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Abstract— Mapping the dynamics and spatial topography of
brain source processes critically involved in initiating and prop-
agating seizure activity is critical for effective epilepsy diagnosis,
intervention, and treatment. In this report we analyze neuronal
dynamics before and during epileptic seizures using adaptive
multivariate autoregressive (VAR) models applied to maximally-
independent (ICA) sources of intracranial EEG (iEEG, ECoG)
data recorded from subdural electrodes implanted in a human
patient for evaluation of surgery for epilepsy. We visualize
the spatial distribution of causal sources and sinks of ictal
activity on the cortical surface (gyral and sulcal) using a
novel combination of multivariate Granger-causal and graph-
theoretic metrics combined with distributed source localization
by Sparse Bayesian Learning applied to a multi-scale patch
basis. This analysis reveals and visualizes distinct, seizure stage-
dependent shifts in inter-component spatiotemporal dynamics
and connectivity including the clinically-identified epileptic foci.

I. INTRODUCTION

Nearly 5% of patients with epilepsy are potential candi-
dates for surgical treatment. Surgery for epilepsy can have
a good chance of success if the brain region(s) generating
seizures can be accurately localized. For this purpose, in
selected cases recordings are acquired using intracranial
(subdural and/or depth electrode) recording for pre-surgical
evaluation. Here we describe some recent preliminary assays
of the spatial and time-frequency dynamics of seizure gen-
eration and propagation in an intracranial EEG recording by
Dr. Worrell at the Mayo Clinic (Rochester MN).

Under suitable conditions, a time-varying vector autore-
gressive (VAR) model provides a useful model for the
analysis of oscillatory structure in stochastic time series [5]
including brain electrical activity. From the VAR coefficients,
we can obtain a number of useful quantities describing the
spectral dynamics and causal relationships between elements
of the system under observation. One proposed approach
for identifying epileptic foci involves fitting VAR models
to channel data and identifying electrodes that exert strong
influence on other electrodes using the normalized Directed
Transfer Function (DTF) (e.g. [6], [14]). Here we use the
short-time direct DTF (SdDTF) [16] which measures direct
(conditional) Granger-causal influences within a system of
observed variables and normalizes over all outflows and

This work is supported by a Glushko Fellowship and by a gift from The
Swartz Foundation (Old Field, NY)

T. Mullen is with Department of Cognitive Science and Swartz Center
for Computational Neuroscience (SCCN), Institute for Neural Computation
(INC), UCSD tim@sccn.ucsd.edu

Z. Akalin Acar is with SCCN, INC, UCSD
zeynep@sccn.ucsd.edu

G. Worrell is with the Faculty Department of Neurology, The Mayo
Clinic, Rochester MN, USA Gregory.Worrell@mayo.edu

S. Makeig is with SCCN, INC, UCSD scott@sccn.ucsd.edu

inflows across all given time points and frequencies, making
it possible to directly compare the amplitudes of the resulting
causal measures across sources, time periods, and frequen-
cies.

Volume conduction and relatively large inter-electrode
distances can frustrate precise identification of epileptic
foci as well as interpretation of inter-regional connectivity
when considering only iEEG channel time-series. When the
number of electrodes is large, the quality of a VAR model
fit may additionally suffer. To reduce dimensionality and
minimize effects of volume conduction, we apply SdDTF
to partially-dependent component subspaces of an infomax
independent component analysis (ICA) model trained on
ECoG data collected before, during, and after two seizure
periods. To identify the cortical regions critically participat-
ing in seizure generation and propagation, we apply Sparse
Bayesian Learning (SBL) and a multi-scale patch-based
source solution [1], [3], [2] to the maximally-independent
source process projections, allowing us to directly visualize
source and sink areas of multivariate Granger-causal influ-
ence on the cortical surface.

