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Abstract 
 
High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings 
have low amplitudes and may be confounded with scalp muscle activities. EEG data from 
an eyes-closed emotion imagination task were linearly decomposed using independent 
component analysis (ICA) into maximally independent component (IC) processes. Joint 
decomposition of IC log spectrograms into source- and frequency-independent modulator 
(IM) processes revealed three distinct classes of IMs that separately modulated 
broadband high-frequency (~15-200 Hz) power of brain, scalp muscle, and likely ocular 
motor IC processes. Multi-dimensional scaling revealed significant but spatially complex 
relationships between mean broadband brain IM effects and the valence of the imagined 
emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation 
of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be 
isolated from scalp-recorded EEG data and may be differentially associated with brain 
sources and cognitive activities. 
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1. Introduction 
 
Most analysis of ongoing EEG and local cortical field activity assumes that the observed 
fluctuations of electrical potential are the sum of more or less narrow-band oscillatory 
activities in distinct frequency bands. However, invasive electrocorticographic (ECoG) 
recordings from the cortical surface of patients in preparation for brain surgery to relieve 
intractable epilepsy include clear and well-replicated 30-200 Hz broadband power 
fluctuations (Crone et al., 2006) that appear directly linked to information processing in 
each cortical area (Crone et al., 2001; Crone et al., 1998; Pfurtscheller et al., 2003; Ray et 
al., 2008). These fluctuations are not found to occur within narrow frequency bands (as, 
for example, within the (8-12 Hz) alpha band (Pfurtscheller, 1989)), but instead appear to 
be monotonic modulations of spectral power across the entire upper portion of the local 
field spectrum. Although a tonic increase in higher-frequency electroencephalographic 
(EEG) activity recorded from the human scalp has long been associated with wakefulness 
and arousal (Moruzzi and Magoun, 1949), and changes in high-frequency broadband 
activity have recently been shown to correlate with neural spike rate (Logothetis et al., 
2001; Manning et al., 2009), it is most often assumed that activity above the (30-90 Hz) 
gamma frequency band does not survive passage through the skull with enough power to 
be detected at scalp electrodes. In contrast, electromyographic (EMG) activities from 
scalp and neck muscles make prominent contributions to scalp EEG data across a very 
wide (at least 20-300 Hz) EMG frequency range, further confounding interpretation of 
high-frequency brain activity in scalp recordings (Whitham et al., 2007).  Thus, it has 
been considered very difficult to clearly separate and monitor very high-frequency brain 
source activities in non-invasively recorded scalp EEG data.  
 
 Analysis of scalp EEG data is complicated by the fact that activity recorded at 
each scalp channel sums activities from several cortical source areas separated as widely 
as occipital and frontal cortex (Makeig et al., 2002). To accurately model the relation of 
EEG dynamics to behavior and experience, therefore, activities of distinct brain and non-
brain EEG sources must first be isolated. Independent component analysis (ICA) 
decomposes scalp-recorded EEG data into a weighted set of maximally temporally 
independent component (IC) processes by learning spatial filters that maximize the 
temporal independence of the resulting IC-filtered output time series (Makeig, 1996).  
Under favorable circumstances, the highly overlapping scalp projections of many ICs 
each strongly resemble the projection of a single equivalent dipole source, a result 
compatible with generation by partially synchronous local field activity across a cortical 
patch, though the scalp maps of a few ICs are clearly better fit by two bilateral equivalent 
dipoles, possibly reflecting joint activity of two cortical patches whose local field activity 
patterns may be tightly coupled by parallel sensory inputs or directly by callosal fibers 
(Makeig et al., 2002). 
 
 Despite the potential for EMG contamination, several studies have reported 
changes in low gamma-band EEG activity associated with imagined or perceived 
emotion-laden pictures. For example, integrated gamma-band power in the 30-60 Hz 
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range has been reported to be higher at rest in Buddhist meditators than in controls, and 
to increase further during their meditations on loving-kindness and compassion (Lutz et 
al., 2004). Processing of emotional stimuli was also linked to gamma band power 
increases in normal subjects (Aftanas et al., 2004; Gemignani et al., 2000; Keil et al., 
2001), though this linkage was absent in alexithymic subjects who are unable to identify 
and describe their feelings (Matsumoto et al., 2006). In another report, repetitive trans-
magnetic stimulation (rTMS) of the medial cerebellum produced spontaneous reports of 
elevated mood accompanied by increased (right > left) asymmetry in gamma (30-50 Hz) 
power at frontal scalp electrodes (Schutter et al., 2003). Of the studies mentioned above, 
only one (Lutz et al., 2004) attempted to address the possible confounding influence of 
scalp muscle by comparing intentional muscle flexing and using ICA to remove 
temporalis muscle contributions and to localize the apparent brain sources of the scalp 
gamma activity, although the latter analyses were only submitted as supplemental 
material. 
  

Many studies of EEG spectral dynamics consider separate, narrow and/or pre-
defined frequency bins. However, to better understand the functional roles of local field 
dynamics in the brain, more flexible data-driven models of spectral dynamics are 
desirable. Here, we attempted to characterize the distinct, frequency modulations 
occurring in continuously recorded EEG data, irrespective of their physiological bases, 
and to determine the inter-relationship of observed modulations in brain and muscle 
source EEG activities. Previously, we have shown that spectral activity of ICs projecting 
to the frontal midline scalp exhibit multiple modes of event-related power modulation 
during a working memory task (Onton et al., 2005). The method we applied here is a 
related but novel method for decomposing log spectral fluctuations of multiple ICs into a 
product of distinct spectral modulator processes (Figure 1 and Methods). Such processes 
might derive from coordinated actions of modulatory factors, for example the brainstem-
based neuromodulatory systems releasing dopamine, acetylcholine, norepinephrine, etc., 
that are linked to arousal and event evaluation (Bardo, 1998; Robbins, 1997) or other 
cognitive/emotional processes. There may appear to be a contradiction between the 
concepts of 'independent' component processes (ICs) and 'amplitude co-modulated' 
processes (co-modulated by one or more IMs), since by strict definition co-modulated 
processes are not truly independent. Mathematical investigation shows, however, that 
infomax ICA should correctly separate and identify co-modulated but otherwise 
independent processes when their probability density functions resemble those of typical 
brain source ICs (Palmer, 2010). 
 

Here we show that results of the log-spectral decomposition method, applied to 
data collected during an experiment involving eyes-closed guided imagery to achieve 
immersion in various emotion experiences, included three categories of broadband high-
frequency modulations associated with brain, scalp muscle, and most likely ocular motor 
tremor activity, respectively. 
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Figure 1. Independent spectral modulators of scalp EEG signals. ICA, applied to 
EEG data recorded at a large number of scalp electrodes, identifies (A) temporally 
distinct (independent) signals generated by partial synchronization of local field 
potentials within cortical patches (B), the resulting far-field potentials summed (∑), in 
differing linear combinations, at each electrode depending on the distance and orientation 
of each cortical patch generator relative to the (A) recording and (C) reference electrodes. 
On average, power in the cortical IC signals decrease monotonically with frequency, but 
also exhibit continual, marked, and complex variations across time. Rather than viewing 
these variations as occurring independently at each frequency, spectral modulations may 
be modeled as exponentially weighted influences of several distinct but possibly 
overlapping modulator (IM) processes (D) that independently modulate via 
multiplicatively scaling (∏) the activity spectra of one or more independent component 
(IC) signals. On converting the IC spectra to log power, combined IM influences on IC 
spectra are converted to log-linear weighted sums of IM influences, allowing a linear ICA 
decomposition of the IC log power spectra to separate the effects of the individual IM 
processes (D) on power at selected frequencies of IC sources (B). 
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2. Materials and Methods 

 
2.1. Subjects and Task 
 
Thirty-two young adult volunteers participated under informed consent in accordance 
with UCSD institutional review board requirements (13 male, 19 female; age range: 18-
38 years; age mean and standard deviation: 25.5 ± 5 years). None of the subjects were 
highly trained in meditation, but all stated they felt capable of inducing a realistic 
emotional state through a verbally guided narrative and their own imagination. Subjects 
were seated comfortably with eyes closed in a dimly lit room with air-tube fed ear-bud 
earphones. Imagination of emotional states was encouraged and guided by a set of pre-
recorded verbal suggestions. Each session began and ended with two minutes of eyes 
closed silent rest. The task then began with a recorded verbal explanation of the task, 
followed by approximately five minutes of verbal guided imagery relaxation instructions 
to promote a relaxed, inwardly-focused state. A series of 15 guided imagery narratives, 
each describing a different emotion and potential scenario, were then presented, separated 
by voice-guided relaxation interludes. Subjects were instructed to use whatever imagery 
they deemed suitable for stimulating a vivid and embodied experience of the suggested 
emotion, and were encouraged to pay attention to somatic sensations associated with the 
target emotion. Subjects were told to take as much time as they needed to recall or 
imagine a scenario that would induce a realistic experience of the suggested emotion. 
 

