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Human event-related potentials (ERPs) were recorded from 10
subjects presented with visual target and nontarget stimuli at
five screen locations and responding to targets presented at
one of the locations. The late positive response complexes of
25–75 ERP average waveforms from the two task conditions
were simultaneously analyzed with Independent Component
Analysis, a new computational method for blindly separating
linearly mixed signals. Three spatially fixed, temporally inde-
pendent, behaviorally relevant, and physiologically plausible
components were identified without reference to peaks in
single-channel waveforms. A novel frontoparietal component
(P3f) began at ;140 msec and peaked, in faster responders, at
the onset of the motor command. The scalp distribution of P3f
appeared consistent with brain regions activated during spatial
orienting in functional imaging experiments. A longer-latency
large component (P3b), positive over parietal cortex, was fol-
lowed by a postmotor potential (Pmp) component that peaked

200 msec after the button press and reversed polarity near the
central sulcus. A fourth component associated with a left fron-
tocentral nontarget positivity (Pnt) was evoked primarily by
target-like distractors presented in the attended location. When
no distractors were presented, responses of five faster-
responding subjects contained largest P3f and smallest Pmp
components; when distractors were included, a Pmp compo-
nent appeared only in responses of the five slower-responding
subjects. Direct relationships between component amplitudes,
latencies, and behavioral responses, plus similarities between
component scalp distributions and regional activations re-
ported in functional brain imaging experiments suggest that
P3f, Pmp, and Pnt measure the time course and strength of
functionally distinct brain processes.
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Late positive event-related potentials (ERPs) (300–1000 msec)
dominated by a vertex-positive response, called P300, occur in
response to stimuli perceived as belonging to an infrequently
presented category (Sutton et al., 1965). Although similar late
positive responses are reliably evoked by visual, auditory, or
somatosensory stimuli in a variety of tasks, they may not be
unitary (Squires et al., 1975; Ruchkin et al., 1990). Their ampli-
tudes and peak latencies are affected by several task variables,
including attention and novelty, and their scalp distributions vary
both within and across responses. Results of lesion studies (Hal-
gren et al., 1980; Knight et al., 1989) and functional imaging
experiments (Ford et al., 1994; Ebmeier et al., 1995) also suggest
that late positive responses are complexes of components gener-
ated in more than one brain region.

Scalp-recorded late positive complexes (LPCs) cannot be easily

decomposed into components, because their time courses and
scalp projections generally overlap. LPC components are com-
monly identified with single response peaks in single-channel
waveforms. By this procedure, Squires et al. (1975) reported that
auditory target responses in some subjects contained three com-
ponents. Others have attempted to identify components with
peaks in difference waves between LPCs evoked in simple and
choice response tasks (Hohnsbein et al., 1991; Falkenstein et al.,
1995). However, none of these studies adequately assessed the
spatial stationarity of the response near the identified peaks.
Thus, they could not be sure that each peak was composed of only
one spatially fixed component. Peak-based methods also cannot
be used when response components do not produce separate
peaks. Nor can they determine other details of the component
time courses. Independent Component Analysis (ICA), a new
approach to linear decomposition (Bell and Sejnowski, 1995;
Makeig et al., 1996a, 1997), can overcome some of these limita-
tions. ICA is compatible with the assumption that an ERP is the
sum of brief, coherent activations occurring in a small number of
brain regions whose spatial projections on the scalp are fixed
across time and task conditions.

Nearly all visual LPC studies have used simple tasks involving
the presentation of two or three stimulus types in pseudorandom
order at a single spatial location. Most ERP studies of spatial
selective attention, in contrast, have focused on early visual re-
sponse features whose amplitudes are augmented or suppressed
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in response to stimuli presented at attended or nonattended
locations (Hillyard et al., 1995). Here, we present results of
applying ICA to 31-channel ERP recordings of ERPs evoked in
two visual selective attention tasks. We demonstrate that LPCs
evoked in these tasks can be robustly decomposed into four
components with distinct time courses and relationships to be-
havior. Two of these components varied in amplitude and peak
latency between faster- and slower-responding subjects, suggest-
ing that intersubject differences in visual response speed may be
accounted for by differences in the degree to which independent
components of the scalp-recorded LPC are activated. In particu-
lar, a new frontoparietal component (P3f) appears to reflect brain
activity involved in rapidly responding to stimuli presented at an
attended location.

MATERIALS AND METHODS
Task design. ERPs were recorded from subjects who attended to random-
ized sequences of filled round or square disks appearing briefly inside
one of five empty squares that were constantly displayed 0.8 cm above a
central fixation cross (Fig. 1 A). The 1.6 cm square outlines were dis-
played on a black background at horizontal visual angles of 0, 62.7, and
65.5° from fixation. During each 76 sec block of trials, one of the five
outlines was colored green, and the other four were blue. The green
square marked the location to be attended. This location was counter-
balanced across blocks. One hundred single stimuli ( filled white circles in
one condition, filled circles and squares in a second) were displayed for
117 msec within one of the five empty squares in a pseudorandom

sequence with interstimulus intervals of 250–1000 msec (in four
equiprobable 250 msec steps).

Ten right-handed volunteers (two women, eight men; ages 22–40
years) with normal or corrected to normal vision participated in the
experiment. Subjects were instructed to maintain fixation on the central
cross while responding only to stimuli presented in the green-colored
(attended) square. In the “detection” task condition, all stimuli were
filled circles, and subjects were required to press a right-hand held thumb
button as soon as possible after stimuli presented in the attended location
(Fig. 1 B). Thirty blocks of trials were collected from each subject,
yielding 120 target and 480 nontarget trials at each location. Subjects
were given 1 min breaks between blocks.

In the “discrimination” task condition, 75% of the presented stimuli
were filled circles, the other 25% filled squares. Subjects were required to
press the response button only in response to filled squares appearing in
the attended location (Fig. 1C) and to ignore filled circles. In this
condition, thirty-five blocks of trials were collected from each subject,
seven blocks at each of the five possible attended locations. Each block
included 35 target squares and 105 distractor (or “nogo”) circles pre-
sented at the attended location, plus 560 circles and squares presented at
the four unattended locations.

These experiments were designed and run to study the attentional
enhancement of early visual components P1 and N1 (positive and neg-
ative peaks occurring between 100 and 200 msec) evoked by stimuli
presented in different parts of the visual field (Townsend et al., 1996).
Analyses of those data will be reported elsewhere. Here we report an
analysis of brain responses to the target stimuli presented at attended
locations in the same experiments.

Evoked responses. EEG data were collected from 29 scalp electrodes
mounted in a standard electrode cap (Electrocap) at locations based on
a modified International 10–20 system and from two periocular elec-
trodes placed below the right eye and at the left outer canthus. All
channels were referenced to the right mastoid with input impedance ,5
kV. Data were sampled at 512 Hz within an analog pass band of 0.01–50
Hz. To further minimize line noise artifacts, responses were digitally
low-pass filtered below 40 Hz before analysis. After rejecting trials
containing electrooculographic (EOG) potentials .70 mV, brain re-
sponses to circle and square stimuli presented at each location in each
attention condition were averaged separately using the ERPSS (Event-
Related Potential Software System, J. S. Hansen, Event-Related Poten-
tial Laboratory, University of California San Diego, La Jolla, CA, 1993)
software package, producing a total of 75 512-point ERPs for each
subject in the two tasks. Responses to target stimuli were considered
correct and averaged only when subjects responded between 150 and
1000 msec. Most studies of the LPC or P300 have used a simple “oddball”
paradigm, presenting stimuli in only two classes (standard, rare), al-
though similar-appearing late positive components are evoked by infre-
quently presented stimuli in a wide range of evoked-response experi-
ments. We hypothesized that data from these five-location selective-
attention tasks might be better suited than simple oddball paradigms for
decomposing LPCs by ICA because it included a relatively large number
(75) of target and nontarget classes.

Independent component analysis. The “infomax” ICA algorithm we
used (Bell and Sejnowski, 1995, 1996) is one of a family of algorithms that
exploits temporal independence to perform blind separation. Recently,
Lee et al. (1999a) have shown that all these algorithms have a common
information theoretic basis, differing chiefly in the form of distribution
assumed for the sources, which may not be critical (Amari, 1998).
Infomax ICA finds a square “unmixing” matrix by gradient ascent that
maximizes the joint entropy (Cover and Thomas, 1991; Linsker, 1992;
Nadal and Parga, 1994) of a nonlinearly transformed ensemble of zero-
mean input vectors (see Appendix for further details). Logistic infomax
can accurately decompose mixtures of component processes having sym-
metric or skewed distributions, even without using nonlinearities specif-
ically tailored to them.

The algorithm can be used practically on data from a 100 or more
channels. The number of time points required for training may be as few
as several times the number of variables (the square of the number of
channels). In turn, the number of channels must be at least equal to the
number of components to be separated. As confirmed by simulations
(Makeig et al., 1996b), when training data consists of a mixture of fewer
large source components than channels, plus many more small source
components, as might be expected in actual EEG data, large source
components are accurately separated into separate output components,
with the remaining output components consisting of mixtures of smaller

Figure 1. Schematic view of the task. The top trace shows the time line of
a typical trial. BP, Button press. A, Screen before stimulation. The cross is
the fixation point, and the lightly shaded box is the attended location
during the ensuing 76 sec block. B, Appearance of a filled circle stimulus
at an unattended location; no response required. C, Appearance of a filled
square at the attended location in the discrimination task; button press
required. See Materials and Methods.
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source components. In this sense, performance of the infomax ICA
algorithm degrades gracefully as the amount of “noise” in the data
increases.