II. THEORY

A. Adaptive multivariate autoregressive modeling

Assuming that X = [x1, . . . ,xT ] is an M-dimensional zero-
mean weakly-stationary stochastic process of length T , we
can describe the linear dynamics of the state vector xt =
[x(1)t , . . . ,x(M)

t ]T as a vector autoregressive (VAR[p]) process
of order p: xt = ∑p

l=1 Alxt−l +ut , where ut ∈ ℜM×1 is a zero-
mean white noise process with covariance matrix Σ=

�
utuT

t
�
.

The coefficient matrices, Al , can be estimated using a
number of approaches, including multivariate ordinary and
stepwise least-squares approaches, lattice algorithms (e.g.
Vieira-Morf) or state-space models (Kalman filtering) [8].
Neumaier and Schneider [12] provide an efficient stepwise
least-squares algorithm which we use here. To deal with
the non-stationary data, we model the time-varying cortical
dynamics using a simple segmentation approach in which
we fit separate VAR[p] models to a sequence of highly-
overlapping locally-stationary windows [7].

B. Short-time Direct Directed Transfer Function

The Short-time Direct Directed Transfer Function (Sd-
DTF) [16] from process j to i is obtained from a fitted
VAR[p] model by

η2
i j( f , t) =

|Hi j( f , t)|2|Pi j( f , t)|2

∑kl f τ |Hkl( f ,τ)|2|Pkl( f ,τ)|2 (1)



where A( f ) = ∑p
l=0 Âle−i2π f l , Âl =−Al , Â0 = I and H( f ) =

A( f )−1 is the transfer function of the system with spectral
density matrix S( f ) = H( f )ΣH( f )−1, Ŝ = S−1 and Pi j( f ) =

Ŝi j( f )√
Ŝii( f )Ŝ j j( f )

is the partial coherence between variables i and

j. It can be shown that η2
i j( f , t) will be nonzero if and only if

there exists a direct (multivariate) Granger-causal influence
from Xj to Xi at time t and frequency f .

C. Graph-theoretic measures
The causal participation of process j within the rest of

the system can be represented by graph theoretic measures
such as Outflow (Ω j = ∑M

i=1 η2
i j), Inflow (ϒi = ∑M

j=1 η2
i j),

Causal flow (Fi = Ωi − ϒi), and Causal asymmetry ratio
(Ri =

Ωi−ϒi
Ωi+ϒi

). Outflow characterizes the causal influence of a
node on the rest of the system, while the degree to which
a node is causally driven by other elements of the system
is represented by the inflow. The causal flow and causal
asymmetry ratios represent asymmetry in causal influence of
a given node. Large positive values of Fi (or Ri = 1) indicate a
causal source (a driving process) while large negative values
(or Ri =−1) indicate a causal sink. Values near zero indicate
balanced inflow and outflow or nonsignificant flow.

D. Source Separation and Localization
EEG recorded at each electrode pair can be modeled

as linear instantaneous mixtures of latent brain sources, st .
The generative model for an M-channel observed signal
vector xt can thus be written as xt = Ast . An estimate of
A can be obtained by ICA [4], which seeks to maximize
the independence of assumed non-gaussian sources st . This
approach has been demonstrated to be effective at separating
both brain and non-brain sources of EEG and also iEEG
activity [9].

We denote each column Aq the loading vector of the
qth independent component (IC) and the time course of the
estimated sources st we denote IC activations. For each IC
source q = 1, . . . ,N we may obtain a solution to the multi-
scale distributed source localization problem Aq = LHq + ε
where ε is a zero-mean noise process, L is an [M×V ] lead-
field matrix and Hq is a [V × 1] vector of weights for each
of V elements of a cortical surface mesh. For more details
on the construction of L and its multiscale extension see [2],
[3], [1]. Although L is fat and ill-conditioned, we can obtain
a unique solution for Hq by assuming source sparsity and
applying Sparse Bayesian Learning [15]. We then obtain the
[V ×T ] matrix Pq of time-courses of the distributed cortical
potentials (voltages) for the qth IC by multiplying its [1×T ]
activation time-course Sq by Hq.