Each (15-30 s) pre-recorded emotional imagery induction began with a short 
description of the emotion followed by suggestions of one or more circumstances in 
which the target emotion might be vividly experienced. For example, for the emotion 
‘excitement’ the suggested circumstance was this: “Perhaps something you dreamed of 
experiencing is finally about to arrive, something that opens up new exciting possibilities 
for you.” To minimize subject stress, the emotion sequence was chosen to alternate 
pseudo-randomly between positive valence emotions (love, joy, happiness, relief, 
compassion, contentedness, excitement, awe) and negative valence emotions (anger, 
jealousy, disgust, frustration, fear, sadness, grief).  

 
Sixteen of the subjects indicated the onset of the suggested emotion by pressing a 

right-hand button. Eleven other subjects were asked to make pulsating button presses on a 
pressure sensitive key, attempting to communicate the quality of the feeling they were 
experiencing. Five other subjects were asked to press the button at moments when they 
experienced a surge in the target emotion. Results of the valence analysis reported here 
for the three button-press subgroups proved similar, so for the purposes of this report the 
data of all 32 subjects were considered together.  

 
Subjects were asked to experience each suggested emotion for three to five 

minutes, though no external time indicators were provided to the subjects, and to press a 
second, left-hand button when the experience of the emotion subsided. This initiated a 
verbal 15-s relaxation suggestion, followed by the next emotion induction. The durations 
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of the 480 recorded emotion periods (15 emotions × 32 subjects) were between 43 sec 
and 12 min (on average, 218 ± 94 sec) during experimental sessions lasting about 80 
minutes.  
 
2.2. Data acquisition 
 
EEG data were collected synchronously from 250 scalp, four infra-ocular, and two 
electrocardiographic (ECG) electrodes with an active reference (Biosemi, Amsterdam) at 
a sampling rate of 256 Hz with 24-bit A/D resolution. Onsets and offsets of each guided 
imagery narrative, as well subject button presses, were recorded in simultaneously 
acquired event channels. Caps with a custom whole-head montage were used to position 
the electrodes, which were pressed into plastic wells in an electrode cap filled with water-
based conductive gel. The recording montage covered most of the skull, forehead, and 
lateral face surface, omitting chin and fleshy cheek areas. The whole-head coverage and 
multiple chinstraps, as well as the active recording technique that eliminated the need to 
scrape the skin surface, made the process of fitting and wearing the electrodes generally 
comfortable for the subjects. Locations of the electrodes relative to skull landmarks for 
each subject were recorded (Polhemus, Inc.). 
 
2.3. Data preprocessing 
 
Separating independent modulator processes involved several steps detailed below. Data 
were analyzed by custom Matlab (The Mathworks, Inc.) scripts built on the open source 
EEGLAB environment (Delorme, 2004). Electrodes with poor skin contact, judged by 
their grossly abnormal activity patterns, were removed from the data, leaving 134-235 
channels per subject (214 ± 18, mean ± std. dev.).  After re-referencing to digitally linked 
mastoids, the data were digitally filtered to emphasize frequencies above 1 Hz. Data 
periods containing broadly distributed, high-amplitude muscle noise and other irregular 
artifacts were identified by tests for high kurtosis or low probability activity and removed 
from analysis using EEGLAB functions (Delorme et al., 2007). Occurrence of eye blinks, 
other eye movements, or tonic muscle tension artifacts were not criteria for data rejection.  
 
2.4. ICA decomposition 
 
Remaining data time points were then concatenated and submitted to full-rank 
decomposition by extended infomax ICA using the binica function (Makeig et al., 1997) 
available in the EEGLAB toolbox (http://sccn.ucsd.edu/eeglab). Infomax ICA finds a 
matrix, W, that linearly unmixes the original EEG channel data, x, into a sum of 
maximally temporally independent, and spatially fixed components, u, such that u = Wx. 
The rows of the resulting ‘activation’ matrix, u, are the independent component activities 
or activations, and its columns, the time points of the input data. Columns of the inverse 
matrix, W-1, give the relative projection weights from each independent component to 
each scalp electrode. For the derivation of the infomax algorithm, see (Jung, 2001); for 
practical details of its application to EEG data see (Makeig et al., 2004; Onton and 
Makeig, 2006).  
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Decompositions used default extended-mode binica training parameters with a 

stopping weight change of 1e-7.  Extended infomax ICA (Lee et al., 1999) was used to 
allow recovery of components with either supra- or sub-gaussian activity distributions, 
including 60-Hz line noise contamination. No PCA dimension reduction was performed 
on scalp EEG data before ICA decomposition. The amount of data decomposed for each 
subject amounted to between 25 and 57 min (mean data points ± std. dev.: 667k ± 115k). 
The scalp data decomposed by ICA comprised, on average, about 30 time points for each 
weight in the square ICA unmixing matrix learned from the EEG data (range, 15-70). 
Note that the lower end of this points-per-weight range is somewhat lower than we have 
previously recommended (Onton and Makeig, 2006), yet no adverse effects on 
decomposition quality were noted, suggesting that the quality of EEG data affects the 
minimum number of points per weight required for useful ICA decomposition, though no 
systematic exploration of this question has yet been reported. 

 
2.5. Independent component selection 
 
IC activations from each subject were first assessed and categorized as brain activity or 
non-brain artifact (e.g., muscle or line noise, or eye movement activity) by visual 
inspection of their scalp topographies, time courses and activity spectra. Next, an 
equivalent current dipole model for each brain IC map was computed using a four-shell 
spherical head model co-registered to each subject’s electrode locations by warping the 
electrode locations to the model head sphere using tools from the EEGLAB dipfit plug-in 
using Fieldtrip toolbox functions by Robert Oostenveld. Components with bilaterally 
symmetric scalp maps were fit with two symmetrically placed, but freely oriented 
equivalent dipoles. If the spherical forward-model scalp projection of the best-fitting 
single or dual-symmetric equivalent dipole model had more than 15% residual variance 
over all scalp electrodes from the IC scalp map, the component was omitted from further 
analysis. ICs with an equivalent dipole located well outside the model brain volume were 
also excluded. The mean number of remaining brain ICs with near-dipolar scalp maps 
entered into the subsequent analysis was 16 per subject (std. dev. ± 6; range, 9 to 31). For 
some analyses, components accounting for scalp and neck muscle activities were 
separately identified by their characteristic mean spectral plateau above 25 Hz and the 
placement of their equivalent dipole outside the brain in the neck or lower head region.  

A third class of identified ICs included in the decomposition comprised putative 
ocular motor ICs with bilaterally symmetrical scalp maps that resembled those of ICs 
accounting for blink artifacts. However, the activations of these ocular motor ICs did not 
contain typical blink activity features (though some did exhibit deflections temporally 
linked to blink events that were primarily accounted for by other eye blink components). 
These ICs were generally localized using an inverse spherical head model to either the 
edge of ventral frontal brain regions, or below the brain volume just behind the eye 
sockets. Based on the characteristic IM power modulations recovered for nearly all these 
ICs with a broad spectral peak in the region of 50-70 Hz, we judge the source of their 
independent activities to most likely be the ocular motor muscles producing the well-
known bi-ocularly synchronous ocular motor micro-tremor of the eyeballs (Eizenman et 
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al., 1985; Spauschus et al., 1999) which to our knowledge has not previously been 
isolated from scalp EEG signals. 
 