ICA outputs. At the end of training, multiplying the input data matrix
by the unmixing matrix gives a new matrix whose rows, called the
component activations, are the time courses of relative strengths or
activity levels of the respective independent components across condi-
tions. ICA component activations are similar to the factor weights pro-
duced by spatial principal component analysis (PCA). The columns of
the inverse of the unmixing matrix give the relative projection strengths
of the respective components onto each of the scalp sensors. These may
be interpolated to show the scalp map associated with each component.
ICA scalp maps are similar to spatial PCA eigenvectors or factor load-
ings. Unlike components produced by PCA and Varimax, however,
component scalp maps found by ICA are not constrained to be orthog-
onal and thus are free to accurately reflect the actual projections of
functionally separate sources, if they are successfully separated.

The projection of the ith independent component onto the original
data channels is given by the outer product of the ith row of the
component activation matrix with the ith column of the inverse unmixing
matrix, and is in the original units (e.g., microvolts). Neither the scalp
maps nor the activation time series found by the infomax ICA algorithm
are normalized. In this case, scaling information is distributed between
them, and the true size of a component is given only by the size of its
projection. Because ICA decomposition is a novel technique, we now
present a brief overview of the assumptions underlying the application of
ICA to electrophysiological data (more information and a collection of
MATLAB routines for performing and visualizing the analysis are
available at http://www.cnl.salk.edu/;scott /ica.html).

ICA limitations. Figure 2 gives a highly schematic overview of possible
limitations of ICA as applied to event-related brain responses. Of all the
processes contributing to a set of recorded ERP data phenomena (outer
circle), ICA can only successfully separate “ICA-relevant”’ processes
( gray circle) whose activities satisfy several assumptions used in ICA (see
below). Although ICA algorithms typically give quite comparable results
when applied to simulated model data precisely fitting these assumptions,
results obtained using different ICA algorithms applied to actual brain
response data (dashed circles labeled ICA1, ICA2), although agreeing in
large part (region labeled ICA-accounted), may also differ in their details.
ICA analysis of ERP data must therefore be viewed as exploratory, and
care must be taken to test the functional distinctness of the resulting ICA
components. Simply demonstrating their replicability across subjects and
experimental conditions is not sufficient to ensure their physiological
unity. In particular, ICA may account for a single brain component by
more than one ICA component. In addition, one must attempt to estab-
lish relationships between component activations and independent ex-

perimental variables such as subject performance and behavior, as well as
considering their physiological plausibility.

ICA assumptions. Four main assumptions underlie ICA decomposition
of ERP data: (1) signal conduction times are equal, and summation of
currents at the scalp electrodes is linear, both reasonable assumptions for
currents carried to the scalp electrodes by volume conduction at EEG
frequencies (Nunez, 1981); (2) spatial projections of components are
fixed across time and conditions; (3) source activations are temporally
independent of one another across the input data; and (4) statistical
distributions of the component activation values are not Gaussian (in
contrast, PCA assumes that the sources have a Gaussian distribution).

Spatial stationarity. Spatial stationarity of the component scalp maps,
assumed in ICA, is compatible with the observation made in large
numbers of functional imaging reports that performance of particular
tasks increases blood flow within small (several cubic centimeters),
discrete brain regions (Friston, 1998). ERP sources reflecting task-
related information processing are generally assumed to sum activity
from spatially stationary generators, although stationarity may not apply
to some spontaneously generated EEG phenomena such as spreading
depression or sleep spindles (Werth et al., 1997).

Temporal independence. To fulfill the temporal independence assump-
tion used by ICA, response components must be activated with tempo-
rally independent time courses. In the case of event-related brain com-
ponents with temporally overlapping active periods, this may be
accomplished or approximated by, first, sufficiently and systematically
varying the experimental stimulus and task conditions, and, next, training
the algorithm on the concatenated collection of resulting event-related
response averages. However, simply varying stimuli and tasks does not
guarantee that all the spatiotemporally overlapping response compo-
nents appearing in the averaged responses are independently activated in
the ensemble of input data.

Fortunately, the first goal of experimental design, to attain indepen-
dent control of the relevant output variables, is compatible with the ICA
requirement that the activations of the relevant data components be
independent. Unfortunately, however, independent control of temporally
overlapping components may be difficult or impossible to achieve. Ex-
amples of processes unlikely to be separated by ICA are parallel activa-
tions of both auditory cortices by auditory stimuli. In this case, ICA must
fuse both activations into a single component, unless appropriate exper-
imental interventions are developed to block or delay each activation
independently in one or more of the input conditions.

Decomposing subaverages. For ICA decomposition of ERP data, there
may be a performance trade-off between (1) first averaging together large
numbers of trials and/or conditions and then decomposing the few
resulting averages, or (2) decomposing a larger number of subaverages of
the same data. Response averages or subaverages summing fewer trials
normally contain larger remnants of spontaneous EEG processes and
nonbrain artifacts that are, moreover, superimposed by the averaging
process, decreasing their chance of being temporally independent. De-
composing a few averages obtained by summing large numbers of trials
and conditions, on the other hand, may minimize the contributions of
neural and artifactual processes not reliably time- and phase-locked to
experimental events, but may also remove evidence of the temporal
independence of overlapping components that might be exhibited in the
different subaverages. The group-mean data, whose analysis we report
here, consisted of between 25 and 75 1-sec averages from different task
and/or stimulus conditions, each summing a relatively large number of
single trials (250–7000). Elsewhere, we explore use of an alternative
approach, decomposing the unaveraged single trials (T.-P. Jung, S.
Makeig, M. A. Westerfield, J. Townsend, E. Courchesne, and T. J.
Sejnowski, unpublished observations).

Dependence on source distribution. Because of the central limit theo-
rem, even when mixtures of many processes appear to be normally
distributed, this does not mean that the processes themselves are Gauss-
ian. In theory, multiple Gaussian processes cannot be separated by ICA,
although in practice even small deviations from normality can suffice to
give good results. Also, not all ICA algorithms are capable of unmixing
independent components with sub-Gaussian (negative-kurtosis) distribu-
tions. Intuitively, sub-Gaussian processes are relatively “active” more of
the time than the best-fitting Gaussian process. Examples include sinu-
soids and uniformly distributed noise.

In particular, the infomax ICA algorithm using the logistic nonlinear-
ity is biased toward finding super-Gaussian (sparsely activated) indepen-
dent components (i.e., sources with positive kurtosis). Super-Gaussian
sources, which are relatively “inactive” more often than the best-fitting

Figure 2. Schematic overview of ICA applied to ERP data. ICA methods
(dotted circles) may account for somewhat different portions of ERP
phenomena (outer circle) that match the assumptions of ICA (shaded
area). See Materials and Methods.
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Figure 3. A, The scalp distribution of the LPC evoked by attended visual stimuli is not spatially fixed. Grand mean evoked response to detected target
stimuli in the detection task (average of responses from 10 subjects and five attended locations). Response waveform at all 29 scalp channels and two
periocular channels (EOG) are plotted on a common axis. Topographic plots of the scalp distribution of the response at four indicated latencies show
that the LPC topography is labile, presumably reflecting the summation at the electrodes of potentials generated by temporally overlapping activations
in several brain areas, each having broad but topographically fixed projections to the scalp. All scalp maps are shown individually scaled to increase color
contrast with polarities at their maximum projection, as indicated in the color bar. B, Separate projections of the three major LPC components (colored
traces) overplotted on the grand mean target response (black traces) for the detection task. Note the large projection of the P3f component (blue trace)
at the two periocular electrodes (top traces) and its smaller projection at Pz and the polarity reversal of component Pmp ( green traces) between central
and frontal channels. C, Single target-response trials at the periocular electrodes (see Materials and Methods) for one subject in the detection task (all
five locations), plotted as vertical colored lines (color code on right). Before plotting, noise and movement artifacts were removed from each trial by
subtracting ICA components accounting for eye artifact, line, and muscle noise from a 31-channel decomposition of the single-trial data (Jung et al.,
1998). An early broad positivity ( yellow band) appeared between 200 and 350 msec in most trials, with near constant amplitude, latency, and duration.
D, Separation of P3f was not affected by omitting the two periocular channels. Separate ICA decompositions of 25 grand-mean (figure legend continues)
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Gaussian process, recur in speech and many other natural sounds and
visual images (Bell and Sejnowski, 1996, 1997). The assumption of
super-Gaussian source distributions is compatible with the physiologi-
cally plausible assumption that ERPs are composed of one or more
overlapping series of relatively brief activations within spatially fixed
brain areas performing separable stages of stimulus information
processing.

