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Abstract. Decomposition of temporally overlapping sub-
epochs from 3-s electroencephalographic (EEG) epochs 
time locked to the presentation of visual target stimuli in 
a selective attention task produced many more 
components with common scalp maps before stimulus 
delivery than after it. In particular, this was the case for 
components accounting for posterior alpha and central 
mu rhythms. Moving-window ICA decomposition thus 
appears to be a useful technique for evaluating changes in 
the independence of activity in different brain regions, 
i.e. event-related changes in brain dynamic modularity. 
However, common component clusters found by moving-
window ICA decomposition strongly resembled those 
found by decomposition of the whole EEG epochs, 
suggesting that such whole epoch decomposition reveals 
stable independent components of EEG signals. 
 
Introduction 
 
The application of ICA or blind source separation to 
human brain electromagnetic data shows much promise 
(Makeig et al., 1996).  Applied to a collection of average 
responses, ICA can separate the observed spatially labile 
activity into spatially fixed components that 
parsimoniously account for the responses in all the 
conditions (Makeig et al., 1997). Detailed examination of 
the activity of these components may show distinct, 
systematic relationships to condition differences and, 
moreover, to subject behavior, thereby revealing 
neuropsychological aspects of performance in the studied 
conditions (Makeig et al., 1999a, 1999b). However, the 
artificial temporal overlap in the underlying EEG sources 
induced by response averaging means that ICA may be 
optimally applied to averaged evoked response data only 
under certain conditions, including high signal to noise 
ratio and the availability of many contrasting response 
conditions. 

A more general and promising procedure is to blindly 
decompose collections of single-trial EEG recordings 
from event-related response experiments into spatially 
fixed, temporally independent components (Makeig et al., 
1996; Vigario et al., 1997; Jung et al., 1998, 1999).  This 
procedure allows ICA to use trial-to-trial variations in 

relative amplitudes, latencies and phases of coherent 
activity in different brain networks to separate them. 

One major category of independent EEG components 
comprise the so-called EEG artifacts generated by eye 
blinks, eye movements, and scalp muscle activity can be 
used for removing evidence of these artifact sources from 
event-related EEG time windows or epochs prior to 
averaging (Jung et al., 1999, in press). ICA can also be 
applied to event-related EEG epochs. The dynamics of 
brain networks that participate in event-related 
information processing can be measured over time both 
after and before experimental events of interest. 
Response averaging, which has dominated the field of 
event-related human brain dynamics for the last 30 years, 
has obscured an important question: Are spontaneous 
EEG dynamics related to event-related responses, and if 
so, how? 

The limits of the usefulness of ICA, and in particular, 
infomax ICA, for EEG analysis will ultimately depend on 
the fit between the assumptions of the analysis method 
and the composition of EEG data. Here, we attempted to 
examine two assumptions of infomax: (1) that EEG 
sources are spatially fixed, and (2) that the effective 
number of independent sources is fewer than the 
available number of recording channels (here, 31). We 
introduce first a method of decomposing data by applying 
infomax ICA successively to sets of brief data windows 
defined by their relative temporal relationship to some 
class of experimental events, here visual stimuli to which 
subjects were instructed to respond with a button press. 
 
 

Fig. 1. View of the task display. Stimulus disks were 
flashed in five boxes in random order. Subjects responded 
to stimuli presented in the attended box by a button press. 
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Methods 
 
EEG recordings were obtained from twenty-three 
volunteer subjects ranging in age from 16 to 80 years 
during performance of a visual selective attention task. 
Participating subjects, fourteen males and nine females, 
were right-handed with normal or corrected to normal 
vision. During 76-second trial blocks, subjects were 
instructed to attend to one of five squares continuously 
displayed on a back background 0.8 cm above a centrally 
located fixation point (Fig. 1). The squares, measuring 
1.6 cm by 1.6 cm, were positioned horizontally at angles 
of 0°, ±2.7° and ±5.5° in the visual field from the point of 
fixation. Four squares were outlined in blue while one, 
marking the attended location, was outlined in green (Fig. 
1). The location of the attended location was 
counterbalanced across trial blocks. 
 
Filled white disks were presented for 117 ms within one 
of the five squares at equally probable inter-stimulus 
intervals of 250 ms, 500 ms, 750 ms and 1000 ms. 
During task performance, subjects were required to 
maintain fixation on the central cross while responding as 
quickly as possible with a right thumb button press 
whenever a disk appeared in the attended square. Each 
subject participated in thirty continuous trial blocks 
involving presentation of a total of 120 target and 480 
non-target stimuli at each of the five locations (Makeig et 
al., 1999a).  
 
