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TABLE III
RECOGNITION SCORES FOR THEDETECTION OFRIGHT AND LEFT IMAGINED

MOVEMENTS IN 13 SUBJECTS. PERCENTAGESOBTAINED WITH THE DIFFERENT

COMBINATIONS OF CLASSIFIERS(MAHALANOBIS-BASED WITH FULL,
MAF, OR DIAGONAL, MAD, MATRIX, AND SSP)AND TWO OR FOUR

ELECTRODESARE LISTED

patterns is the decrease/increase of the power spectrum with respect to
a baseline period [1]–[3] Additionally, our findings suggest that mental
activity can be reliably detected by preprocessing the EEG signal with
a SL estimator, even when using only nine electrodes. Though the SL
estimator used is not absolutely accurate due to the reduced number
of electrodes, the linear combination of channels that implements SL
estimation is likely to apply a favorable transformation in the features’
space. This transformation would simplify the distribution of patterns
representing the EEG power distribution corresponding to different
mental tasks. These findings are in line with those already obtained
in a previous study [4].

In this study, we demonstrated that for the purpose of controlling by
EEG the movement of a cursor on a computer screen, an interelectrode
distance of 6 cm returned SL estimations more efficient than those ob-
tained with an interelectrode distance of 3 cm. The difference in per-
formance between the SL9 and SL methods (presented in Table II)
presumably indicates that the former was better matched to the top-
ographical extent of the EEG control signal. This study suggests that
reduction of the number of scalp electrodes is possible for BCI devices.
We observed that in a rather large group of normal subjects (13), EEG
activity related to the imagination of movements detected by two elec-
trodes placed over C3 and C4 scalp positions can be discriminated by a
simple quadratic classifier. The characteristic property of the best per-
forming classifier tested in this study is its ability to take into account
the covariance of features’ vectors. The evidence of higher recognition
scores of this classifier may suggest that the spectral features used are
actually correlated. This correlation should be taken into account in the
classifier design to increase substantially the recognition scores.

The present result enlarges to a higher number of subject the obser-
vations made by Pfurtschelleret al. [2], also extending their results to
normal subjects, whose cortical representation of the hand area, sam-
pled from the two electrodes, is still intact and engaged in the network
that allows the subject to control his muscles.
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EEG Changes Accompanying Learned
Regulation of 12-Hz EEG Activity

Arnaud Delorme and Scott Makeig

Abstract—We analyzed 15 sessions of 64-channel electroencephalo-
graphic (EEG) data recorded from a highly trained subject during sessions
in which he attempted to regulate power at 12 Hz over his left- and
right-central scalp to control the altitude of a cursor moving toward target
boxes placed at the top-, middle-, or bottom-right of a computer screen.
We used infomax independent component analysis (ICA) to decompose
64-channel EEG data from trials in which the subject successfully up-
or down-regulated the measured EEG signals. Applying time-frequency
analysis to the time courses of activity of several of the resulting 64
independent EEG components revealed that successful regulation of the
measured activity was accompanied by extensive, asymmetrical changes
in power and coherence, at both nearby and distant frequencies, in several
parts of cortex. A more complete understanding of these phenomena
could help to explain the nature and locus of learned regulation of EEG
rhythms and might also suggest ways to further optimize the performance
of brain-computer interfaces.

Index Terms—Brain–computer interface (BCI), electroencephalogram
(EEG), independent component analysis (ICA), rhythm.

I. INTRODUCTION

When we alternately raise and then lower our arm at will, we have
little awareness of the fact that these two actions involve complex coor-
dination of activity in different sets of muscles. When a trained subject
operating a brain–computer interface (BCI) raises or lowers, at will, a
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particular amplitude measure of their electroencephalographic (EEG)
signals (without producing muscle activity), are the changes produced
in their EEG dynamics similarly complex? In particular, does up- and
down-regulation of a specific EEG measure produce or involve other
changes in their EEG dynamics? Answers to these questions might shed
light on the fundamental nature and locus of learned EEG control and
might also be used to guide the development of optimal BCI algorithms.

II. M ETHODS

We analyzed 15 half-hour BCI sessions conducted in the Wolpaw
group laboratory [1], [2], on a single highly-trained male subject (HK).
In these experiments, changes in the amplitude of 12-Hz EEG power
at left-central C3 electrode summed with the 12-Hz power at right cen-
tral C4 electrode produced proportional changes in the screen height
of a left-to-right moving cursor during experiments in which the sub-
ject attempted to make the cursor reach a goal box placed at the top,
middle, or bottom right of a computer screen. Here, we report results for
approximately 1000 successful top (up-regulate) and 1000 successful
bottom (down-regulate) trials. Here, for simplicity, we omit results for
the maintain-level trials. Further details of the experimental method-
ology are available elsewhere [3]. The sessions analyzed were num-
bers 196–210 for this subject, who at the time of these sessions had
participated in similar experiments twice weekly for over two years.
The frequency and scalp loci of the indicator rhythm used by the BCI
algorithm had been hand tuned during previous sessions to optimize
subject performance on the task, which during these sessions was con-
sistent (up, 81% successful; down, 79%; chance level, 33%).