2.6. Spectral analysis 
 
For each subject, the ~16 (range, 9 to 31) identified brain-IC activations from emotion 
imagery periods were separated into 75%-overlapping 2-s Hanning windowed time 
windows and then transformed into individual frequency power spectra by fast Fourier 
transform (FFT). The 512-point time windows were zero-padded to 2560 points to give 
frequency bins with 0.1-Hz spacing. These were then re-sampled to 370 approximately 
quadratically-spaced frequency bins between 3 and 125 Hz. The power values were 
converted to log power and mean log power at each frequency (across the roughly 865 to 
9,500 data windows for all 15 emotions) was subtracted from each single-window 
spectral power estimate. The resulting time series of log spectral deviations were 
concatenated, giving a matrix of size (t, c *f), where t is the number of time windows 
(865-9500), c the number of subject ICs used in the analysis (between 9 and 31), * means 
‘multiplied by’, and f the number of frequency bins (370). The size of this matrix varied 
across subjects according to the lengths of their imagery periods and the number of ICs 
included in the analysis. For each subject, this matrix was reduced to its first 41-76 
principal dimensions (53.5 ± 10, mean ± std. dev.) by PCA such that each decomposition 
contained twice as many frequency bins (times number of ICs) as the square of the 
number of principal dimensions. The resulting principal subspace accounted for between 
26% and 55% (34.7 ± 5, mean ± std. dev.) of the original log spectral data variance.  
 
2.7. Log spectral decomposition 
 
The dimension-reduced log spectral data were then decomposed by extended infomax 
ICA to find independent modes of log spectral power modulations or co-modulations 
across one or more ICs. Below, we refer to the resulting modulatory factors, modes, or 
processes as independent modulator (IM) processes, which each act multiplicatively on 
the activity spectra of one or more of the brain-IC processes separated from the recorded 
EEG scalp signals by ICA. The EEG model underlying this analysis is illustrated 
schematically in Fig. 1, in which two IM processes are shown schematically as discs 
placed in the brainstem region of the cartoon head. In fact, several arousal or event 
valuation neuromodulator systems centered in the brainstem are known to modulate 
cortical field spectra. While the log spectral decomposition introduced here might 
separate the influences of such systems on the scalp EEG, there is no guarantee that the 
IM processes derived statistically from the data need reflect the actions of these or other 
individual physiological systems; establishing any such suggested linkages would require 
further and more specific experimental testing. 
 
 The log spectral ICA decomposition of the dimension-reduced IC spectral 
variability over time returns a spectral unmixing matrix. The inverse of this matrix (the 
spectral mixing matrix) gives the relative projection weights for each IM to each PCA 
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dimension. These can be expanded into window time series by multiplying the ICA 
mixing matrix by the pseudo-inverse of the dimension-reduced PCA eigenvector matrix. 
 
 The decomposition also returns a matrix of ‘templates’ containing the relative 
modulatory effects of each IM on all IC spectra.  Multiplying the inverse ICA and 
pseudo-inverse PCA weight matrices with a single IM template produces a back-
projected data matrix whose columns estimate the strength of IC log-power fluctuations 
across time windows (rows) of one IM process. Thus, IM decomposition models 
principal IC log power spectral fluctuations as weighted sums of IM process influences, 
or equivalently, models IC power spectral fluctuations as exponentially weighted 
produced of IM influences. 
 

Note that an alternate approach beginning with conversion of the single scalp 
channel data to power or amplitude, then applying ICA and spectral ICA decomposition, 
would fail to separate distinct sources mixed linearly in the scalp channel data, since 
taking amplitude or power is a nonlinear operation that cannot be undone by any linear 
inverse method including ICA and linear inverse source localization methods. 
 
2.8. IM model derivation  
 
The decomposition of spectral modulations using ICA assumes that the matrix of spectral 
activities, S, of each IC (c) in each time window is multiplicatively affected (scaled or 
gated) by the exponentially-weighted product of some number, N, of IM processes whose 
(template) patterns of log linear effects on each IC spectrum are given by templates 
comprising the rows of matrix T. Each of the IM templates scales power in some portions 
of the IC baseline spectra, B, the strength of these modulations given by a matrix of the 
scalar exponents, W, associated with each IM, IC, and time window. The magnitudes and 
polarities of these weights determine the extent to which the N IM templates, T, produce 
fluctuations in the IC power spectra, S. 

c

N
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W
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,
.                              (1)            

where Sc,t is the power spectrum of IC c in time window t, Tm is the template of IM m in 
window t, Wm,t is the frequency vector of weights for IM m in time window t, and Bc is 
the mean power spectrum of IC c across time windows. Taking the log of both sides 
gives the IC log power spectrum, S, of IC c in time window t. 

∑
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The log spectral deviation (D) from the mean power spectrum of c in time window t is 

∑
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     (3) 
This equation can be written to include all factors, ICs, and time windows as matrix 
equation 

D = WT        (4) 



Onton & Makeig,  Broadband EEG modulations 

 

11 

Here, D is the matrix of log spectral deviations from log spectral baseline with 
dimensions (windows by ICs*frequencies). The columns of matrix W, of dimensions 
(windows by IMs), give the time window weights. The rows of matrix T, of dimensions 
(IMs by ICs*frequencies), give the templates of spectral modulation of spectral power 
across ICs and frequencies. For computational tractability, the height of matrix D may be 
reduced by PCA before ICA decomposition. The index t in equations (1)-(3) above then 
ranges over the retained principal dimensions. 
 
 Physiologically, baseline power, B, resembles a power-law function (Robinson et 
al., 2001), B ∝ f a. If a template, T, rises log linearly with frequency with a slope b, Tf ∝ 
fb, then T will transform B → TwB ∝ (fb)w f a ∝ f(bw+a), a power-law function of frequency, 
f, in which the IM weight, w, adjusts the power-law exponent (bw+a).  
 
 We have reported previously (Onton et al., 2005) an alternate form of log spectral 
ICA decomposition that we call ‘TW’ (‘templates by weights’), which should be 
distinguished from the current ‘WT’ (‘weights by templates’) decomposition. In the 
former (‘TW’) decomposition of spectral variability in a single IC cluster, temporal 
independence of the modulator time courses was maximized across time windows (as in 
the initial ICA decomposition of the time-domain scalp data). In the present ‘WT’ 
decomposition, however, the independence maximized by ICA is of the IM templates 
across ICs and frequencies. That is, ICA here separates the spectral variability into 
maximally distinct patterns or modes of frequency modulation across spatial source (IC) 
locations and spectral frequencies. In ‘WT’ spectral decomposition, therefore, the 
estimated IM time courses themselves may be correlated and/or otherwise mutually 
informed.  
 
 Note that performing log spectral decomposition on individual scalp channel data 
would not have the same utility, since taking log power is a nonlinear transform and 
therefore the log power spectrum of an electrode signal (summing a number of brain and 
non-brain source projections) is not equal to the sum of the log spectra of the source 
projections themselves. 
 
 Generalization of this method to EEG data collected under different experimental 
conditions is quite possible when the numbers of ICA components and time windows are 
compatible with those presented here. In an event-related paradigm, the width and update 
interval of the moving spectral window might be adjusted to a higher temporal resolution. 
In fact, from preliminary testing, it appears that increasing the temporal resolution (thus 
creating more rows in the decomposition matrix) slightly improves the signal to noise, 
even when the number of columns in the matrix remains constant. Typically, in temporal 
ICA decomposition, adding more channels (i.e., rows) requires more data points (EEG 
samples). However, in the current analyses, as few as 9 ICs × 370 frequencies (= 3,330 
columns) were used in a 41-dimensional decomposition (reduced by PCA from 3,081 
original rows) subject decomposition with no marked differences in the resulting IMs 
from other subject decompositions. 
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 The choice of a multiplicative model for the IM processes is both mathematically 
convenient and also appears biologically plausible, at least within some limited range of 
exponential weights. Typically, neuromodulator processes are not assumed to add to or 
subtract de novo activity from the ongoing local field spectra, but instead are here 
modeled as multiplicatively scaling up or down the amplitudes of particular ongoing 
spectral activity modes whose frequency profiles and time window weights may be 
recovered by the log spectral ICA decomposition. 
 