E. Visualizing IC dynamics on the cortical surface
We can model the dynamics of and interdependencies

between IC sources by fitting a VAR[p] model to the IC
activations. While it may seem that physical (e.g., Granger-
causal) interactions between and statistical independence of
source processes (as assumed by ICA) are contradictory
assumptions, it can be shown that for weakly coupled (e.g.,
partially coherent or transiently coupled) systems they may

be reconciled, since weakly interacting sources may still be
statistically independent or near-independent [17]. Infomax
ICA only explicitly minimizes instantaneous dependencies,
so time-delayed dependencies (e.g., Granger-causal influ-
ences) may be generally preserved, typically within low-
dimensional component subspaces distinct from other non-
affected source processes.

To obtain an estimate at each cortical surface mesh ele-
ment of outflow, causal flow, spectral density or any other
univariate measure derived from the VAR[p] model, we can
simply multiply the estimate of the measure Φq computed
for the qth IC by Hq. If we wish to preserve the sign of Φq at
each element, we may take the absolute value of the source
weights Hq before this projection. When projecting measures
for multiple ICs simultaneously, the weighted contributions
from each IC are summed at each cortical surface element,
normalizing each Hq to have a maximum of 1 to preserve
the relative amplitudes of projected measures for different
component processes.

III. DATA COLLECTION AND MODELING

Intracranial EEG was collected from a patient undergoing
presurgical evaluation at The Mayo Clinic (Rochester, MN).
The patient presented with seizures due to a porencephalic
cyst in the fronto-parietal brain. Seventy-eight channel iEEG
data was collected at a sampling rate of 500 Hz during
drowsy resting. We selected for analysis a 16-minute epoch
of data containing two seizure bursts, each lasting about
2 minutes. The data were decomposed by extended In-
fomax ICA into 78 maximally-independent processes. By
visual inspection, 16 ICs were identified as exhibiting clear
epileptiform activity; remaining ICs were ignored for present
purposes. The selected ictal ICs were then localized as
described in section II-D and in [2], [11].

The time courses of the ictal ICs were downsampled to
256 Hz after application of a zero-phase FIR antialiasing
filter. Each IC activation sequence was then independently
z-normalized. A 16-dimensional VAR[7] model was fit to
the normalized IC activations using ARFIT stepwise least-
squares [12]. An adaptive model was realized using a 15-sec
sliding window with 1-s step size. The model order (p=7)
was selected based on inspection of the distribution, over all
windows, of model orders that minimized the Hannan-Quinn
information criterion. For each window, the power spectral
density and SdDTF estimators were obtained from the model
coefficient and noise covariance matrices, as described in
Section II-B. Outflow, inflow, causal flow, and causal asym-
metry ratio were computed for each IC source. Statistical
significance of causality was assessed by reference to a
surrogate null distribution constructed by repeatedly (500x)
fourier transforming each time series, replacing the phases at
each frequency with uniformly random numbers in [−π,π]
and applying the inverse fourier transform. This destroyed
all phase structure in each time-series, while preserving its
power spectrum.



IV. RESULTS

Figure 1 shows the time course of activations of the
selected ICs around the scattered onset (left) and abrupt
offset (right) of the first seizure. IC12 exhibits earliest onset
of ictal activity, followed closely by ICs 1, 11 and 13.

Fig. 1. Time course of activations of selected ICs during first seizure onset
(left) and offset (right). Time units are in seconds. ICs with red labels are
those with SBL source solutions shown in Figure 2

IC12 accounted for prominent inter-ictal discharges (IEDs)
at the epileptogenic focus, but did not appear to be a strong
causal outflow hub during the seizure. Our analysis revealed
significant spectral power and SdDTF interactions between
IC processes during the seizure in the theta, alpha, and beta
frequency ranges (Figure 2). To visualize the time course and
distribution of sub-networks potentially involved in seizure
propagation (causal hubs), at each time point and for each IC
the spectrum and graph-theoretic measures were integrated
from 4-30 Hz (theta through beta bands) and projected onto
the cortical surface mesh as described in section II-E.