We used infomax independent component analysis (ICA) [4], [5] to
decompose the 64-channel whole-scalp recordings into 64 maximally
independent components. Many of these components accounted for
eye or scalp muscle activity, or for single- or multichannel noise.
We selected several of the larger components for detailed analysis
using the EEGLAB Matlab toolbox [6]. One of these (the ninth
largest by variance accounted for) clearly displayed characteristics
of a right-hemisphere�-rhythm generator, with its characteristic 11-
and 22-Hz spectral peaks. The scalp map representing the projection
of this component to the electrodes resembled closely the projection
of a single dipole; BESA [7] source analysis showed that a single
dipole in a spherical head model accounted for 97.8% of the scalp
map variance. The resulting dipole was located near to the typical
hand area of motor cortex, in line with previous results of ICA
decomposition in button-press tasks [8] and with detailed investigations
of �-rhythm generators [9]. Other components we analyzed accounted
for independent posterior alpha activities and for activity with 5-
and 8-Hz peaks projecting to frontocentral cortex. The scalp maps of
these components could also be fit by a single dipole with 4%–6%
residual variance. To study the concomitant dynamics of each of
these components during learned�-rhythm regulation, we computed
erp-image plots [10], and event-related spectral perturbation (ERSP)
[11] and event-related coherence images [12].

III. RESULTS

Fig. 1(b) shows that while power at the 12-Hz regulation frequency
is distributed across the head, the spatial pattern of 12-Hz regulation is
maximal near C3, with a second maximum near C4. During up-regula-
tion, 12-Hz power is higher than during down-regulation at all channels
except over right prefrontal scalp [Fig. 1(a)]. Fig. 1(c) demonstrates that
relative to down-regulation, up-regulation is associated with increased
power at C3 and at C4 across the EEG frequency range, with a differ-
ence maximum at 12 Hz and smaller peak differences near 2, 4, 22, and
38 Hz. Near 12 and 22 Hz, the regulation effect is stronger at C3 than
C4; at other frequencies it is equal at both channels.

Fig. 1. Effects of learned regulation on EEG spectral power of a highly trained
subject performing a BCI experiment in which summed changes in EEG power
near 12 Hz at sites C3 and C4 were used to adjust the screen height of a moving
cursor. In each trial, the target box appeared at time 0, and the cursor at 1.5 s.
The subject’s task was to make the cursor move into a box placed at the right top
or bottom of the screen. (A) Power difference at 12 Hz during active regulation
(up-regulate minus down-regulate, 800–2000 ms). (B) Distribution of 12-Hz
power at baseline (0–500 ms). (C) Power spectra during regulation (800–2000
ms) at C3 and C4. Note that during up-regulation, EEG power is larger at nearly
all frequencies than during down-regulation (lower traces).

To explore the spatial and frequency-domain extent of the effects
of EEG egulation, we analyzed activity of several independent EEG
components accounting for portions of 12-Hz power at C3 and C4.
Fig. 2 shows the mean and trial-length sorted and smoothed single-
trial time courses of power around 12 Hz in the right-� component
[mapped in Fig. 2(a)] in successful up- and down-regulate trials. During
regulation (800–2000 ms), this component accounted for a mean of
27% of 12-Hz power at site C4 and 15% at C3.

In both conditions, the appearance of the target cue at 0 ms is fol-
lowed by a dip in power peaking near 300 ms, with return to baseline
in both trial types near 700 ms. Thereafter, the two power trajectories
diverge until trial end (Fig. 2(c), curved lines). Following the end of
the trial, amplitude decreases in both conditions. The two trajectories
are not mirror images of each other, however. After an initial surge (at
roughly 800–1100 ms), up-regulation is sustained for the trial duration
(Fig. 2(c), top), whereas during down-regulation 12-Hz power returns
nearly to baseline at about 2 s. Note that following down-regulate trials,
12-Hz power actually dips below its minimum down-regulated level.

Some concomitant effects of 12-Hz regulation on other EEG
processes are shown in Fig. 3, which portrays, for three independent
EEG components accounting for posterior alpha activities, trial-length
sorted single-trial power trajectories at the frequency in the alpha band
showing the largest event time-locked variability. Note that the up- and
down-regulate trial trajectories for these components also differ from
one another, with largest differences between conditions appearing
after trial end.

Fig. 4 shows the concomitant effects of�-rhythm regulation on other
EEG frequencies in the right-� component spectrum. For this compo-
nent, 12-Hz regulation was accompanied or followed by modulations of
power in narrow bands near 7, 11, 17, and 30 Hz. Power trajectories at
these frequencies differed in several ways between up- and down-reg-
ulate conditions.