Nonetheless, some sub-Gaussian independent components have been
demonstrated in EEG data (Jung et al., 1998), chiefly line noise. Because
our data were low-pass filtered below 40 Hz, their power at the line
frequency (60 Hz) was negligible. To insure that some other sub-
Gaussian component or components were not present in the data, we also
decomposed some of the data by two different ICA algorithms capable of
detecting and separating sub-Gaussian components, extended infomax
and Joint Approximate Diagonalization of Eigen-matrices (JADE; see
Appendix). For comparison with previously proposed linear decomposi-
tion methods, we also decomposed these same data using PCA, and
rotated the largest seven PCA components using Varimax and Promax
(see Appendix). We compared the closest resulting PCA-based compo-
nents with the ICA-derived components for stability across subjects and
degree of relationship to performance.

Evoked-response decomposition. The logistic infomax ICA algorithm
was applied to sets of 25–75 averaged ERP epochs (31 channels, 512 time
points) time locked from 100 msec before to 900 msec after onsets of
target and nontarget stimuli presented at each of the five stimulus
locations in the five spatial attention conditions in the two tasks (detec-
tion, discrimination). Initial decompositions were performed on grand
averages of data from all 10 subjects. Subsequently, data from subject
subgroups selected on the basis of response speed, and from single
subjects, were decomposed separately as detailed below. ICA decompo-
sition was performed using routines running under Matlab 5.01 (the
Mathworks) on a Dec Alpha 300 MHz processor. The learning batch size
was 65–110, depending on input data length. Initial learning rate started
at ;0.004 and was gradually reduced to 10 26 during 50–100 training
iterations that required ;5 min of computer time. Results of the analysis
were relatively insensitive to the exact choice or learning rate or batch
size. For further details, see Appendix.

Single-trial artifact removal. In most evoked response research, the
possibility that neural activity is expressed in periocular data channels is
usually ignored for fear of mislabeling eye activity artifacts as brain
activity. Some of the ICA components of EEG records can be identified
as accounting primarily for eye movements, line or muscle noise, or other
artifacts (Makeig et al., 1996a; Vigario, 1997). Subtracting the projections
of artifactual components from averaged or single-trial data can elimi-
nate or reduce these artifacts while preserving the remaining nonartifac-
tual EEG phenomena in all of the data channels (Jung et al., 1998). ICA
thus makes it possible, for the first time, to examine periocular neural
activity.

To examine the between-trial distribution of periocular components
observed in the target response averages, all single target trials in the
detection task for two subjects were decomposed using ICA, and projec-
tions of 16 of the resulting 31 components were removed from the
single-trial data. The removed components were those that either (1)
accounted predominantly for eye movements or muscle activity, or (2)
whose projections appeared to contribute only very small amounts of
noise to the averaged response. We identified eye and muscle artifact
components on the basis of their scalp maps and activation time courses.
Eye movement components had dominant periocular and frontal projec-
tions and slow, sporadic activations; muscle–noise components had lo-
calized scalp patterns and were dominated by broadband 20–50 Hz

activity. The remaining 15 single-trial components were projected to-
gether back onto the scalp channels. For further details of this procedure,
see Jung et al. (1998).

RESULTS
Target-evoked response
Performance levels on both the detection task and the discrimi-
nation task were high [detection task: 94.8% hits 5 correct 150–
1000 msec response times (RTs), 0.6% false alarms, median RT
353 6 41 msec; discrimination task: 91.4% hits, 0.6% false alarms,
median RT 455 msec]. Responses evoked by target stimuli (their
grand mean shown in Fig. 3A, colored traces) contained a prom-
inent LPC peaking after expected early visual response peaks P1,
N1, P2, and N2. In the grand-mean detection-task response, no
single-channel waveform contained more than one large positive
peak between 300 and 700 msec. However, during this period the
scalp topography of the response varied continuously (Fig. 3A,
scalp maps).

Note that both periocular channels (Fig. 3A, EOG) contained a
small (;3 mV), broad positive potential peaking at ;300 msec.
Grand mean target responses from each of the 10 subjects (e.g.,
means of response averages for all five attended locations) con-
tained a positive deviation with similar time course near-equal in
amplitude in the two channels. Examination of artifact-corrected
single trials (derived as described in the Methods) showed that
this potential was evoked in most or all single trials of every
attended-location condition (Fig. 3C). Most likely these potentials
were not produced by eye movements, because only small, slow,
diagonal eye movements reliably and precisely time-locked to
stimulus onsets could have produced them.

Joint decomposition
ICA was applied to all 75 31-channel responses from both tasks (1
sec ERPs from 25 detection-task and 50 discrimination-task con-
ditions) producing 31 temporally independent components. Of
these, just three accounted for 95–98% of the variance in the ten
target responses from both tasks. A parsimonious decomposition
was achieved, although data for the two conditions for each
subject were obtained on separate days and thus might have
included small between-session differences in electrode place-
ments, which were reduced by averaging across subjects. Figure
3B shows the projections of the three components [labeled for
convenience as P3f, P3b, and postmotor potential (Pmp)] in
response to targets in the detection task at all 31 electrode sites
(colored traces) superimposed on the grand mean response at the
same sites (black traces). Component P3f (blue traces) became
active near the N1 peak. Its active period continued through the
P2 and N2 peaks and the upward slope of the LPC. That is, P3f
accounted for a slow shift beginning before LPC onset, positive at

4

detection-task ERPs (10 subjects) using first (lef t) all 31 channels, and then (center) 29 scalp channels alone, identified nearly identical P3f components
(right). Scalp maps plotted on the same relative scale, with polarities as in A (bottom traces). Projections of the P3f component and their difference (bottom
right) on the same microvolt scale. E, Activation time courses and scalp maps of the four LPC components produced by the ICA algorithm applied to
75 1 sec grand-mean (10-Ss) responses from both tasks. Map scaling as in A. Because microvolt scaling information for each ICA component is divided
between its activation and its scalp map, units are not indicated (see Results). The thick dotted line (lef t) indicates stimulus onset. Mean subject-median
RTs in the detection task (red) and discrimination task (blue) are indicated by solid vertical bars. Three independent components (P3f, P3b, Pmp)
accounted for 95–98% of LPC variance in both tasks. In both tasks, median RT coincided with Pmp onset. Pnt, a fourth, left-frontocentral component,
was evoked mainly after nogo nontargets presented in the attended location in the discrimination task. The faint vertical dotted line at ;250 msec shows
the temporal relationship between the onsets of Pnt and P3b and the divergence of the P3f activations after target and nogo stimuli in the discrimination
task. F, Separate ICA decompositions of ERPs from the detection and discrimination tasks gave similar LPC components. For all three components, both
the scalp maps (shown) and periods of activation (data not shown) were nearly equivalent. Correlations between the respective component scalp maps
are indicated. Maps individually scaled as in A.
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Figure 4. A, Component Pmp is linked to button presses. Results of a control experiment on one slow responder whose target LPC was decomposed
by ICA into clear group P3f, P3b, and Pmp component analogs. In a second detection-task session, the subject was asked only to mentally note target
stimuli without pressing the response button. Data from both sessions were decomposed together by ICA. The two panels plot the “envelopes” (the
minimum and maximum values, at each time point, over the 29 scalp channels) of the responses (black traces) and of the scalp projections of the three
major ICA components (colored traces). The scalp maps of the three components (below, individually scaled as in Fig. 3A) resembled those of the group
decompositions (Fig. 3F ). The grand-mean target response in the button-press condition (top panel ) contained all three LPC (figure legend continues)
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periocular and frontal channels and weakly negative at lateral
parietal sites (top rows).

A near-exact P3f analog (projection, r 5 0.95) was also recov-
ered from a decomposition of the 25 detection-task ERPs at the
29 scalp channels alone, omitting the two periocular channels
(Fig. 3D). Component P3b (Fig. 3B, red traces) accounted for
nearly all of the LPC at frontocentral channels and for most of its
peak amplitude at posterior channels. Component Pmp (Fig. 3B,
green traces) accounted for part of the frontal negative-going slow
wave after the LPC as well as for the longer duration of the LPC
at central and posterior sites.

All three ICA components were active near the LPC peak, thus
producing an apparently continuously varying scalp distribution.
Although P3b accounted for most of the LPC peak distribution
and resembled components with the same term in earlier litera-
ture (Squires et al., 1975), the scalp distribution of P3f appeared
to be more strongly frontal and markedly less central than the
“novelty P3”, a large central LPC evoked by rare, novel stimuli
(Courchesne et al., 1975) and other components labeled “P3a”
(Katayama and Polich, 1998). Although the label P3f was chosen
to reflect the relatively frontal projection of this component, P3f
also contained a consistent local maximum near Pz and weak
bilateral negativities at inferior parietal sites.

Smaller activations of the same three components, plus a fourth
left frontocentral component, together accounted for 80–86% of
the variance of the five smaller LPCs evoked by nogo stimuli
(nontarget circles presented in the attended location) in the
discrimination task. Responses to most other stimuli did not
contain the four LPC components; nontarget stimuli that weakly
activated them were invariably presented at or near the attended
location. Analysis of these nontarget activations will be presented
elsewhere.