Fig. 2. SBL Solutions for selected components. A representative SdDTF
time-frequency image shown on bottom right. Note the mid-seizure burst
of connectivity in theta, alpha, and beta bands.

Figure 3 shows a sequence of frames from animations
visualizing the projections of outflow, causal flow, causal
asymmetry, and spectral perturbation (all integrated from 4-
30 Hz) during the first seizure. The time-varying amplitudes
of the measures are also plotted for all ICs. At least three
distinct stages appear during each seizure(s). IC1 (blue trace,
Fig. 3(b-d)) and (transiently) IC9 (brown trace) appear to
be the dominant causal sources during the first stage of
the seizure (particularly driving frontopolar IC5, pink trace).
IC5 dominates in the second stage (with some feedback into
IC1,9) and finally joined by other frontal sources in the third,
final stage. This final stage of the seizure is characterized by
strong dorsofrontal → precentral (e.g., IC4, dark blue trace)

synchronization. While the causal flow measure more clearly
delineates the driving causal hubs throughout the seizure, it
does not distinguish between zero flow (network decoupling)
and balanced flow (symmetric information flow) and thus
should be examined in combination with another measure
such as outflow.

The causal asymmetry ratio metric revealed an interesting
spatial motif involving two clusters of dorsal frontal and
precentral sources close to the electrodes identified clinically
as exhibiting epileptiform activity. This motif, involving a
strong positive dorsal frontal causal asymmetry and negative
dorsal parietal asymmetry, is evident throughout the pre-
seizure period in the causal flow measure and then reappears,
more saliently, in the final stage of the seizure, possibly
indicating a susceptibility of cortex in these areas to dynamic
interdependency. In a parallel analysis using adaptive mixture
ICA, these same frontal and parietal regions appear as two
quasi-independent component subspaces, suggesting they are
functionally distinct local processes that may interact as seen
here near seizure end [2]. The second seizure (not shown)
had quite similar multi-stage dynamics.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed neuronal dynamics during
epileptic seizures using adaptive multivariate autoregressive
models applied to ICA sources of intracranial EEG data
recorded from subdural electrodes implanted in a human
patient for presurgical monitoring. We examined the spatial
distribution of time-frequency information flow dynamics in
the source domain using a novel combination of causal flow
metrics and SBL-based source localization. This revealed
that causal source and sink hubs emerged during the seizure.
We observed distinct stages of alternating feedforward and
feedback information flow between adjacent or overlapping
gyral and sulcal sources in a prefrontal network (elements
of which also expressed the primary epileptogenic focus).
This activity might possibly be maintained through short U-
fiber connections. In the final seizure stage this was followed
by a strong asymmetric spread of sustained theta-alpha-beta
ictal activity from this anterior frontal network to a dorsal
parietal/precentral gyrus network, possibly though cortico-
cortical white matter tracts or subcortical U-fibers.

To our knowledge, this preliminary report represents the
first time that these techniques have been combined to an-
alyze spatially-localized information flow dynamics in elec-
trophysiological data. We note that ground-truth validation
of the method will require new multi-resolution electrical
recording methods. We speculate that the temporal resolution
and goodness-of-fit of the VAR model under non-stationary
conditions may be improved through the use of a state-
space representation of the adaptive VAR model. This would
also allow real-time online updating of the VAR coefficient
matrices and thereby possibly improve the robustness of
the method. Finally, our approach may be readily extended
to modeling source dynamics from scalp EEG, broadening
its applicability for clinical monitoring or basic cognitive
neuroscience research applications.



Fig. 3. Panel (a) shows a sequence of frames from animations mapping 4-30 Hz causal and spectral measures projected onto the cortical surface before,
after and during different stages of the first seizure. Colormaps bounded at 99th percentile. Panels (b-d) show, respectively, the causal flow, outflow, and
spectral perturbation (deviation from 1-100 second baseline power indicated by horizontal doublearrow) for all IC sources as a function of time. Blue (Red)
vertical ticks denote onset (offset) of both seizures. High resolution version of this and other images available at [18].
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