EEG Data. From electrodes mounted in a standard 
electrode cap, EEG data were recorded at 29 scalp 
locations in an arrangement adapted from International 
10-20 System. Activity produced primarily by eye 
movements and blinks (plus EEG activity) was obtained 
from sensors positioned at the left outer canthus and 
below the right eye. All channels were referenced to the 
right mastoid. All data was sampled (or in some cases 
digitally down sampled) at 256 Hz within an analog pass 
band of 0.1-100 Hz to minimize computational demands 
during analysis. The experiments were conducted in an 
electromagnetically unshielded room in which corruptive 
60-Hz activity was induced by a nearby commercial 
(pizza) oven. To eliminate this unwanted activity, 
appropriate analog (60-Hz notch) and digital (50-Hz low 
pass) filters were applied during data collection and 
preprocessing. 
 
Moving-window ICA. Unlike principal component 
analysis (PCA), ICA attempts to split components with 
different scalp distributions if their activations (activity 
time courses) differ. For example, electromyographic 
(EMG) activity waveforms from different facial and 
temporal muscles tend to be independent of one another, 
hence, their spatially distinct and time-course 
independent EEG activities are decomposed by infomax 

into separate components (Jung et al., 1999). An 
unknown but relatively large number of EEG and 
artifactual processes may contribute to the human EEG. 
Infomax ICA, on the other hand, is able to separate at 
most a number of components equal to the number of 
recording channels. As input data size is increased, 
infomax decomposition of ERP recordings may become 
increasingly more sensitive to over-completeness (i.e., 
the presence of more active sources than recording 
channels). Since the activities of most contributing EEG 
generators may be sparsely distributed across different 
parts of each trial, separate decompositions of shorter 
trial sub-epochs may reveal activities that would not be 
separated by whole-epoch decomposition. 
 
Infomax ICA (Bell & Sejnowski, 1996) may be applied 
to data samples from concatenated single event-locked 
time sub-epochs from a collection of single-trial response 
epochs. One advantage of this approach is the ability to 
look for the stability of independent components across 
the event-related epoch. Another purpose was to look for 
spatially labile components. Since if the time span of a 
sub-epoch were sufficiently short, the displacement of 
possible moving sources might be assumed to be 
negligible within its duration.  
 
Target Response Decomposition. Moving-window 
decompositions of 500-600 3-sec EEG epochs (from 
1000 ms before to 2000 ms after target stimulus onsets) 
from each of the 23 subjects were performed on data 
from each epoch within overlapping 500-ms (128-point) 
windows successively offset by 5 samples (~20 ms), 
yielding 129 overlapping sub-epochs. Default runica() 
training parameters were used (Makeig et al., 1998). 
 
Surrogate Data Decomposition. To determine the 
performance that might be expected from moving-
window infomax applied to real EEG recordings, a 
surrogate EEG data set was constructed to share several 
properties of the actual EEG data. Two 31-component 
decompositions of 500-600 ERP target response trials 
from two subjects constituted the foundation of the 
surrogate data set. A total of 43 topographically 
distinguishable components were selected from this 62-
component collection. The power spectral density (PSD) 
of each component's activity was computed using 
Welch's averaged-periodogram method. From the 
estimated spectrum, an FIR filter was constructed which, 
in least-squares terms, matched the component PSD. 
Amplitude probability distributions functions (PDFs) 
were also assessed from their respective activity 
histograms. 
 
Forty-three statistically independent white noise 
processes with Gaussian distributions and unit variance 
were generated. Filtering a process with any of the 
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previously designed EEG component filters caused the 
PSD of resulting process to match the PSD of the EEG 
component corresponding to the applied filter. Matching 
the generally sparse EEG PDFs required transformation 
of the surrogate process PDFs. These were constructed 
from the EEG-component and surrogate-process 
histograms using the MATLAB histfit() function. The 
nonlinear re-mapping of sample values altered the fitted 
process PSD by reducing attenuation of small activity 
above 60 Hz. However, as nearly all recorded neural 
activity of interest occurred in low-frequency bands, the 
effect of histogram fitting was not noticeable (Fig. 2).  
 