The four LPC components
Figure 3E shows the scalp maps and time courses of activation of
the four LPC components in both tasks. To illustrate the outputs
of the algorithm and to allow easy comparison between the time
courses of the different components, the raw activations and scalp
maps are presented. Relative sizes of the components are indi-
cated in Figure 3B. Two vertical lines in each panel mark mean
subject-median RT, which was 102 msec longer (455 msec) in the
discrimination task than in the detection task (353 msec).

Component P3f
P3f was evoked principally by targets in both tasks, with largest
amplitudes in the discrimination task. Onset was at ;140 msec,
and offset followed median RT by ;60 msec. Peak root-mean
square (RMS)-projected amplitude in the grand-mean target re-
sponse was 1.5 mV. When detection-task responses from each of
the 10 subjects were decomposed separately, seven of the ten
decompositions contained P3f analogs, defined as components
whose projections at all channels were correlated (r . 0.5) with
the grand-mean component projection. Each of these seven P3f
components included a weak central parietal positivity that in six
of the seven subjects had a maximum slightly right of midline.
The three decompositions not containing a P3f analog were of
responses from three of the four subjects with the longest median
RTs. The scalp projection of P3f was largest at the periocular
electrodes (Fig. 3B, top sites). P3f also was also evoked with
smaller amplitudes by discrimination-task nogo stimuli and by
target stimuli presented in the central location during noncentral
discrimination-task attention conditions.

Component P3b
In single-subject decompositions of detection-task data, clear P3b
analogs (projection, r . 0.75) were returned for all ten subjects.
Peak P3b RMS-projected amplitude in the grand-mean target
response was 6.1 mV, and P3b peak latency covaried with median
RT in the two tasks. The P3b scalp map resembled peak P300
scalp distributions reported for experiments in which subjects
simply counted or attended to rare stimuli instead of pressing a
response button (see Alexander et al., 1995 and Fig. 4A).

The P3b component also accounted for some early response
activity. This appeared to reflect a tendency of the algorithm to
make very large components “spill over” into periods of weak
activity with related scalp distributions. Subsequent decomposi-
tions of the detect-task data by PCA, Varimax, and Promax (see
below) produced P3b analogs in which this spillover was stronger
than for ICA (compare Fig. 5B). However, separate ICA decom-
position of the first 300 msec after stimulus onset (to be reported
elsewhere) gave a parsimonious decomposition of the early re-
sponse components P1 and N1 into one or more components
none of which resembled P3b, whereas a separate decomposition

4

components; the grand-mean response to targets presented in the no-button press condition (bottom panel ) evoked only P3b plus a small P3f, but no Pmp,
strongly suggesting that that Pmp was directly related to the button press in the first session. B, Comparison of the raw target ERPs with the time courses
of the three LPC components. Target responses in shorter-RT detection-task target trials (five attended locations; subaverages for five faster and five
slower responders, respectively). Responses at 29 scalp channels are shown on a common time base above the time courses of projected RMS amplitude
of the three LPC components (microvolt scaling as shown, top right). Arrows show median RT for each group. The activation period for component P3f
encompasses a slow positive shift in the data that begins earlier (near peak N1) and grows larger in the fast-responder response (bottom lef t, blue trace).
The larger and later-peaking in the slow-responder average Pmp (bottom right, green trace) accounts for the larger bipolar spread of activity at ;600 msec
in the slow-responder data (top right). C, Separate ICA decompositions of grand-mean detection-task responses from the five faster- and slower-
responding subjects gave comparable LPC components. Scalp maps (individually scaled as in Fig. 3A) and time courses of projected RMS amplitude
(microvolt scaling indicated) of the three target-response LPC components, from separate decompositions of 20 nontarget responses plus 10 target
responses (short-RTs, long-RTs at five locations) for the five faster- and five slower-responding subjects, respectively. Correlations between scalp maps
indicated. See Results. D, Comparison of data and projected component envelopes with median RT (short vertical bar). Envelopes of the scalp projections
of all 31 ICA components (in microvolts, see bar) superimposed on the envelopes of the grand-mean target responses (all 31 channels) for faster- and
slower-responding subgroups in the detection task (top rows) and discrimination task (bottom row). Results from all four decompositions (task by
subgroup) gave three major LPC components whose amplitudes and peak latencies varied systematically with RT in different ways for the two subgroups.
Note the small size of the projections of the remaining 28 components (thick red bundles). See Results. E, F, Detection-task target responses at the left
periocular electrode for one slower responder and one faster responder. Responses plotted as horizontal colored lines (see color bar) after sorting by RT
(thick black lines) and then smoothing with a 30-trial moving-average. Stimulus onsets occurred at dashed lines (lef t). In the response of the slower
responder (lef t panel ), note the relatively weak and fixed-latency pre-response positivity at ;250 msec and the strong post-response (Pmp-related)
negativity. For the faster responder (right panel ), peak latency of the strong (P3f-related) positivity immediately preceded RT in all trials, and the
post-response (Pmp-related) negativity was absent.
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Figure 5. A, LPC component peak amplitudes and latencies plotted relative to target stimulus onset (lef t panel ) and to median RT (right panel ). Peak
latencies of all three LPC components were tied to RT in the fast-responder averages only. B, Comparison of ICA and PCA-based decompositions. Sets
of 30 fast-responder and slow-responder detection-task response averages (compare Fig. 4) were separately decomposed using PCA (top lef t). The largest
seven principal components were then rotated by Varimax (top right) and Promax (bottom lef t) applied either to their activation time courses (shown
here) or to their spatial maps (eigenvectors) (data not shown). The figure shows envelopes of the grand-average short-RT target response for the fast
responders (black traces) with envelopes of the respective component projections (colored traces) superimposed. The temporal Varimax and Promax
rotations, shown here, appear to approach the ICA decomposition, although the ICA decomposition appears most parsimonious. See Results. C, ICA
components were more stable and more tightly linked to behavior than analogous PCA-based components. The lef t panel shows means and SDs of the
RMS millisecond difference between component peak latency and median RT (averaged across two subgroup decompositions and three LPC
components and two RT-separated data subsets). The right panel shows mean and SD scalp map correlations between analogous (figure legend continues)
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of the latter portion of the epochs (300–900 msec) reproduced the
whole-epoch P3b (scalp map, r 5 0.999).

Component Pmp
Although components P3f and P3b were evoked by
discrimination-task nogo nontargets (Fig. 5A, dashed lines) at
approximately half the strength of their activation by
discrimination-task targets (Fig. 5A, solid lines), neither these nor
any other stimuli not followed by a button press strongly activated
Pmp. In both tasks, Pmp onset nearly coincided with median RT,
and its scalp map reversed polarity near the central sulcus. Peak
RMS-projected amplitude in the grand-average target response
was 3.09 mV. Pmp appears to be an analog of the response
positivity also known to peak ;200 msec after infrequent volun-
tary button presses (Makeig et al., 1996c).

In single-subject decompositions, Pmp analogs (projection, r .
0.6) were found for eight of the 10 subjects, the exceptions being
two of the four subjects with the fastest median RTs. The scalp
maps of Pmp analogs in individual subjects strongly resembled
those recently published for a somewhat earlier (80 msec post-
movement) measure of the voluntary postmovement positivity
also peaking at ;200 msec after movement (Boetzel et al., 1997).
In seven of the eight Pmp-analog scalp maps, the posterior posi-
tive peak was over the left hemisphere. Decompositions of re-
sponses from three additional left-handed subjects not included in
this study each contained a Pmp analog with a positive maximum
over the right hemisphere.

Component Pnt
Component Pnt (for nontarget positivity) was evoked chiefly by
nogo nontargets in the discrimination task (Fig. 5, dotted trace)
and by targets (Fig. 5, solid trace). Its scalp map was most positive
over left dorsolateral prefrontal and central cortex (maximum
RMS-projected amplitude in the grand-mean target response, 0.9
mV) with negligible projection to the periocular electrodes. Pnt
analogs were found in five of the 10 individual subject decompo-
sitions. Its onset (;260 msec) coincided with the divergence of
the nogo and target P3f activations, and its period of activation
paralleled that of P3b. The ICA decomposition thus explained the
more anterior distribution of the nogo LPCs in the discrimina-
tion task as resulting from the addition of Pnt to the small P3b
evoked in the same time period by nogo stimuli, accompanied by
a blunted P3f activation. The divergence of P3f activations after
targets and nogo stimuli respectively began at the onset of Pnt at
;250 msec (Fig. 5, faint dotted line). Pnt was activated more
strongly when the attended location was in the right visual field.

Absence of sub-Gaussian components
To test for the presence of independent components with sub-
Gaussian distributions, the same grand-average data for all ten
subjects in both tasks (75 responses in all) were decomposed using
two ICA algorithms capable of separating sub-Gaussian compo-
nents, extended infomax, and JADE (see Appendix). The result-
ing decompositions resembled that produced by logistic infomax.
In particular, none of the 31 components derived by either
method had a sub-Gaussian distribution.

Cross-task reliability
Next, logistic infomax ICA decomposition was applied separately
to the 25 responses from the detection task and to the 50 re-
sponses from the discrimination task. Both decompositions pro-
duced three components accounting for 96–98% of the variance
in the grand mean LPCs (300–700 msec) at the five locations
(Fig. 3F). The periods of activation of the three component pairs
were equivalent, and their scalp distributions were highly corre-
lated (89–98.6%), suggesting that despite the 102 msec difference
in median RT, the target LPCs in the two tasks could arise from
three spatially fixed brain systems or sets of concurrently activated
networks.