Fig. 5 shows that the changes in EEG dynamics accompanying
�-rhythm regulation included changes in partial phase coherence
between maximally independent components accounting for indepen-
dent posterior alpha rhythms [13]. These changes also differed in up-
and down-regulate conditions. In particular, partial phase coherence
at 12 Hz between these processes appeared to be stronger during
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Fig. 2. Time course of relative spectral power at 12 Hz (by 3-cycle wavelets) in an independent EEG component accounting for-rhythm activity projecting
most strongly to the right-central scalp. Same subject as in Fig. 1. (A) Scalp map showing the fixed pattern of projection of the component to the scalp electrodes.
(B) Mean 12-Hz component power trajectories for the two trial conditions. The central grey band shows bootstrap power baseline and bootstrap significance limits
( 0.01). (C) Time course of power at 12 Hz in 1000 single trials per condition sorted in order of trial duration and then smoothed vertically with a 100-trial
moving average (curved lines show trial end; vertical axis: smoothed trial number).

Fig. 3. Power trajectories for three independent EEG components in successful-rhythm up- and down-regulate trials. Same subject and trials as in Figs. 1 and 2.
All three components have a peak in their activity spectrum near 10 Hz. (A) Power at 10.5 Hz in a central posterior alpha component, shows alpha block following
target onset, stronger in down-regulate trials, particularly after cursor onset. After trial offset, power returns to baseline. (B) 9.5-Hz power ina left posterior alpha
source, showing blocking after target onset (1.5 s) in down-regulate trials only. (C) 9-Hz power in a right posterior alpha source, showing phasic increases after
target and cursor onsets and a power increase after offset of up-regulate trials only.

Fig. 4. Time/frequency decomposition (by FFT) of the right-independent component of Fig. 2 in successful up- and down-regulate trials. Bootstrap significance
level: 0.01 (A) Scalp map showing the pattern of projection of the component to the scalp electrodes. (B) Mean power spectrum in up-regulate (black trace)
and down-regulate (gray) trials. Dashed vertical line shows the 12-Hz frequency used to control cursor altitude. (C) Time-frequency decompositions for up- and
down-regulate trials. In up-regulate trials, changes in 12-Hz power are accompanied by inverse changes in power near 7.5 and 20 Hz. In down-regulate trials, power
decreases at 12–15 Hz are accompanied by a somewhat different set of amplitude modulations.
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Fig. 5. Event-related phase coherence in successful-rhythm up- and down-regulate trials between two independent EEG components whose alpha-power time
courses are shown in Fig. 3. (A) In up-regulate trials, 12-Hz phase coupling of the two components increases (top arrow) whereas in down-regulate trials it becomes
insignificant (bottom arrow). Bootstrap significance level: 0.01. (B) Scalp maps showing the pattern of projection of the components to the scalp electrodes.

up-regulation than during down-regulation. Other phase coherence
changes (not shown) were observed for other component pairs.

IV. DISCUSSION

Clearly, while this highly trained subject regulated the amplitude of
his 12-Hz EEG activity on the left- and right-central scalp, he simulta-
neously modulated his EEG dynamics at several cortical areas and fre-
quencies. Therefore, learned modulation of one EEG amplitude mea-
sure may be effected through a process that concurrently modulates
multiple EEG processes, producing event-related changes in power in
multiple EEG components and frequencies. Many of the concomitant
power changes in alpha rhythms resemble the broad so-called “event-
related desynchronization” (ERD) blocking of alpha rhythms [14] seen
in experiments involving focused attention [15]. Here, central posterior
alpha [Fig. 3(a)] activity was blocked during both up- and down-regu-
lation. Thus, the brain systems involved in regulating left- and right-�

activity in this subject are not located only in motor cortex. Instead, they
may involve distributed arousal and attention networks, possibly linked
to subcortical modulatory systems associated with nonglutaminergic
transmission. In these sessions, up- and down-regulation of 12-Hz (�)
activity was also accompanied by changes in event-related coherence
between maximally independent EEG component processes (Fig. 5).

Notably, many of these changes in EEG dynamics during learned
regulation were asymmetric with respect to the direction of regulation.
In particular, up-regulation, but not down-regulation, was followed by
increases in three posterior alpha-generating processes (Fig. 3). As-
pects of the time courses of power change in the�-rhythm generating
process, both at 12 Hz (Fig. 2) and at other frequencies (Fig. 4), were
also asymmetric.

V. CONCLUSION

While the results presented here come from a single subject, they
appear to have been consistent over fifteen separate sessions. The
accumulating data archive of BCI laboratories using this and other
paradigms presents a clear opportunity to study the independence and
interdependence of dynamic changes in cortical synchronization that
produces EEG signals [16]. In particular, it should be interesting to
study the extent to which the spectral changes produced by trained
BCI subjects become tuned to the exact algorithm used to effect
operant control. ICA components representing several independent
EEG processes accounted for activity at 12 Hz in the controlling
channels in this subject.

Had this subject been trained to directly regulate the activity of an in-
dependent left- or right-hemisphere� component, would the concomi-
tant changes in other EEG processes differ from those shown here?
Are there regularities in the location and dynamic portraits of those
independent EEG components that co-vary with� activity in BCI ex-
periments? Answers to these and similar questions could reveal more
about the function of EEG rhythms, and might suggest ways to incorpo-
rate more information about EEG dynamics into BCI algorithms (e.g.,
combining spectral measures of more than one independent component
process), possibly improving their performance.
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