Linear mixtures for each EEG channel were produced by 
back projection to the scalp and EOG channels via the 
corresponding EEG-component scalp maps. Component 
amplitudes were exponentially scaled so as to match the 
best-fitting exponential fall-off of root-mean square 
(RMS) amplitude from the largest (1st) to smallest (31st) 
actual independence component projections from the two 
subjects. Amplitudes of the 32nd through 43rd surrogate 
sources were determined by extrapolation of the same 
exponential. In this manner, 434 surrogate 768-sample 
data epochs were produced to simulate the original 3-s 
data epochs on which the surrogate data set was based. 
Fig. 2 shows selected actual and surrogate data epochs. 
The surrogate data epochs were then decomposed by ICA 
using methods identical to those used for target-response 
decomposition.  

     
 
Matching Successive Components. Weight matrices 
resulting from moving-window decomposition were 
transformed into scalp activity maps by matrix inversion 
and were then normalized to unity norm. To analyze the 
evolution of the moving-window components across sub-
epochs, matching components in adjacent overlapping 

sub-epochs had to be identified. Component scalp maps 
from adjacent sub-epochs were examined to determine 
which components they shared in common. Map 
resemblance was defined by a variation of the cross-
correlation coefficient in which scalp sensors were 
considered observations and maps were regarded as 
variables. A symmetric version of the Mahalanobis 
distance measure was used for this purpose (Enghoff, 
1999). 
 
The maps in a cluster were characterized by the mean 
cluster map and time course. Matching produced virtual 
paths through decompositions in successive time sub-
epochs, allowing analysis of component map trajectories. 
Components appearing only in a single decomposition 
were considered outliers. An intuitive method for 
visualizing evolving changes in the decompositions was 
to generate MPEG movies of the sequences of maximally 
matching maps. The total correlation between the 
optimally paired maps from successive overlapping sub-
epochs was used as a measure of map stability.  
 
Results 
 
By correlating the original source maps with the merged 
component maps, on average 19 of the original 43 spatial 
sources were recovered from the 43-source overcomplete 
surrogate data set with absolute map correlations above  
 

 
 
0.85. In many though not all cases, the strongest 
embedded sources were most accurately recovered. 
Movies of merged and matched components of the 
overcomplete surrogate data and of the actual target 
response data from the subject whose component maps 
were used as templates for the largest surrogate data 

Fig. 2. Surrogate EEG data set (left)  
based on the ICA decomposition of the 
actual EEG data from the subject 
whose data are shown on the right. 
Surrogate data were composed by 
mixing white noise sources whose 
amplitudes, topographic projections to 
the scalp, power spectra and 
probability distributions were filtered 
to resemble those of the actual subject 
ICA components. Additional 
components from another subject were 
added to the surrogate data to simulate 
overcompleteness (see text). 
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components can be downloaded in full from 
http://www.cnl.salk.edu/~scott/mapmovies.html. Since 
the surrogate data movie contains many fewer moving-
window-component disappearances and sudden shifts 
than movies of the actual subject data decompositions, 
we undertook a closer analysis of component stability in 
the target-response decompositions.  

 
Map Stability Across Sub-epochs. Fig. 3A (left panel) 
shows histograms of the correlations between the best-
paired maps for each pair of adjacent sub-epochs for all 
23 subjects. The adjacent-pair correlation histogram for  
the overcomplete surrogate data set is shown in the right 
panel. Two facts are evident from Fig. 3A. First, the 
moving-window ICA decompositions of the actual target 
response data became clearly less stable after stimulus 
presentation. For example, the 10th percentile of 
correlation in the final sub-epoch (left panel, lower trace, 
right side) was 0.674, while the 10th percentile of the 
surrogate data correlations never dipped below 0.974.  

Second, even in the pre-stimulus period the 
decompositions of the actual data were somewhat less 
stable than the surrogate decompositions. 
 
Between-Subjects Component Similarity. For each 
subject, all 31x129 (stimulus-locked) maps from the 
moving-window decompositions were clustered without 
regard to time of occurrence, yielding 80 component 
clusters (or "moving-window components") per subject. 
Mean scalp maps for these 1840 (80x23) moving-window 
components were then clustered, again without regard for 
their times of occurrence. Of the resulting 40 "between-
subjects" clusters, several accounted for eye blinks, 
lateral eye movements or temporal muscle activity, as 
judged by their scalp maps, mean spectra and activity 

patterns in single trials (Jung et al., in press). Consistent 
with the sub-epoch correlation results, the mean number 
of components per sub-epoch decomposition contributing 
to the 40 moving-window component clusters declined 
from 14 before stimulus onset to 7 at the end of the epoch 
(Fig. 3B). Although the sub-epoch decompositions 
contained several components (typically, among the 
smallest) with noiselike or 'blotchy' maps, none of the 40 
cluster maps contained more than one (monopolar) or 
two (bipolar) spatial maxima. 
 