Within-task reliability
To test the reliability of convergence of the algorithm, the
detection-task data (25 1 sec responses) were decomposed 20
times in succession. The 31 component scalp maps returned from
each of the decompositions were correlated with the 31 compo-
nent maps returned by the original decomposition. Next, the
highest-correlated pair of component maps was determined and
removed from further consideration. In the same manner, 30
more successively best-correlated map pairs were drawn from the
two sets of component maps, and the absolute correlations be-
tween the successive best-correlated pairs were noted. In all 20
decompositions, the scalp maps of .10 returned components
were nearly identical (r . 0.995) to maps of analogous compo-
nents in the original decomposition, and at least 21 component
map pairs were correlated (r . 0.95). Maps for the three LPC
components (ranking 1, 2, and 7 by size in the original decom-
position) were near-perfectly replicated (mean of the map corre-
lations: P3b, 0.9995; Pmp, 0.9985; P3f, 0.9937).

Relative montage independence
To test the dependence of the results on the choice of electrode
sites, 20 randomly selected subsets of the 31 data channels were
selected for analysis, leaving out the remaining 11 channels.
Correlations between the activation time courses of resulting ICA

4

component pairs in the fast-responder and slow-responder response decompositions (averaged across the three LPC components). ICA component
latencies were more tightly linked to behavior, and their scalp maps better correlated between subject groups, than the PCA-based components. D,
Relative stability of the ICA decomposition. Comparison of the envelopes of the projections of the three LPC components of the grand-mean (all 10
subjects) detection-task target response derived by three ICA decompositions involving this data. Although each decomposition was dominated by three
LPC components, relative component peak latencies were more stable between decompositions than peak amplitudes. Vertical bars: median RT. See
Results. E–G, ICA identifies spatially periods of fixed scalp topography. Decomposition of 30 detection-task response means for the slow-responder
subgroup produced two large LPC components, P3b and Pmp. F, A scatter plot of the short-RT and long-RT target responses (separately at five attended
locations) (middle panel ) at two scalp electrodes, Fz and Pz, contains two strongly radial (i.e., spatially fixed) features. The dashed lines show the
directions associated with components P3b and Pmp in these data, as determined by ( G) the values of their respective component scalp maps (black dots).
Thus, ICA separated out two important spatially fixed components of the input data using its (nonGaussian) higher-order statistics. E, Projections of
components P3b and Pmp of the grand mean target response onto the same two scalp channels (top panel, colored traces), overplotted on the grand-mean
response waveforms (black traces), indicate that the two components, P3b and Pmp, dominate the central and late portions of the LPC, respectively.
Infomax ICA found the two component directions by maximizing joint entropy (i.e., the evenness of the density distribution) of a nonlinear transform
of the (31-channel) unmixed data (center right insert). See Appendix.
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components were computed and rank-ordered as above. On av-
erage, the three best-correlated activation pairs were correlated;
r . 0.94. The three LPC component maps were accurately recov-
ered (submap correlations: 0.998, P3b; 0.993, Pmp; 0.964, P3f).

Attend-only control experiment
One of the 10 subjects participated in a second session of the
detection-task control experiment in which he was asked simply
to “mentally note” targets without making motor responses to
them. ICA decomposition was then performed on all 50 responses
from both detection-task sessions for this subject. Figure 4A (top
panel) shows the envelopes (the most positive and most negative
single-channel data values, across the 29 scalp channels, at each
time point) of the projections of all 31 components of the grand
mean target response in the button-press condition, superim-
posed on the envelope of the ERP data (black traces). Envelope
plots allow the time courses, strengths, latencies, and predomi-
nant polarities of several ICA components to be visualized in
relation to the data envelope in a single figure.

The LPC was again decomposed into three spatially fixed
components clearly analogous in time course and scalp map to the
group P3f, P3b, and Pmp. In this right-handed subject, the Pmp
analog had a clear left-central scalp projection. The grand mean
target response in the no-button-press condition (Fig. 4A, middle
panel) was comprised chiefly of P3b and included a small P3f, but
no Pmp, further confirming that Pmp reflected brain processes
induced by the response movement and/or resulting tactile feed-
back. In this condition, the subject’s LPC was dominated by a
single spatially fixed component, P3b.

Note that the most-positive traces of the ERP data envelopes
for both sessions (Fig. 4A, top black traces) contain three positive
peaks occurring at ;100 msec intervals during the LPC. These,
however, were not accounted for by activity of the three LPC
components. Instead, the decomposition explained these three
peaks as being produced by one or more a-band components
summing with the LPC and having scalp topographies different
from the three LPC components. In this case, that is, an LPC
apparently containing three positive peaks was decomposed by
ICA primarily into a single LPC component (P3b) plus residual a
activity.

Component differences between faster and
slower responders
In the detection task, subject’s median RTs ranged between 287
and 396 msec. Examination of single-subject decompositions sug-
gested that responses of some faster and slower responders dif-
fered not only in latency but also in the relative amplitudes of the
LPC components. To assess these differences more clearly, sub-
jects were divided by median RT into two subgroups of five
subjects dubbed “fast responders” and “slow responders”, respec-
tively. In the detection task, median RTs of fast responders were
all shorter than 355 msec (mean 6 SD, 321 6 32 msec), whereas
median RTs of slow responders were all longer than 380 msec
(mean 6 SD, 386 6 7 msec). The five fastest and five slowest
responders in the discrimination task (420 6 28 and 489 6 33
msec, respectively) were the same as in the detection task. Target
response rates for the fast-responder and slow-responder sub-
groups did not differ statistically, although fast responders tended
to make more false alarms (0.77 vs 0.4%, both tasks; F(1,8) 5
10.36; p 5 .012).

To determine whether the observed ERP differences were
stable across relatively short-RT and long-RT trials, separate

subaverages were computed of responses to correctly detected
targets in the detection task for which RT was shorter or longer
than the subject median. These five short-RT and five long-RT
target response averages (one each for each attended location)
were then averaged across subjects in the fast- and slow-responder
subgroups, giving four (fast-responder/slow-responder by short-
RT/long-RT) target response subaverages at each of the five
stimulus locations. Grand average discrimination-task target re-
sponses were also computed for each subgroup. Because there
were far fewer targets presented in the discrimination task, these
target responses were not further separated by response times.

Next, for each subgroup an ICA decomposition was performed
on 30 1 sec detection-task ERP ensembles consisting of 20 aver-
age responses to nontarget stimuli (i.e., those presented in the
four unattended locations in each of the five attended-location
conditions), plus the five short-RT and five long-RT target re-
sponses. For both subgroups, ICA again recovered three domi-
nant LPC components. Figure 4B shows both short-RT subaver-
ages at the 29 scalp channels above the time courses of projected
RMS amplitude of the three component projections. Plotting
RMS-projected amplitude displays the true scalp energy ratios of
the various components but ignores their polarity differences.
Component P3f accounted for the slow positive shift in the
responses encompassing the N2/P2 peaks and part of the LPC
onset, and could not, therefore, have been derived by decompo-
sition methods that treated each peak as a separate component.
The larger component Pmp in the slow-responder average ac-
counted for the larger bipolar spread in the scalp distribution of
the response at ;600 msec.

Figure 4C compares the scalp maps and time courses of pro-
jected RMS amplitude for the three target-LPC components.
Although the responses analyzed came from two separate subject
subgroups and response decompositions, the component scalp
maps for the two groups were again highly similar (scalp maps).
P3f onset and peak latencies (top lef t) were earlier in the fast-
responder average, and the projected P3f amplitude was larger. Its
frontal scalp distribution appeared somewhat more left-sided in
the slow-responder group response decomposition, although the
component map values at the two periocular electrodes (data not
shown) were near equal for both groups. In single-subject re-
sponses as well as in the group subaverages, P3b peak latency (r 5
0.724; F(1,8) 5 8.8; p 5 0.019) covaried with RT. In all subjects,
P3b peak amplitude (12.2 6 5.7 vs 8.4 6 4.4 mV; t(9) 5 6.27; p ,
0.0001) and RMS-projected amplitude (3.2 6 1.5 vs 2.2 6 1.2 mV;
t(9) 5 5.95; p , 0.0002) were larger in short-RT trial averages,.
This association of P3b and RT is consistent with early reports on
late LPC features (Roth et al., 1978).

Component Pmp was larger in the slow-responder group sub-
averages. For both groups, neither P3f nor Pmp amplitudes varied
markedly with RT subset. Examination of individual decomposi-
tions suggested that the subgroup amplitude differences in these
two components arose mainly from the absence or near-absence
of P3f in responses of three of the slow responders and of Pmp
analogs in responses of two of the fast responders. Very similar or
more pronounced subject group differences in amplitudes and
time courses of P3f and Pmp were produced by a single decom-
position of all 50 concatenated detection-task responses from the
two groups (data not shown).