 Note that there appears to be some contradiction between the concepts of 
'independent' component processes (ICs) and 'amplitude co-modulated' processes (co-
modulated by one or more IMs), since co-modulated processes cannot be truly 
independent. Mathematical investigation shows, however, that infomax ICA should 
correctly separate and identify co-modulated but otherwise independent processes when 
their probability density functions resemble typical brain source ICs (Palmer and Makeig, 
submitted). 
 
2.9. IM template clustering  
 
For most applications, it should be most advantageous to incorporate only ICs with 
putative brain generators to increase the number of brain-process IMs recovered. 
However, to test separation of high frequency muscle activity from similar broadband 
activity patterns found in brain ICs, we also tried including selected scalp muscle and 
ocular motor ICs in the subject log-spectral decompositions. 
 
 To find common patterns of spectral modulations across subjects and IMs, all 
spectral IC template patterns (from the ‘T’ matrix above) whose root-mean square (RMS) 
amplitudes were at least 50% of the largest RMS IC template for each IM were collected 
for clustering. The histogram of RMS values was skewed towards the lower values with a 
median of about 0.19 and therefore a 50% cutoff resulted in inclusion of 13.5% of all IM 
templates. By this criterion, each IM affected between 1 and 31 ICs (3.3 ± 3.2, mean ± 
std. dev.). Each subject contributed, on average, 121 IC frequency templates (~53 IMs × 
~3.3 ICs), yielding a total of 3872 IC templates (~121 templates × 32 subjects) for 
clustering.  
 
 To cluster IMs with broadband templates, we first isolated all IC templates that 
had a maximal multiplicative (dB) effect above 35 Hz. Next, we eliminated templates 
without a clear spectral pattern and with strength of less than 2.5 activation units at all 
frequencies. Using correlation between all IM template vectors to calculate the linkage 
between input templates (Matlab pdist() followed by linkage()), we then constructed a 
dendrogram (using Matlab dendrogram()) with branching set to yield 100 small clusters 
of IM templates.  Clusters with noisy and inconsistent templates were eliminated and IM 
templates were again collected into a single group. This group of broadband IMs from all 
subjects was then separated into brain, scalp muscle and ocular motor ICs according to 
the criteria outlined above. Brain ICs with broadband gamma modulation were found to 
be localized to the areas indicated in dipole density Figure 9. Individual subjects varied as 
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to the number and locations of their broadband IMs. Inter-subject variability was not 
influenced by button press group assignment, so all subjects were grouped together in 
Figure 9 and further analyses.  
 

Other clusters with maximal effects in the theta, alpha and beta frequency ranges 
were also recovered by similar methods and were similarly consistent across subjects; 
further details will be reported elsewhere.  
 
2.10.  Multi-dimensional scaling of IM weights 
 
To assess the behavioral relevance of high-frequency broadband IMs, for each subject a 
separate decomposition was performed, identical to that described above but without 
including scalp muscle and ocular motor ICs. The resulting IM templates included similar 
broadband IMs that were clustered as above. Inspection of the time weight histograms for 
each broadband IM during each emotion period suggested that the median weights for 
each emotion period could capture the strong and clear differences between emotion 
periods in some IM activities. Broadband IM time weights from this second 
decomposition were therefore separated by target emotion, for which median time 
weights for each IM and emotion were computed. To minimize the effects of any non-
stationarities in the brain dynamics and imaginative experience of the subjects within 
each few-minute emotion period, all further analysis was performed on the emotion-
period median weights. 
 
By this method, between 1 and 8 high-frequency broadband IMs (4.8 ± 1.7, mean ± std) 
were identified for each subject. Together, these median weights across subjects formed a 
matrix of 15 (emotions) by 154 broadband IMs. This matrix was submitted to the pdist() 
function in Matlab to create a correlation distance between each pair of emotions. The 
emotion pair distances were then modeled using non-metric multidimensional scaling 
(MDS) using Matlab’s mdscale(). Non-metric MDS represents the location of each 
emotion in a low-dimensional space (here, two dimensions) so as to best preserve the 
monotonic ordering of inter-pair distances. 
 
3. Results 
 
3.1. Subject Reports 
 
At the end of the EEG experiment, each subject filled out a written questionnaire, 
indicating their overall degree of perceived authenticity and intensity of their emotional 
experience (1-9, ‘not very’ to ‘very’), the quality of their overall experience (from 
1=‘negative’ to 9=‘positive’), and the extent to which they felt they had ‘genuinely 
embodied’ each emotion. Their mean response to these questions was 6.9, with mean 
ratings for the experience of individual emotions in the range 5.6-7.3. Subjects’ overall 
rating of the authenticity of their experiences (‘How genuine?’, mean 7.2)was slightly 
higher than their rating of intensity (‘How intense?’, mean 6.4, p = 0.01).  
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They also wrote brief descriptions of their experiences of each emotion. For 
example, for ‘love’ several subjects’ descriptions resembled this one, ‘I felt the 
experience of being in the arms of the one who loves me, the absolute bliss of being 
consumed by my affection as well as surrounded by it.’ For ‘awe,’ several subjects 
described imagining viewing the Grand Canyon, one writing, ‘I recalled watching a 
sunset at the cliffs overlooking the ocean. I also recalled the vastness of the Grand 
Canyon and how small I felt in comparison.’ For ‘frustration’, one subject said, 'I 
imagined sitting in traffic and I had to get somewhere right away. I couldn't do anything 
to change or help my situation. I also imagined a test and not knowing how to do the 
problems.' Only 40 of 32*15 = 480 ratings were less than 5 (on a 1-9 scale). The emotion 
the subjects reported being least able to ‘embody’ was ‘jealousy (z = -0.8, significantly 
different from 7 other emotions by ANOVA, p < 0.01). ‘Jealousy’ was also the emotion 
most often mentioned as the hardest to experience, with one subject saying, “(I) thought 
this would be easier, but had no severe real life instance to use, and imagining being 
cheated on didn't work because that is so deep, seems not possible.' The emotions most 
often mentioned as the easiest were sadness, anger, happiness and love. Thus, subjects 
generally reported having been able to immerse themselves in a genuine experience of all 
or nearly all of the 15 emotions.  
 
3.2. Representative Results 
 
Figure 2 shows effects of 14 IMs on 10 (of 16) ICs entered into the log spectral 
decomposition for one subject. Each row represents one IM and each column one IC. 
Note that IM3 clearly modulates only IC33, while other IMs (i.e., IMs 2, 20 and 6) co-
modulate the spectra of two or more ICs. Note, in the examples shown here, that the non-
zero IC spectral templates forming a single IM affect quite similar frequencies. The ICA 
decomposition itself is in no way constrained to produce templates with such correlated 
templates, but simply detects frequencies from any IC(s) that co-vary in a manner 
maximally distinct from other IC/frequency power variations. Only in rare cases did a 
single broadband IM both up-regulate and down-regulate activity across the same 
frequencies in different ICs (not shown). 
 
 Broadband modulations of muscle IC activities (leftmost columns: ICs 33, 58, 70, 
94) do not affect broadband or high-frequency power in brain ICs (e.g., IMs 1-3, 8, 9, 
13). Likewise IM6, the gamma-band peaked modulation process that may index ocular 
motor tremor (IC6), does not modulate power in brain-ICs. Narrow-band modulations of 
brain ICs in the theta, alpha and beta frequency bands also do not affect ICs associated 
with ocular motor or scalp muscle activity (e.g., IMs 11, 12, 20, 22, etc). Lastly, 
broadband modulations of brain ICs (e.g., IMs 8, 9, and 13) do not co-modulate high 
frequencies in either scalp muscle or ocular motor ICs. 
 
 The left column of Fig. 2 shows the distributions of time window weights for each 
IM. Note that most brain IM weight distributions are unimodal, whereas the three 
(topmost) scalp muscle IMs have bimodal or multi-modal weight distributions, 
suggesting the action of qualitatively different regulatory systems. 
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Figure 2. Typical single-subject decomposition of log-spectral power modulations 
across an hour-long experimental session. The fourteen IMs visualized here (14 rows) 
represent major classes of spectral modulation of 10 of the 16 ICs (rightmost 10 columns) 
entered into the log spectral decomposition for this subject. The leftmost column shows 
histograms of the time-window weights for each IM. The top four IMs (IMs 1-3,6) are 
examples of broadband modulators indexing EMG activity. ICs (IMs 1-3) and a putative 
ocular motor IC (IM6); note the EMG IMs’ multimodal weight histograms (left). The 
other IMs (below) affect only brain ICs, either with a broadband pattern (IMs 8, 9, 13) 
else either predominantly in the theta (IM24), alpha (IMs 5, 20, 39, 43), or beta (IMs 6, 
12) frequency range. 
 