Fig. 3C (below) shows a case in which three moving-
window component clusters from one subject were 
included in a single between-subjects cluster. Two of 
these were separated out concurrently from sub-epochs in 
the pre-stimulus period. However, in sub-epochs centered 
175 ms or more following stimulus onset, the two 
components were replaced with a single similar 
component.  

 

Component Mobility. Examination of the MPEG movies 
of the merged moving-window components revealed 
little or no evidence of independent components moving 
fluidly across the scalp. Instead, the observed spatial 
instability in the moving-window components was 
comprised mainly of (1) abrupt jumps (when a moving-
window component was no longer detected and a 
distinctly different component was assigned its place in 
the map array), and (2) fluctuations in the peripheral 
extent but not the focus of the active scalp region.  
 
Equivalent-dipole source modeling was performed on 
three such moving-window components from the central 
posterior alpha cluster using a three-shell spherical model 
(Scherg & Ebersole, 1994). These component series 

B 

C 

A 

Fig. 3. (A) Histograms of the correlations between best-matched component pairs in adjacent overlapping sub-epochs 
for the surrogate data set (right) and the actual EEG data (mean of 23 Ss). White lines show the 10th, 50th and 90th 
percentiles of the distributions. (B) The number of sub-epoch components clustered, indexed by the center time of the 
sub-epoch window (23 Ss). (C) Sub-epochs in which 3 moving-window component clusters were detected (1 S) . 
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could be well fit by two opposing equivalent current 
dipoles located approximately in the left and right banks 
of the central fissure in the occipital lobe near the 
calcarine sulci. In two of the subjects, this posterior alpha 
moving-window component composed of maps from all 
sub-epochs. In the third, a similar component was 
detected in sub-epochs centered before 245 ms after 
stimulus onset. In all three subjects, the variability in the 
scalp map throughout the detection period could be well 
modeled by changes in the relative strengths (but not the 
locations) of the two dipoles. The residual variance of the 
two-dipole models to the entire observed sequences of 
component maps were low (< 5%). 
 
Oscillatory Component Clusters. At least four other 
clusters accounted for posterior alpha moving-window 
components (each drawing from 6-12 subjects). These 
clusters included a preponderance of pre-stimulus sub-
epochs. Altogether, 18 of the 23 subjects contributed one 
or more components to these four clusters. Another 
subject contributed a component to the central occipital 
alpha cluster. The alpha peak in all four component 
spectra was at 10 Hz. All four between-subjects mean 
cluster maps could be fit by single equivalent dipoles 
located in left or right occipital cortex with very low 
residual variance (1.25% ± 0.8%).  
 
Three or more between-subjects component clusters 
accounted for centrolateral mu activity, circa 10-Hz 
rhythms of the motor cortex with a second spectral peak 
near 20 Hz, sometimes giving them their prototypical ' ' 
shape. Moving-window component maps belonging to 
these clusters came from 20 of the 23 subjects, but not 
from sub-epochs following the button press, in which mu 
activity was blocked (Makeig et al., in press). Sequences 
of maps forming moving-window mu components could 
also be accounted for by single equivalent dipole models 
with low (<5%) residual variance. Moreover, these 
models placed the equivalent dipole close to the known 
location of the hand motor areas in the middle of the left 
and right central sulci. 
 
Moving-window versus Whole-epoch Decomposition. 
To determine the stability and completeness of the 
moving-window decompositions relative to 
decomposition of the whole epochs, each subject's 3-s 
target-response trials were decomposed in a single 
("whole-epoch") decomposition, yielding 31 independent 
components. Following decomposition, the 713 (31x23) 
whole-epoch components from all subjects were 
clustered in the same manner as the moving-window 
components. The mean maps for the resulting 80 whole-
epoch component clusters were then correlated with the 
mean maps of the 80 between-subjects moving-window 
component clusters.  
 

Altogether, 23 between-subjects component pairs were 
correlated above 0.90. Some of these clearly accounted 
for artifacts (eye movements, temporal muscles). Both 
decomposition methods also separated similar (map 
r>0.90) alpha and mu component clusters. However, the 
number of subjects included in the moving-window 
component clusters was about 65% larger than the 
number contributing to the corresponding whole-epoch 
clusters. 
 
