imagin@linical Neurophysiology, vol.
115, 2004, 2195-2222.

T. Limpiti, B. D. Van Veen, R. T. Wakai, Cortical patch basinodel
for spatially extended neural activityEE Trans. on Biomed. Eng.,
vol 53(9), 2006, 1740-1754.

) . 8] C. Plummer, M. Wagner, M. Fuchs, S. Vogrin, L. Litewka, Srifh,
source estimation methods and presented patch-basedasou#c

localization results for seizure data recorded from arepgy
patient during invasive pre-surgical monitoring. We calcu
lated PMI between components and clustered componen{s

C. Bailey, A.S. Harvey, M.J. Cook, Clinical utility of digiuted
source modelling of interictal scalp EEG in focal epilep€}inical
Neurophysiology, vol 121, 2010, 1726-1739.

] D. Wipf, J. Owen, H. Attias, K. Sekihara, and S. NagarajRobust

Bayesian Estimation of the Location, Orientation, and TimaiGe
of Multiple Correlated Neural Sources using MEG, vol 49@)10.
Z. Akalin Acar, G. Worrell, S. Makeig, Patch-based owat source
localization in epilepsyProc. of IEEE EMBC 2009, Minneapolis.
R.R. Ramirez, S. Makeig, Neuroelectromagnetic sourcegingaof
spatiotemporal brain dynamical patterns using frequencyadio in-
dependent vector analysis (IVA) and geodesic sparse tayksirning
(gSBL), HBM 2007.

D. Wipf, R.R. Ramirez, J.A. Palmer, S. Makeig, B.D. Raoh&
ysis of empirical Bayesian methods for neuroelectromagneticce
localization’, NIPS, 1505-1512, 2007.

T. Mullen, Z. Akalin Acar, G. Worrell, S. Makeig, Modelg Neu-
ronal Source Dynamics and Interactions During Seizure, sitéoinio
EMBC 2011.