3.3. Representative IM Effects 
 
Figure 3 shows frequency spectra associated with maximum (red) and minimum (blue) 
power values of IMs 1, 8 and 13 (cf. Fig. 2), as they alter the mean log power spectra 
(black) of ICs 58, 5, and 2. Here, the maximal influences of the various IMs (red, blue) 
can be seen as dB deviations from the mean IC log power spectrum (black). Notice that 



Onton & Makeig,  Broadband EEG modulations 

 

16 

broadband (EMG) modulations of scalp muscle activity (e.g., effects of IM1 on IC58) are 
larger than the effect of broadband IMs modulating brain ICs (e.g., effects of IM8 on ICs 
5 and 2). Note also that IM20 (orange) modulates alpha band activity (and its harmonics) 
of occipital/parietal ICs 5 and 2, but not of scalp muscle activity ICs (e.g., ICs 33, 58, 70, 
and 94).  
 

 
Figure 3. Effects of brain and muscle modulators on independent component 
spectra. Maximal effects of three IMs (columns) on the power spectra of three ICs 
(rows) are shown via their maximal (red traces), minimal (blue traces), and mean (black 
traces) log power spectra. Outer light grey limits represent the 1st and 99th percentiles of 
spectral variation across all the 2-sec windows during the session. Dark grey areas 
represent the 1st and 99th percentiles of the PCA-reduced spectral data. Note the much 
larger broadband IM modulation of an electromyographic IC (IM1 on IC58, upper left) 
compared to the separate but smaller broadband IM effects on brain ICs (IM8 on ICs 5 
and 2, middle column). The effects of the upper alpha rhythm modulator (IM20) include 
shifting the peak alpha frequencies of IC5 and IC2 (blue versus red traces, right column). 
  
 The limits of the light grey shaded regions in Fig. 3 show, for three ICs, the 1st and 
99th percentiles of power at each frequency. Black traces show the mean IC log spectra. 
The limits of the PCA-reduced data are shown in darker grey. At some frequencies, the 
illustrated IMs account for the extremes of the darker grey area. For other frequencies, 
some portion of the variability of the PCA-reduced data is accounted for by other IMs 
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(not shown). This decomposition illustrates the relative independence of scalp EMG and 
broadband brain IMs. 
 
3.4. Broadband IM Clusters 
 
 Figure 4 shows that both brain and scalp muscle ICs exhibited monotonic 
broadband modulations with similar spectral patterns. However, in our data no broadband 
IM affected both scalp muscle and brain ICs. In the right three columns of Fig. 4, spheres 
represent the estimated positions of equivalent dipole models of the affected ICs, co-
registered to the MNI brain template (Montreal Neurological Institute), their color 
varying according to the root-mean square (RMS) strength of their IM template relative 
to that IM’s highest-RMS IC. Purple spheres represent equivalent dipoles of ICs solely 
affected by an IM. Green lines connect spheres whose ICs were co-modulated by the 
same IM 
 

 
 
Figure 4. Broadband independent modulators of brain and scalp muscle 
components. Brain and scalp muscle ICs are separately modulated by IMs with similar 
broadband high-frequency templates (upper rows). The left column shows broadband 
templates for each IC category (black trace is the mean). The right three columns show 
equivalent dipole locations of the affected ICs. A distinct cluster of putative ocular motor 
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IMs, shown in the bottom row, have a peak effect near 50 Hz on ICs many of whose 
bilaterally symmetric equivalent dipole models (bottom right panels) are located near the 
eyes. (ICs whose best-fit equivalent dipole model comprised two bilaterally symmetrical 
dipoles are represented with a dotted yellow line connecting the dipole pair). Dipole 
locations for scalp muscle ICs are outside the brain volume (middle row). Green lines in 
dipole plots connect ICs co-modulated by the same IM and the colors of the dipole 
spheres (yellow to red) indicate the relative strength of modulation (yellow = 50%, to red 
= 100% of maximal). Purple spheres indicate individually modulated ICs.  
 
3.5. Upper frequency limit of broadband IM effects 
 
To determine the upper frequency limit of the broadband IM phenomena, we recorded 
and analyzed three additional experimental sessions recorded with an EEG sampling rate 
of 512 Hz. In each session, we again found broadband IMs whose upper frequency limits 
varied between 150 Hz and ≥ 256 Hz. Sample broadband IMs from one of these sessions 
is shown in Figure 5. 
 

 
Figure 5. Broadband modulators of a representative data set with higher sampling 
rate. This decomposition of a data set acquired with a sampling rate of 512 Hz (from a 
different subject than Figure 2) allowed an upper frequency analysis limit of 256 Hz, 
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allowing examination of broadband patterns between 128 Hz and 256 Hz. Negative 
spikes at 60 Hz and 180 Hz in some templates are residual effects of 60-Hz line noise. 
Note that IM9 (bottom row) has no effect above 150 Hz, while the modulatory effect of 
IM3 (middle row) is still increasing at 256 Hz. 
 
3.6. Correlations among IM time courses 
 
Since the independence maximized by the IMs in our analysis was between their 
frequency templates, not their time window weights, the IM time courses were free to be 
correlated with one another in nearly any manner (though separate IMs could not be 
perfectly correlated or anti-correlated). Therefore, we computed within-subject temporal 
correlations between IM weights assigned to 11 brain IM clusters. Table 1 gives the 
within- and between-cluster correlation means and half-inter-quartile ranges. In general, 
the number of significant correlations in any IM cluster pairing was low, where 
significance limits were determined by performing correlations using IM time course 
weights from different rather than the same subjects (p < 0.01). On average, 20% ± 13% 
(mean ± standard deviation) of IM pair correlations within any cluster pair were 
significant by this measure. The time courses of broadband IMs were relatively more 
positively correlated with those of other broadband IMs (r = 0.15 ± 0.17, mean ± half 
inter-quartile range) than were the time courses of lower-frequency IMs with each other 
(p < 0.0001 by t-test). Also, the time courses of broadband IMs were weakly negatively 
correlated with those of lower-frequency IMs (r = -0.09 ± 0.07, p < 0.0001 by t-test; 
Figure 6). 
 
 
Supplementary Table 1. Correlation of within-subject IM weights over time across clusters (r ± half the inter-quartile range)

Delta Theta1 Theta2 Alpha1 Alpha2 Alpha3 Beta1 Beta2 Beta3 Beta4 BB
Delta 0.04 ± 0.02
Theta1 0.03 ± 0.03 0.07 ± 0.06
Theta2 0.05 ± 0.03 0.07 ± 0.05 0.07 ± 0.04
Alpha1 0.04 ± 0.04 0.06 ± 0.05 0.06 ± 0.05 0.08 ± 0.06
Alpha2 0.02 ± 0.05 0.03 ± 0.06 0.02 ± 0.05 0.05 ± 0.07 0.09 ± 0.10
Alpha3 0.02 ± 0.03 0.05 ± 0.05 0.02 ± 0.05 0.03 ± 0.06 0.08 ± 0.08 0.07 ± 0.06
Beta1 0.01 ± 0.04 0.02 ± 0.05 0.03 ± 0.06 0.06 ± 0.07 0.07 ± 0.09 0.07 ± 0.07 0.09 ± 0.10
Beta2 -0.01 ± 0.05 0.07 ± 0.09 0.00 ± 0.05 0.06 ± 0.09 0.12 ± 0.10 0.1 ± 0.08 0.13 ± 0.12 0.21 ± 0.07
Beta3 0.01 ± 0.03 -0.01 ± 0.05 0.03 ± 0.04 0.03 ± 0.06 0.1 ± 0.11 0.04 ± 0.10 0.09 ± 0.12 0.18 ± 0.07 0.09 ± 0.07
Beta4 0.00 ± 0.07 0.06 ± 0.08 0.02 ± 0.04 0.04 ± 0.06 0.06 ± 0.09 0.08 ± 0.06 0.05 ± 0.07 0.12 ± 0.11 0.13 ± 0.13 0.1 ± 0.15
BB -0.07 ± 0.06 -0.08 ± 0.07 -0.08 ± 0.05 -0.07 ± 0.07 -0.09 ± 0.07 -0.09 ± 0.06 -0.08 ± 0.08 -0.15 ± 0.08 -0.11 ± 0.07 -0.14 ± 0.09 0.15 ± 0.17  
 