Between-task response differences
Sets of 50 grand mean discrimination-task ERPs for the fast- and
slow-responder subgroups were decomposed separately. Figure
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4D shows the envelopes of the target responses and all of their 31
constituent ICA components for the three detection-task and
discrimination-task subaverages. Examination of P3b analogs in
decompositions of all 75 detection- and discrimination-task re-
sponses from nine subjects separately (omitting one subject with
very small responses) showed that P3b peak RMS-projected am-
plitude was not significantly larger in the detection-task responses
(probability of rejecting the null hypothesis by two-tailed t test,
p 5 0.31). Note that in both discrimination-task decompositions,
the envelope peak latency of the P3b component differs from the
response peak latency. In the slow-responder averages (right col-
umn) P3f peak latency was similar in the three response condi-
tions, irrespective of RT differences. All three subaverages for the
fast responders (lef t column), on the other hand, contained a P3f
with a larger envelope that peaked 30–40 msec before median RT.

Subsequent to this analysis, detection-task data were collected
from 12 more normal subjects. Initial analysis of grand averaged
data from the five fastest responders (median RTs, 261–363 msec)
and five slowest responders (median RTs, 381–429 msec) sup-
ported the differences in P3f amplitudes shown in Figure 4D. A
large P3f component, highly correlated with the fast-responder
P3f (scalp map, r 5 0.857), was found for the new group of faster
responders, whereas no equivalent prominent or spatially corre-
lated component was derived from the response averages of the
new slower responders. Further results of the enlarged subject
group comparisons will be reported elsewhere.

The slow-responder target response in the discrimination task
(Fig. 4D, bottom right) contained a prominent component Pmp
that peaked, as in the other two subaverages, ;200 msec after
median RT. In individual decompositions, Pmp analogs of all five
slow responders had larger peak RMS-projected amplitude in the
discrimination task. However, in the discrimination task neither
the fast-responder subgroup subaverage (Fig. 4D, bottom lef t) nor
any of the five individual fast-responder discrimination-task tar-
get response decompositions contained a Pmp analog. Note that
the group differences in relative sizes of P3f and Pmp were
maintained in the decompositions of the long-RT subaverage for
fast responders (Fig. 4D, middle lef t) and the short-RT subaver-
age for slow responders (Fig. 4D, top right), although the median
RTs for these trial subsets were nearly identical (356 and 346
msec, respectively). Clear Pnt analogs (data not shown), present
in both group decompositions, were somewhat earlier and larger
in the fast-responder group average.

Figure 4, E and F, shows all detection-task target responses at
the left periocular electrode for one of the fast responders and
one of the slow responders, with single trials sorted (left to right)
in order of increasing RT (black traces) and then smoothed with
a 30-trial moving average in a style we call an “ERP image” (Jung,
Makeig, Westerfield, Townsend, Courchesne, and Sejnowski, un-
published observations). In the faster responder, RT followed the
P3f peak immediately in all but the few longest-RT trials, whereas
in longer-RT trials of the slower responder, RT lagged behind the
P3f peak by 200 msec or more. The figure also shows the prom-
inent post-RT frontal negativity in the slower responder ac-
counted for by Pmp, which was absent from the responses of all
five fast responders.

Figure 5A plots the peak LPC component amplitudes of the
subgroup averages (whose envelopes were shown in Fig. 4D)
against their latencies relative to stimulus onset (lef t panel) and
median RT (right panel). In the fast-responder averages (red solid
lines), peak latencies of all three components were time locked to
median RT (right panel, red symbols), whereas in the slow-

responder averages (blue dashed lines), P3f peak latency was time
locked to stimulus onset (lef t panel, bottom lef t). The response-
locked latency of the P3f peak in the slow-responder averages
matched that of fast-responders only in the detection-task
short-RT trial subaverage (right panel, bottom lef t).

Timing of the motor command
To more closely assess the relationship between P3f peak latency
and RT, a control experiment was performed in which the subject
pressed the response button to targets in a single-location variant
of the detection task with her right thumb while electromyo-
graphic (EMG) activity was recorded from the thumb muscle
(extensor pollis brevis). The EMG record (data not shown)
clearly indicated that EMG activity began at ;25 msec before the
switch closure used to compute RTs in these experiments. Esti-
mating the travel time from the brainstem to the thumb muscle at
16 msec (0.8 m at 50 m/sec), the P3f peak and the motor com-
mand appear to have been nearly simultaneous for the faster
responders in all three response conditions.

Comparison with other linear decomposition methods
Detection-task data consisting of 10 long-RT and short-RT target
response averages plus 20 nontarget response averages were de-
composed separately for the fast-responder and slow-responder
groups using spatial PCA. Each data set had four eigenvalues
larger than unity (with three larger than 2). Because PCA, like
ICA, is a linear decomposition, PCA and ICA components can be
plotted using identical methods. Figure 5B shows the grand-mean
short-RT target response (all five attended locations) for the fast
responders at centroparietal scalp site Pz (black traces), with the
projections of the three largest principal components at the same
channel superimposed (colored traces), with the projection wave-
forms of the next four (relatively small) principal components
shown below it.

PCA maximized the variance of the first principal component
projection (Fig. 5B, red), thereby accounting for most of the
(ICA) P3b plus some of the Pmp and P3f. The second-largest
component (Fig. 5B, green), constrained by PCA to be spatially
and temporally orthogonal to the first, also accounted for early
and late activity assigned separately by ICA to Pmp and P3f.
Orthogonal Varimax rotation of the activations of the seven
largest principal components (Fig. 5B, top right) somewhat re-
duced the temporal spread of the second (Fig. 5B, green) com-
ponent, consistent with its goal of rotation toward “simple struc-
ture.” Further oblique rotation of the resulting Varimax
component activations using the Promax algorithm (Fig. 5B,
bottom lef t) further focused the activation of this (Fig. 5B, green)
component to the Pmp time period and partly separated P3b from
the early LPC. The scalp map (data not shown) of the largest
Promax component active during the early LPC resembled that
of P3f. Time courses of the largest components produced by
spatial Varimax (data not shown) generally resembled those for
temporal Varimax. Spatial Promax (data not shown) fractionated
P3b into five components with similar time courses.

Projections of the three ICA components are shown for com-
parison (Fig. 5B, bottom right). Note the relative parsimony of the
ICA component structure, with nearly all of the variance ac-
counted for by three components having compact periods of
activation. The spillover of P3b activity (Fig. 5B, red) into the N1
and P2 response peaks is smaller in the ICA decomposition than
in the other three decompositions.

To test the reliability of the ICA components relative to those
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derived by PCA-based methods, we measured differences in the
four response conditions (fast- and slow-responder subgroups by
short- and long-RT trial subsets) between median reaction time
and peak latencies of the three large components most analogous
in time course to the ICA P3f, P3b, and Pmp. Figure 5C (lef t
panel) shows the means and SDs of this RMS latency difference,
averaged across all three components and four subject and re-
sponse subsets. The covariation of the component peaks with
median RT was tightest for ICA (red) (RMS difference, ,10
msec), and was tighter for temporal Varimax and Promax rota-
tions (solid lines) than for spatial rotations (dashed lines).

The right panel of Figure 5C shows means and SDs of the
correlations between scalp maps (data not shown) of the three
ICA component-analogs from the fast- and slow-responder de-
compositions, respectively (averaged over the three LPC compo-
nents). The subgroup scalp map correlations were more invariant
for ICA (red) (r . 0.9). These results strongly suggest that,
applied to these data, ICA decomposition had more simple struc-
ture, was more consistent across subject subgroups, and was more
tightly linked to performance than decompositions produced by
PCA-based methods.

Degree of stability of the decomposition
Although the decomposition produced by ICA is linear, ICA
training is nonlinear. Therefore, the projection of an ICA com-
ponent derived from the mean of two responses may differ from
the mean of analogous component projections drawn from sepa-
rate decompositions of the same responses. Figure 5D shows the
time courses of RMS amplitude of the three LPC component
projections for the grand-mean detection-task target response (all
10 subjects and five locations) as given by the three ICA decom-
positions described above: (1) simultaneous decomposition of 75
10-subject response averages from both tasks; (2) separate de-
composition of the 25 grand-mean detection-task responses only;
and (3) the average of separate detection-task projections for the
fast-responder and slow-responder groups, respectively. All three
decompositions produced LPC components with similar scalp
distributions (compare Figs. 3F, 4C), peak latencies, and time
courses. However, as their peak amplitudes vary, projected ICA-
component amplitudes are best compared within rather than
between decompositions.

ICA identifies independent periods of
spatial stationarity
Geometric insight into how the ICA algorithm decomposes ERP
is suggested by Figure 5F, which shows all 10 mean short- and
long-RT detection-task target responses for the slow-responder
group at two midline scalp electrodes (Fz and Pz). In this scatter
plot format (middle panel), the data traces follow a cyclic trajec-
tory, although time is not represented explicitly. Amplitude
changes in spatially fixed response components are represented by
movements in radial directions away from or toward the origin.
This plot shows (dashed lines) the two radial directions corre-
sponding to the two largest ICA components (P3b, Pmp) as
defined by the relative strengths of these components at the two
locations in their scalp maps (e.g., Fig. 5G, black dots). The two
component directions are aligned with the most nearly radial
portions of the data (Fig. 5F), which represent periods when the
scalp distribution of the response was unchanging at the two
channels and were accordingly dominated by single ICA compo-
nents (Fig. 5E).