Discussion 
 
Concatenated, the ~500 3-s data epochs from each 
subject comprised about 25 minutes of EEG data. 
Performing a single (whole-epoch) decomposition of this 
much data is not necessarily the best strategy for 
separating the underlying neural (and artifactual) data 
sources. Over many minutes, many more brain areas 
(and/or EEG artifacts) might become coherently active, 
producing more spatial EEG patterns on the scalp than 
the number of recording channels. Two possible 
strategies for overcoming this potential overcompleteness 
problem: Either make more restrictive assumptions about 
the components or their activity distributions, allowing 
the use of overcomplete ICA algorithms (Lewicki & 
Sejnowski, in press), or else divide the data into shorter 
training sets. Here we applied the second strategy. 
Moreover, instead of separating the data into epoch 
groups from the beginning, middle and end of the test 
session, we separated the data matrix into overlapping 
sub-epochs defined by their time relationship to target 
stimulus presentations. This approach tacitly assumes 
stationarity of the EEG spatial structure across the 
session, but allowed us to assess rapid event-related 
variations in its spatial structure time. 
 
We found several such variations. First, the number of 
component maps that were clustered with a symmetric 
Mahalanobis metric was twice as large before target 
stimulus presentation as at epoch end two seconds later. 
Several categories of components participated in this 
trend, notably posterior alpha and central mu 
components, whose moving-window component maps 
were sufficiently similar in large numbers of subjects to 
be grouped into between-subject clusters by the same 
algorithm. Components accounting for eye and muscle 
activity, however, tended to be active throughout the 
epoch. 
 
There may be multiple reasons why fewer alpha and mu 
components were separated by moving-window 
decomposition of sub-epochs following stimulus onset. 
Characteristic mu component activity near 10 Hz and 20 
Hz was blocked following the button press (Makeig et al., 
in press). The amplitude of posterior alpha activity, 
meanwhile, was hardly if at all affected by stimulus 
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presentation. Typically, however, we have found that 
following visual stimulus presentation the phase of alpha 
components may be reset to a common value. Resetting 
the phase of two or more alpha components concurrently 
might thereby collapse their independence, reducing the 
number of such components separated in later sub-epoch 
decompositions. Whether or not these explanations 
together account for the preponderance of alpha-band and 
other (e.g., frontal) components in the pre-stimulus epoch 
clusters is a subject for further research. 
 
Another important fact emerging from the two-stage 
clustering procedure was that complex, blotchy or noisy-
appearing maps, although found in every decomposition, 
were never clustered between subjects and rarely between 
sub-epochs, thereby suggesting they represented 
unresolved mixtures of low-level sources and/or noise. 
Exceptions to this rule were the cluster of stable and 
simple-appearing central occipital alpha components 
found in six of the subjects. Source modeling of these 
components required two coherently active current 
dipoles located in the left and right occipital pole. 
However, other common alpha component maps could be 
very well accounted for by single dipoles.  
 
This suggests that the basic and important principle of 
brain spatial modularity, which posits that brain 
processing is carried out in multiple circa-cm2 brain 
regions, should be augmented to include a principle of 
dynamic modularity, wherein coherently synchronous 
activities occurring within different modular brain areas 
are substantially independent of one another. The relative 
independence of spike trains in individual even nearby 
neurons has long been viewed as a basic fact of 
neuroscience. The relative independence of coherent 
activity in different modular brain areas is suggest by 
their decomposition by ICA into separate components 
that can be modeled using a single equivalent source 
dipole. ICA decomposition (either moving-window or 
whole-epoch) then allows examination of event-related 
modulations of the dynamic independence of different 
brain areas.   
 
While our results suggest the number of brain areas 
making major contributions to scalp EEG may be 
relatively few (certainly less than the number of active 
brain areas), non-invasive examination of dynamics in 
and between active brain networks appears to afford a 
real scientific opportunity for system-level modeling of 
the neural substrates of cognition. The fact of spatial 
brain modularity, meanwhile, creates the opportunity for 
spatial ICA to separate important sources of blood 
oxygen level difference (BOLD) signals recorded in brain 
functional magnetic resonance imaging (fMRI) 
experiments (McKeown et al., 1998). 

  

One near term goal of our research is to compare the 
results presented here with those obtained from ICA 
decomposition of higher-density EEG (or MEG) 
recordings. Further research into methods for assessing 
the dynamics of brain activity within and between 
independent components may give the field of cognitive 
neuroscience important new tools for exploring and 
characterizing systems-level brain dynamics 
accompanying or underlying human cognition. 
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