Table 1. Mean (± half inter-quartile range) within-subject correlations between time 
window weights both within and across IM clusters. Frequency-band limits: Delta (3-4 
Hz); Theta1 (4-6 Hz); Theta2 (6-8 Hz); Alpha1 (8-9 Hz); Alpha2 (9-11 Hz); Alpha3 (11-
12 Hz); Beta1 (12-17 Hz); Beta2 (17-20 Hz); Beta3 (20-24 Hz); Beta4 (24-30 Hz); BB 
(30-128 Hz); Note the weakly negative correlations of the broadband (BB) and lower-
frequency weights (bottom row), versus the generally weakly positive correlations 
between other IM cluster weights (above). 
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Figure 6. Value-sorted time course correlations of all within-subject IM pairs for 
each pair of IM clusters. Traces represent sorted correlation coefficients between time 
weights from pair-wise comparisons of 11 IM clusters, each point representing a within-
subject correlation of two IM time courses over 14 emotion imagination periods 
(excepting ‘compassion,’ see main text). IM clusters affected spectral changes in Delta, 
low Theta1, high Theta2, below-peak Alpha1, at-peak Alpha2, above-peak Alpha3, low 
to high Beta1-4 bands, and Broadband high-frequency activity, respectively. See Table 1 
legend for frequency band limits. Most time course correlations were quite weak, but 
were typically positive between all lower frequency IM clusters. Correlations for 
broadband versus broadband IM pairs (arrow) were more often positive than for any 
other IM cluster pairs. Correlations of broadband IM time courses with lower-frequency 
IMs (ellipse) tended to be negatively correlated, though nearly all IM time course 
correlations were weak ( |r| < 0.4). 
 
3.7. Behavioral ratings 
 
Figure 7 shows results of the web survey by 100 subjects of differences between the 15 
emotion terms used in this experiment on two dimensions long found to characterize 
differences between affective connotations of emotion names and many other words, 
valence and arousal (Russell, 1980). As expected, these results conform to common 
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understanding and experience of these emotion terms, with love, joy, happiness, etc. rated 
as ‘positive’ valence (i.e., good) emotions, frustration, anger, fear, grief, etc. as ‘negative’ 
valence (bad), frustration, anger, joy and excitement as associated with relatively ‘active’ 
arousal, and contentment, grief, and sadness with relative ‘calm.’ 
 
 

 
 
Figure 7. Mean behavioral ratings of the fifteen emotion labels used in the 
experiment. Subjects rated each word on two scales: ‘Valence (negative-positive)’ and 
‘Arousal (calm-active)’ labeled ‘Very negative’ (0) to ‘Very positive’ (10), and ‘Low 
activity’ (0) to ‘Stimulating’ (10), respectively, with the midpoint (5) indicated as 
‘Neutral’ on both scales. Rating data were collected from 100 subjects via an anonymous 
on-line survey. Each emotion point represents the mean z-score and the error bars the 
standard deviation. Colors are applied from a continuous color spectrum and used simply 
to differentiate emotions from one another and do not reflect any objective metric or 
emotion grouping. 
 
3.8. Behavioral relevance of broadband IM effects 

 
For all 154 broadband gamma (~15-128 Hz) IMs were computed from a separate set of 
log spectral decompositions (one for each subject) including only brain (non-muscle) ICs, 
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median time window weights during each of the 15 emotion periods. To look for 
structured relationships between emotions and changes in broadband IM weights, the 
resulting (15-by-154) matrix was reduced to three dimensions using non-metric multi-
dimensional scaling (MDS) (Cox, 2000). The resulting emotion distribution shown in 
Figure 8 arranged the fifteen emotions in a near circular pattern in which emotions with 
negative valence were arrayed on the left, and emotions rated as positive on the right. In 
the MDS array of Fig. 8, similar emotions (‘joy’ and ’happiness’, ‘sadness’ and ’grief,’ 
etc.) were located near to one another, and emotional opposites (e.g., ‘fear’/‘frustrations’ 
versus ’relief’, ‘happiness’ versus ‘grief’/’sadness,’ etc.) opposed one another across the 
emotion circle. This arrangement of emotions based on high frequency EEG 
measurements is in line with years of psychology research on the circumplex model of 
emotional space (Russell, 1980). 
 

Note that in Fig. 8, the position of ‘compassion’ in the MDS array is much closer 
to ‘grief’ and ‘sadness’ than to other positive-valence emotions. While the term 
‘compassion’ was consistently rated a ‘positive’ emotion by a separate cohort of non-
EEG subjects, the EEG subjects experiencing the emotion reported imagining scenarios 
consistent with feeling pity or sadness for others. Thus their self-induced emotional 
experiences could well have been closer to ‘sadness’ or ‘grief’ than to any positive-
valence emotion, as in Fig. 8. We therefore had cause to doubt that the behavioral ratings 
for ‘compassion’ fairly reflected the predominant experience of the EEG subjects; after 
eliminating ‘compassion,’ the correlation between positions in the MDS array and the 
mean behavioral ratings of emotional valence (i.e. along the solid line in Fig. 8) was r = 
0.96, significantly higher than expected by chance (see Methods). The positions of the 
emotion terms in the MDS space were not significantly correlated (in any direction) with 
behavioral ratings of the remaining fourteen emotion labels on the second major axis of 
emotional experience – arousal (Lang et al., 1993). 
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Figure 8. Multidimensional scaling of median time weights of broadband IMs for 
each emotion. Similarities between median IM weights in the 15 emotion periods, drawn 
from log spectral decompositions for each subject of brain-source ICs only, as 
represented in the best-fitting two-dimensional space by non-metric multidimensional 
scaling (MDS). Colors of the balls represent the mean behavioral ratings of (positive or 
negative) valence of the fifteen emotion terms by a separate subject cohort. The solid line 
shows the best-fit regression direction (r=0.96) predicting mean rated valence for each 
emotion term from its location in the 2-D MDS space solely based on IM weights after 
neglecting compassion (see text). The dashed line orthogonal to this cleanly separates 
positive-valence emotions terms (warm color balls) from negative-valence terms (cool 
color balls). 
 
3.9. Brain sources of broadband IMs 
 
Equivalent dipoles of ICs affected by broadband IMs were distributed through inferior 
occipital and temporal cortices, as well as middle temporal and mid-frontal areas (Figure 
9).  
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Figure 9. Equivalent dipole density of ICs affected by broadband IMs. Spatial 
density of equivalent dipoles (in IC equivalent dipoles/cm3, for 154 broadband IMs from 
32 subjects), obtained by convolving each dipole location with a 3-D Gaussian blur (1-cm 
std. dev.) and then summing after normalizing for boundary effects. White integers above 
and to the left of each slice image give their standard MNI brain z-axis coordinates, 
yellow text the nearest Talairach z-axis coordinates. Here, figure left is brain left. 
 
3.10. Regional correlations with valence 
 

Next, we asked where in the brain median power changes occurring during 
emotion imagination periods were positively or negatively correlated with the 
behaviorally rated valence of the emotion labels. To construct Figure 10, median weights 
for each broadband gamma IM were correlated with the rated emotional valence of each 
emotion term. Then, the locations of all IC equivalent dipoles significantly modulated by 
these broadband IMs (see Methods) were weighted by the absolute value of this 
correlation to create two correlation-weighted dipole density plots (in correlation-
weighted dipoles/cm3) for positive and negative correlations, respectively. Fig. 10 shows 
the difference between those two density images, masked for significance (p < .003, 
uncorrected) by randomly permuting positive and negative correlation values. IMs 
positively correlated with valence (i.e., ICs whose median IM broadband power was 
stronger during imagination of positive-valence emotions) were relatively dense in 
bilateral mid-temporal cortex (BA20/21), while IMs negatively correlated with rated 
emotional valence (i.e., ICs whose IMs exhibited larger power during imaginative 
experience of negative-valence emotions) were relatively dense in bilateral occipital 
cortex near to but not including the occipital midline (BA17/18). 
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Figure 10. Difference between positive and negative correlation-weighted IC 
equivalent-dipole densities of IMs whose median weights, across 14 emotion 
imagination periods, were positively or negatively correlated with behaviorally rated 
emotion valence. Regions of non-significant density differences were masked using 
permutation statistics (p > 0.003, uncorrected). Areas of significant density difference 
between positive and negative correlation densities are colored yellow/red, indicating 
broadband power increases during positive-valence emotions, or cyan/blue, indicating 
broadband power increases during negative-valence emotions. White integers near each 
slice image give the MNI z-axis coordinates; yellow text, the nearest Talairach z-axis 
values. In these images, left is left. Weights for ‘compassion’ were not included (see 
text). 
 