The spatial structure of the data scatter plot (Fig. 5F) resem-

bles an oblique parallelogram rather than a Gaussian cloud. ICA
decomposition, by identifying its natural boundaries, finds its
periods of strongest spatial stationarity, and in so doing finds the
axes and bias offsets that transform the irregular shape of the
input data scatter plot into a near-evenly filled square (right plot
insert), thereby maximizing its entropy. In contrast, PCA would in
effect fit a Gaussian distribution to the data, returning only its
major and minor axes. In this case, the first principal component
(data not shown) would point in a direction resembling but not
matching that of P3b, and the second principal component, or-
thogonal to it, would ignore the sizable stationarity accounted for
by Pmp, because the two ICA component scalp maps are well
correlated (r 5 0.888), but PCA maps must be orthogonal. ICA
identified important nonGaussian features of the input data by
means of higher-order (e.g., nonGaussian) statistics implicitly
involved in its training (see Appendix).

DISCUSSION
The results reported here using ICA confirm and clarify the
evidence from early ERP studies that target LPCs are composed
primarily of three components. In addition, a left-frontal LPC
component was evoked by nogo stimuli that required subjects to
refrain from responding. These four ICA components had dis-
tinctly different scalp distributions, and their dynamics covaried
in orderly ways with the task, subject, and response time differ-
ences. The decomposition provided information about the effects
of dependent variables on spatially and temporally overlapping
components that would have been difficult or impossible to obtain
from separate measurements on single-channel waveforms.

The novel P3f component
First, an early frontoparietal positivity (with bilateral lateral
parietal negativities), called here P3f, was active from the N1
peak through the first portion of the LPC. In the subaverages of
faster responders, its peak latency was nearly simultaneous with
the subcortical motor command, whereas for five slower respond-
ers its peak latency matched RT only for short-RT trials in the
simpler detection task condition. In nearly all decompositions, the
topography of P3f combined a frontal /periocular positivity with a
focal, slightly right-of-center parietal positivity whose peak was
slightly anterior to the P3b extremum. Because the P3f amplitude
was near-equal at both periocular sites and occurred in nearly
every trial with similar (;3 mV) amplitude and latency, it is
unlikely that its periocular projection was generated by eye move-
ments. Instead, P3f likely derives from stimulus-evoked activity in
a frontoparietal system concerned with orienting to spatial stim-
uli. Recently, Corbetta et al. (1998) have shown that two tasks,
one involving voluntary covert shifts of spatial attention (eyes
fixated) and the other, voluntary overt attention shifts (saccadic
eye movements to attended locations), produced fMRI signal
activations in bilateral frontal and parietal areas considered to be
analogs of monkey frontal eye field, superior eye field, and lateral
intraparietal sulcus areas, respectively (Gaymard et al., 1998).
This set of areas is compatible with the scalp distribution of P3f.

The selective evocation of P3f by targets (and partially by nogo
near-targets), its frontoparietal topography, and its close associa-
tion with response production in faster responders all suggest that
P3f may also reflect activity in brain systems associated with
speeded manual responding. The combination of periocular,
frontal, and bilateral parietal scalp features in P3f suggests coor-
dinated activity in brain regions underlying frontal and bilateral
parietal sites involved in speeded manual responses, particularly
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in faster responders. These possibly include human homologs of
the superior parietal “reach region” (Snyder et al., 1997) and
frontal eye fields (Schlag et al., 1998) in monkey orbitofrontal
cortex, shown to be activated by alarming stimuli and sudden
auditory events (Cottraux et al., 1996; Johnsrude et al., 1997), and
prefrontal cortex (Rao et al., 1997). More experiments will be
required to determine the relative importance of speeded re-
sponding, selective attention, and/or spatial orienting for P3f
generation.

Novel stimuli presented during focused attention to a stream of
known stimuli or rare stimuli presented during passive attention
can produce a relatively early, large centrofrontal LPC feature
(Courchesne et al., 1975). The scalp distributions of this novelty
or P3a component (Katayama and Polich, 1998) appear different
from the P3f, but further studies will be required to evaluate
possible differences between them.

The P3b component and P300
The largest of the three independent LPC components, P3b, had
a central parietal maximum and a right-frontal bias, like the LPC
peak itself. In the detection task, its peak amplitude appeared
inversely related to median RT. In the discrimination task, the
;90 msec delay between RT and the P3b peak observed in the
detection task was reproduced only in the fast-responder re-
sponse. These characteristics of the central LPC component
(P3b) identified by ICA appear consistent with those of the LPC
peak in the detection task, often called P300. However, in the
discrimination-task subaverages (Fig. 4D) the LPC and P3b
peaks did not coincide. Thus, ICA decomposition may greatly
increase the precision of studies that use P3b amplitude and
latency measures as covariates to explore the nature and progres-
sion of psychiatric and neurological conditions such as aging
(Friedman et al., 1997), schizophrenia (Turetsky et al., 1998), and
autism (Courchesne et al., 1990).

The motor-related Pmp component
The third LPC component, Pmp, was activated only after a
button press. Its posterior maximum was contralateral to re-
sponse hand, and its latency and topographic variability across
subjects strongly resembled that of the 200 msec postmovement
positivity in the voluntary motor response (Makeig et al., 1996c;
Boetzel et al., 1997). However, in the discrimination task no Pmp
was present in target responses of the five faster responders. Most
probably, Pmp accounts for a component originally called SW
(slow wave) whose peak covaried with RT (Simson et al., 1977;
Roth et al., 1978). Makeig et al. (1997; their Fig. 4) also found an
ICA component strongly resembling Pmp in a task requiring
button presses after indistinct auditory targets.

The Pnt component and response inhibition
A fourth LPC component, labeled Pnt, was activated in parallel
with P3b after nogo nontarget distractors presented in the at-
tended location in the discrimination task. The scalp distribution
of Pnt explains the more anterior LPC distribution consistently
observed in responses to nogo compared with go stimuli (Fall-
gatter et al., 1997), but not previously dissociated from the con-
current residual P3b also evoked by these stimuli (Fig. 3E). The
scalp distribution of Pnt appears consistent with activation of left
dorsolateral prefrontal brain areas repeatedly found in lesion and
imaging studies to be involved in response inhibition (Taylor et
al., 1997; Jonides et al., 1998; McKeown et al., 1998a). In partic-
ular, a homologous left frontal activation was found by Ebmeier et
al. (1995) in a positron emission topography experiment in which

a three-stimulus oddball paradigm including rare nogo nontargets
was compared with a standard two-stimulus oddball paradigm.

Faster and slower responders
Jokeit and Makeig (1994) reported that subjects in a speeded
auditory response experiment were split neatly into two equal
groups of faster- and slower-responding subjects by the time
courses of EEG power near 40 Hz before and after the imperative
stimuli. They tentatively interpreted this result as supporting a
theory advanced by early psychophysiologists, including Wundt
(1913), that faster responders can respond in speeded response
tasks without waiting for a clear and conscious perception of the
stimulus, whereas slower responders inhibit their response until
they recognize the target event and make a conscious decision to
respond to it. Our results suggest that the relatively early re-
sponses of faster responders may be triggered by P3f, which
appears to comprise concurrent activations in more than one
brain region. Possibly, the larger Pmp in slower responders might
index their greater tendency to attend to somatosensory feedback
from their button press, a hypothesis compatible with Wundt’s
characterization.

The analytic power of ICA
Although the ICA technique is relatively new, and its effective-
ness in separating ERPs into components that reflect underlying
brain processes has not yet been established, the results reported
here are encouraging. They demonstrate, first, that ICA can
parsimoniously decompose ERP data sets comprised of many
scalp channels, stimulus types, and task conditions into tempo-
rally independent, spatially fixed, and physiologically plausible
components without necessarily requiring the presence of multi-
ple local response peaks to separate meaningful response com-
ponents. Second, the apparent consonance of the identified scalp
distributions for P3f, Pmp, and Pnt with fMRI activations re-
ported for related task paradigms suggests use of these methods
may lead to increased convergence between results of cognitive
ERP and fMRI experiments. Third, the LPC components iden-
tified here had distinct scalp distributions, and their dynamics
covaried in orderly ways with task, subject, and response time.
Furthermore, they provided more information about the relation-
ships of spatially and temporally overlapping components to sub-
ject performance than either PCA, Varimax, or Promax, infor-
mation that would be difficult or impossible to obtain from
separate measurements of single-channel waveforms. ICA has
also been applied successfully to analysis of fMRI data (McKe-
own et al., 1998b) and optical recording data using voltage-
sensitive dyes (Brown et al., 1998).

Conclusions
Responses to visual stimuli analyzed with ICA have revealed
three major components to the LPC, in accord with the results of
early ERP studies on auditory target LPCs. Motor responses of
faster responders were triggered at the peak of an early compo-
nent, P3f, that begins at ;140 msec and includes concurrent
frontal and bilateral parietal scalp foci. The second component,
P3b, resembled the P300 response reported in simple oddball
experiments not involving motor responses. The third compo-
nent, Pmp, tended to follow responses of slower responders and
matched the 200 msec postmovement positivity in voluntary but-
ton press responses in both latency and scalp distribution. Subject
group differences linked to median RT appeared to be equally
expressed in subaverages of subjects short- and long-RT trials,
suggesting they may be robust to changes in instructions and
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strategy, although this has not yet been tested. The methods
demonstrated here might be used with normal or clinical subjects
to assess cognitive function. They provide a valuable new window
into the relative strengths and time courses of underlying brain
processes.