4. Discussion 
 
We have demonstrated that broadband co-modulation of beta-band, gamma-band, and 
high gamma-band power (Fig. 4), often localized to a single independent component (IC) 
process, can be identified and separated from high-density scalp EEG data. To show this, 
we modeled log spectral fluctuations of independent component processes in EEG data as 
a set of distinct multiplicative spectral modulator processes. The results of these 
decompositions include a class of independent modulators concurrently up- or down-
regulating power at all frequencies between ~15 Hz and at least 128 Hz, though 
preliminary analyses (Fig. 5) suggest their effects may in some cases continue up to at 
least 256 Hz. Note that these broadband modulations may be termed a non-oscillatory 
aspect of EEG signals, one typically ignored in frequency-by-frequency analyses EEG 
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data – the effects of broadband modulation being more akin to shifting a continuous 
whisper from  ‘shhh’ to ‘ssss’ and back again, for example, than to varying the volume of 
a simple or complex oscillating tonal frequency. 

 The observation of broadband high frequency modulation in EEG data is not 
novel. As Erik Edwards recently pointed out to us, perhaps the first EEG power spectra 
ever shown (by Grass and Gibbs in 1938) contain low-amplitude broadband differences 
in high-frequency power between mean EEG power spectra averaged over consecutive 
10-min intervals (Grass, 1938). Furthermore, elevation of broadband high-frequency 
power in local field potentials was regarded early on as a key index of arousal linked to 
neuromodulator processes in the ‘reticular activating system’ (Moruzzi and Magoun, 
1949). Our method identifies this broadband modulation as a frequency-distinct mode of 
spectral modulation common to most independent brain source processes identified by 
ICA in our scalp EEG data. 

 
4.1. Relation to power law scaling and event-related gamma band phenomena 
 
Power law (1/fα) spectra appear in many nonlinear systems and typically have a critical 
point (i.e., an α slope value) at which they are most sensitive to external influence. 
Around this point the response of the system external input is most sensitive to small 
changes in the spectral exponent (Linkenkaer-Hansen et al., 2001). Thus, relatively small 
changes in broadband IM power (see Fig. 3) might have strong effects on the functioning 
of a cortical area within broader brain networks, if the baseline slope of the power 
spectrum is near a critical point. Critical power-law scaling of local field activity has 
been observed in isolated visual cortex (Beggs and Plenz, 2003), and its existence 
predicted by recent biophysical models of cortical dynamics (Buice and Cowan, 2007; 
Robinson, 2003; Robinson et al., 2001) (although Bedard et al. have questioned whether 
it might appear simply from capacitive filtering effects of cell membranes in neuropile 
(Bedard et al., 2006)).  
 

Recently Miller et al. (2008) have demonstrated approximate power law scaling in 
human intracranial electrocorticographic (ECoG) data. They used a PCA rather than an 
ICA data decomposition approach to extract a near-flat log power modulation function 
from their log spectral data and demonstrated the relative spatial specificity of broadband 
high-frequency modulations in stimulus event-related paradigms. By its nature and 
objective, PCA finds orthogonal (eigenvector) directions in the data that account, 
successively, for the most variance. ICA, by contrast, attempts to split the data into 
maximally distinctive components – here, into maximally distinctive frequency template 
patterns. The relative similarity of our results to those of Miller et al. support the joint 
conclusion that broadband spectral modulations are a common and distinctive feature of 
both scalp and intracranial EEG. Our ICA approach should separate the log spectral data 
(whether scalp or intracranial) into modulatory processes with more frequency (and 
possibly functional) specificity.   
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In this regard, our failure to find modulations peaking in the (30-70 Hz) gamma 

band (other than putative oculomotor IMs, see below) is of interest, and contrasts to the 
results of investigations of stimulus attention-related gamma band phenomena that 
exhibit sharper band peaks in the gamma band (Fries et al., 2001; Lachaux et al., 2007). 
We note, however, that most previous reports of gamma band activity in human EEG and 
MEG have focused on activity evoked or induced by sensory stimuli, therefore using 
relatively short spectral time windows.  Here, by contrast, we used relatively long (2-s) 
time windows in a non event-related paradigm without external stimulation. In 
exploratory work, we found that ICA decompositions of log spectrograms based on short 
time windows (<< 1 s) included multiple IMs with peak activity in the gamma band, but 
also had an noisier character overall. Therefore, for this first report we chose not to 
further explore their possible functional relationships to the emotions. 
 
4.2. Ocular motor tremor 
 
In the eyes-closed EEG data of 23 of our 32 subjects, IM analysis revealed a striking 
pattern of spectral modulation that affected frontal power principally between 40 Hz and 
100 Hz for a cluster of ICs with bilaterally symmetric scalp projections, many of whose 
equivalent dipole models suggested sources in or near the ocular cavities. Because of our 
relatively sparse electrode coverage over the face and inaccuracies (most severe near the 
face) in the spherical head model used here to perform source equivalent dipole 
modeling, we could not better localize the physiological sources of these IMs. The 
spectral modulation pattern of these IMs and their bilateral synchrony correspond well to 
observed dynamics of the tiny (0.1-2 µm) ocular motor tremor (OMT) that helps maintain 
retinal activity and visual perception (Eizenman et al., 1985; Spauschus et al., 1999). First 
described in 1934 (Adler, 1934), the OMT is produced by extraocular muscle activity 
driven from the ocular motor area of the brainstem (Coakley, 1983) linked to the reticular 
arousal system and not dependent on the eyes being open (Prochazka et al., 1985). 
Putative OMT IMs with peak effect in the gamma-band (as here, IM6), possibly indexing 
ocular motor tremor, did not co-modulate activity of brain source ICs. Narrow-band 
modulations of brain ICs in the theta, alpha and beta frequency bands also did not 
modulate the spectra of ICs associated with either scalp muscle or putative OMT activity 
(left). Possibly, changes in OMT power in our data might be linked to changes in arousal 
and/or imaginative visualization, which engage similar brain systems as actual vision 
(Kreiman et al., 2000). 
 
4.3. Relationship to arousal 
 
The correspondence of arousal to complementary changes in broadband high-frequency 
ECoG power in animals was noted by Moruzzi and Magoun in their early influential 
paper on the brainstem ‘reticular activating system’ (Moruzzi and Magoun, 1949). 
Complementary changes between power in low (near 3 Hz) and high (35-40 Hz) 
frequency EEG power in central scalp EEG, correlated with swings in behaviorally 
indexed alertness, were reported by Makeig and Jung (Makeig and Jung, 1996), an 
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example of many studies that have sought correlations between high-frequency EEG 
power and alert behavior using frequency-by-frequency statistics, in contrast to the 
independent modulator approach we report here. Thus, we here expected, and found, 
negative correlations between changes in broadband gamma IM power and concurrent 
power changes in other IMs affecting lower (≤ 35 Hz) EEG frequencies. However, these 
correlations (Table 1, Fig. 6), while negative on average (p < 0.0001, t-test), were quite 
modest, as were the positive correlations among broadband IMs, meaning nearly none of 
the variability in broadband gamma IM power could be accounted for by a single central 
arousal factor. Further, no direction in the two- or three-(not shown) dimensional MDS 
representation of median broadband IM weights during emotion imagination (Fig. 7) was 
significantly correlated with behavioral ratings of the level of arousal (‘active’ versus 
‘calm’) associated with the same emotion terms. Here, however, we had no independent 
measure, behavioral or otherwise, of moment-to-moment changes in subject arousal 
level, so cannot determine more exactly what proportion of broadband IM variance may 
be linked to fluctuations in subject behavioral arousal during the experiments. However, 
our results strongly suggest that the identified broadband gamma power modulations did 
not simply index overall arousal. 
 