APPENDIX
Lee et al. (1999a) have shown that the major algorithms proposed
for ICA can be derived from an information theoretic framework,
differing mainly in the distributions they assume for the activation
values of the separate components (Jutten and Herault, 1991;
Cichocki et al., 1994; Comon, 1994; Bell and Sejnowski, 1995;
Amari et al., 1996; Cardoso and LaHeld, 1996; Perlmutter and
Parra, 1996; Karhunen et al., 1997; Lewicki and Sejnowski, 1998;
Lee et al., 1999b). The infomax ICA algorithm of Bell and
Sejnowski (1995), when implemented using a sigmoid nonlinear-
ity, is capable of separating arbitrary full-rank mixtures of com-
ponent processes having temporally independent activations,
with super-Gaussian (positive-kurtosis) distributions.

Independence of two or more variables implies not only that
they are uncorrelated, a condition on the second-order moments,
but also that all the higher-order joint moments are zero. Thus,
decorrelation is a weaker restriction than independence. Inde-
pendence is equivalent to minimizing the mutual information
between a set of signals, which can be accomplished under certain
conditions by maximizing their joint entropy (Bell and Sejnowski,
1995). Entropy is a measure of the amount of disorder in a
system; its maximum occurs when the joint, multidimensional
probability distribution of the system is uniform.

The infomax ICA algorithm
Each input vector, x(t), represents a set of EEG voltages recorded
from all the input channels at time t. Joint entropy maximization
is performed on the (randomly time-ordered) input data after
they are linearly transformed and then compressed by a nonlinear
sigmoidal function:

y~t! 5 g~u~t!!, where u~t! 5 Wx~t! 1 W0 (1)

The sigmoidal nonlinearity, g(), provides necessary higher-order
statistical information to guide the entropy maximization. Op-
tional sphering of the input data before training:

xs~t! 5 Sx~t!, where S 5 2^xxT&21⁄2 (2)

where , . is the average taken over the data, removes second-
order correlations between channels and may speed up conver-
gence (Bell and Sejnowski, 1996).

Before training, W is initialized to the identity matrix, I (or
else, if the data are not sphered, to the sphering matrix, S) and W0

to 0, and then W and W0 are iteratively adjusted using small
batches of randomly selected data vectors (normally 10 or more)
drawn from {x} without substitution, according to:

DW 5 eSH~ y!

W DWTW 5 e~I 1 wu~t!T!W (3)

DW0 5 ew~t! (4)

Here, H(y) is the joint entropy of y, e is the learning rate
(normally ,0.01), and the function w() has elements:

wi~t! 5


ui~t!
lnS  y~t!

ui~t!D (5)

The “natural gradient” term WTW in the update equation (Amari
et al., 1996; Cardoso and Laheld, 1996) avoids matrix inversions
and greatly speeds convergence (Amari, 1998). The logistic
nonlinearity:

yi~t! 5 g~ui! 5 1/~1 1 e2ui! (6)

gives

wi~t! 5 1 2 2yi~t! (7)

and a simple update rule,

W0i~t! 3 e~1 2 2yi~t!! (8)

that biases the algorithm toward finding sparsely activated (super-
Gaussian) independent components with positive kurtosis, com-
patible with the assumption that ERPs are composed of one or
more overlapping series of brief activations within spatially fixed
brain systems performing separable stages of stimulus informa-
tion processing.

The number of time points needed for the method may be as
few as several times the number of recording channels, which in
turn must be at least equal to the number of components to be
separated. The columns of the inverse matrix, W21, or (WS)21 if
the data are sphered, give the projection strengths of the respec-
tive components onto the scalp sensors. These may be interpo-
lated to give a scalp map associated with each component. The
projection of the ith component activation into the original data
space is given by the outer product of the ith row of the compo-
nent activation matrix with the ith column of the inverse unmix-
ing matrix. As scaling information and polarity are distributed
between the activation waveforms and the maps (unless one or
the other are normalized), the strengths of different components
should be compared through the strengths of their projections,
which are scaled in the original data units (microvolts) (Makeig et
al., 1997).

Infomax training
The infomax algorithm reported here used an initial learning rate
near e 5 0.004 and computed updates based on batches of ;25
time points chosen at random without substitution from the input
data set. After each pass through all the data points, an angle
representing the difference in direction between the update vec-
tors in the current and previous passes was computed. Whenever
this angle was .60°, the learning rate was reduced by 10%.
Training was halted when the learning rate decreased below
0.000001 [Stand-alone and Matlab routines used are available via
the world wide web (S. Makeig, MATLAB toolbox for electro-
physiological data analysis, version 3.2, WWW Site, Computa-
tional Neurobiology Laboratory, Salk Institute, La Jolla CA,
http://www.cnl.salk.edu/;scott /ica.html {World Wide Web Pub-
lication}, 1998)]. Repeated testing showed that the decomposition
so derived was little affected by the exact choice of training,
annealing, or stopping parameters. As expected, the absolute
values of correlations, {r}, between component activations
(across all the input data) were low (SD of r , 0.029).

Extended-infomax
The infomax algorithm learning rule can be generalized to sep-
arate sources with either sub-Gaussian (negative-kurtosis) or
super-Gaussian (positive-kurtosis) distributions by approximat-
ing the estimated probability density function in the form of a

2678 J. Neurosci., April 1, 1999, 19(7):2665–2680 Makeig et al. • Functional Components of Visual P300



fourth-order Edgeworth approximation (Girolami and Fyfe,
1997). The algorithm becomes:

DW 5 e@I 2 K tanh~u!uT 2 uuT#W (9)

where K is an n-dimensional diagonal matrix whose elements are

ki 5 11 for super-Gaussian sources

ki 5 21 for sub-Gaussian sources

The kis can be estimated from the generic stability analysis of
separating solutions. This yields the choice of kis used by Lee et
al., (1999b):

ki 5 sign~E$sech2~ui!%E$ui
2% 2 E$tanh~ui!ui%! (10)

which ensures stability of the learning rule.

JADE
The JADE algorithm (Cardoso and Laheld, 1996) also performs
ICA based on joint diagonalization of cumulant matrices involv-
ing all cumulants of orders two and four. It can separate both
sub-Gaussian and super-Gaussian sources. The JADE software
release (J.-F. Cardoso, JADE code for real-valued signals, version
1.5, WWW Site, CRNS, Paris, France, http://sig.enst.fr:80/;car-
doso/{World Wide Web Publication}, 1997) requires no param-
eter tuning. The current implementation limits the number of
data channels (and separated sources) that can be practically
separated to ;50 on current computers.

PCA-based decomposition methods
A second class of proposed LPC decompositions have involved
PCA (Donchin, 1966; Glaser and Ruchkin, 1976; Friedman, 1984;
Dien et al., 1997). Although PCA can efficiently characterize
Gaussian-distributed data, actual ERP data are not Gaussian
(compare Fig. 5F). Because of this, these researchers have ex-
plored the possible usefulness of several orthogonal and oblique
component vector rotation methods for finding simple structure
in high-dimensional data. Advantages and shortcomings of these
approaches have been extensively discussed (Wood and Mc-
Carthy, 1984; Mocks and Verleger, 1986; Chapman and McCrary,
1995).

Varimax and Promax
Varimax and Promax are two methods for rotating components
such as those derived by PCA toward simple structure. Applied to
rotation of components obtained by spatial PCA, the principle of
simple structure implies that the variance in the original data
accounted for by each component is concentrated into relatively
few scalp channels or into relatively few time points, depending
on whether the rotation is applied to the time courses of activa-
tion of the PCA components or to their scalp maps (eigenvectors).
Spatial rotation toward simple structure attempts to minimize the
number of scalp channels accounted for by each component,
thereby generally biasing components to account for the activity
of superficial brain sources. Often, in practice, only the largest
principal components are rotated.

Varimax (Kaiser, 1958) is an orthogonal rotation method and
does not strictly require initialization by transformation of the
data into a principal component subspace (Mocks and Verleger,
1986). Because it produces an orthogonal rotation, Varimax com-
ponents derived from PCA eigenvectors cannot account for ac-
tivity from functionally separate brain sources whose spatial
projections to the scalp are nonorthogonal (Donchin et al., 1986).

Promax (Hendrickson and White, 1964) is an iterative nonlinear
method that performs a highly constrained oblique rotation to
further intensify the orthogonal “rotation to simple structure”
produced by Varimax. In Promax, the unrotated data and the
data accounted for by each component are first raised to a
positive power (often the fourth), retaining their original sign and
emphasizing their peak values, and the component filters are
rotated so as to minimize the least-square distance between their
projections and the distorted data. We applied both temporal and
spatial Varimax and Promax rotation to the largest seven princi-
pal components of the data (Fig. 5B,C). Promax training was
halted when the relative distance measure stopped decreasing
(after 1–3 iterations).
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