4.4 Use of guided imagery for emotion induction 
 
A more common method of attempting to induce emotional states in psychological 
experiments has been to expose subjects to strongly emotion-arousing pictures (Wiswede 
et al., 2009). This may often be effective for some negative-valence  emotions (horror, 
disgust, lust, etc.), although a medical professional, for example, shown a startling picture 
of an accident victim’s injuries, might assume a detached professional point of view and 
not experience nearly the degree of palpable fear or disgust as viewers who had never 
experienced such emergencies. Emotional picture viewing is less successful for inducing 
positive-valence emotions and in general, for inducing the range of emotions experienced 
in everyday life (Kim and Hamann, 2007), most likely because these emotions generally 
arise in connection with and refer to a variable context of personal connections and/or 
intentions that cannot be represented in a single picture. Moreover, viewers of pictures 
relating to everyday emotions (contentment, happiness, awe, jealousy, etc.) generally 
exercise a large degree of control over the emotional attitude and context they bring to 
the experience, thereby determining or strongly affecting the emotion they experience 
during its viewing.  

 
The method of guided imagery (Bonny and Summer, 2002), by contrast, explicitly 

enlists the active cooperation of the subject in imagining a scene and event context they 
personally associate with the target emotion. For example, if suggested to self-induce a 
feeling of awe, I might recall from experience my first extended look from the rim of the 
Grand Canyon in Arizona; asked to self-induce a feeling of compassion, I might imagine 
a dramatic scene in which I came upon someone suffering with whom I felt some 
emotional connection, etc. Verbal suggestions from another person (including, as here, 
recorded verbal suggestions) have long been found by storytellers, psychotherapists, and 
hypnotists to be effective in enlisting the active engagement of cooperative subjects 
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(Bonny and Summer, 2002). In post-session questionnaires, most subjects reported they 
were able to experience most of the suggested emotions, often expressing surprise as to 
the vividness of their emotional experiences. Here, we collected no other 
psychophysiological measures to verify the degree of experienced immersion and 
emotionality, for example galvanic skin response (GSR), though this measure might not 
be expected to  differentiate between many of the emotion terms we used, particularly 
low-arousing positive emotions. 

 
4.5 Subject and emotion variability 
 
Although our short induction paragraph suggesting each emotion gave an example 
situation to illustrate our intended sense of the emotion term, we also encouraged subjects 
to select whatever imagined scene they felt would allow them to experience the suggested 
emotion most effectively. Therefore, we cannot rule out the possibility that the subjects 
might have both aimed and arrived at rather different experiences for the same emotion 
term and cannot dismiss the possibility that subjects may have in some cases experienced 
a mixture of more than one of the suggested emotions. In fact, we suggested this kind of 
explanation for the apparent EEG spectral resemblance of the experiences of 
‘compassion’ to the same subjects’ experience of ‘grief,’ arguing that the scenes they 
chose to experience for ‘compassion’ might well also have involved feelings of ‘grief’ for 
the plight of another person. Finally, we did not attempt to use only those emotion terms 
that we felt were in some sense ‘orthogonal’ to one another. Rather, by using 15 common 
emotion terms, we hoped to over-sample from the space of common emotions, for 
example assuming that the physiological characteristics of the ‘joy’ and ‘happiness’ 
inductions would be closely related, as indeed proved to be the case (Fig.  7).  
 

No doubt there were also considerable differences between our subjects in their 
degree of real-life experience of the suggested emotions. Only one subject asked to be 
excused from the experiment early, remarking that he did not believe he could perform 
the task but there was considerable variation in the emotions the subjects indicated in 
post-test questionnaires that they were less successful in experiencing (mean emotion 
ratings for all emotions were ~ 6.5-7.25 (std ~2), with the exception of ‘jealousy’ which 
had a mean rating of 4.9 as well as the largest standard deviation of 3.3). 

 
 
4.6. Broadband gamma power and emotional valence 
  
The emotional valence of a stimulus has been shown to differentially modulate many 
physiological variables such as heart rate (Lang et al., 1990; Sammler et al., 2007), facial 
EMG activity (Cacioppo et al., 1986), brain blood oxygenation levels (Herrington et al., 
2005), and various aspects of the EEG (Brucke et al., 2007; Cole and Ray, 1985; De 
Pascalis et al., 1987; Gemignani et al., 2000; Guntekin and Basar, 2007; Li et al., 2008; 
Muller et al., 1999; Onoda et al., 2007; Tomarken et al., 1992; Yuan et al., 2007). Here, 
multi-dimensional scaling of median broadband IM power in each emotion period 
showed that broadband power was linked to emotional valence, though IMs with positive 
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and negative correlations with valence appeared in most brain regions, with the exception 
of left and right anterior temporal lobe, in which IM power was positively correlated with 
emotion valence, and near-medial occipital lobe, in which IM power was negatively 
correlated with valence (Fig. 7). 
 

The previous EEG literature linking beta/gamma band power to emotional valence (as 
measured in individual scalp channel records) is minimal and inconsistent. More than one 
study has reported increased gamma band power over left-frontal electrodes during 
negative emotional stimuli (Gemignani et al., 2000; Guntekin and Basar, 2007; Muller et 
al., 1999), whereas we found a consistently positive correlation between broadband 
power and emotional valence in anterior temporal sources. This discordance may only be 
an apparent difference, since signals in a wide brain territory may reach left-frontal 
electrodes. Cole et al. found increased (16-24 Hz) beta band power (higher frequencies 
were not analyzed) at right temporal electrodes both during self-induced imagination of 
positive emotions and following presentation of positive-valence pictures (Cole and Ray, 
1985), and positron emission tomography (PET) revealed right temporal activation 
during imagined happiness relative to imagined negative emotions (fear and anger) 
(Damasio et al., 2000). The negative correlation that we describe between the valence of 
imagined emotion and gamma power in the occipital region has not been previously 
reported in the EEG literature, though fMRI studies have reported bilateral occipital 
activation during self-referential processing of negative as compared to positive words 
(Fossati et al., 2003). Clearly, further research using better EEG source localization and 
performing functional imaging experiments on the same subjects are needed to clarify the 
consistency of these initial results.  
 
4.7. Possible physiological mechanisms 
  
An interesting possibility to consider is that the broadband high-frequency modes of EEG 
spectral modulation, revealed here by log spectral ICA decomposition, might reflect 
separate or coordinated actions of known cortical neuromodulatory systems identified 
with different neurotransmitters – acetylcholine, norepinephrine, dopamine, serotonin, 
etc. These are known to have extensive cortical and thalamic projections (Bardo, 1998; 
Robbins, 1997) and to strongly affect the power spectra of cortical field potentials 
(Herculano-Houzel et al., 1999; Pinault and Deschenes, 1992; Swick et al., 1994). For 
example, application of the muscarinic agonist carbachol to CA3 hippocampal slices has 
been shown to induce delta, theta, and/or gamma band oscillations, depending on its 
concentration (Fellous and Sejnowski, 2000), and cortical high-frequency power in 
particular is known to be affected by projections from the cholinergic basal forebrain 
(Herculano-Houzel et al., 1999; Stewart et al., 1984). Similarly, extensive NE projections 
from the locus coeruleus (LC) (Jones et al., 1977), in both awake monkeys (Swick et al., 
1994) and anesthetized rats (Berridge and Foote, 1991; Brown et al., 2005), also increase 
high-frequency local field activity in frontal cortex and thalamus (Pinault and Deschenes, 
1992). However, the broadband IM modes in this experiment might also reflect linked 
combinations of neuromodulatory or other influences rather than actions of distinct 
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neuromodulatory systems. Further understanding of the physiological origins of the IM 
effects reported here will require separate experimental evaluation. 
 
 High frequency local field power similar to that reported here has been reported to 
correlate with fMRI BOLD activation and deactivation in both theory (Kilner et al., 
2005) and experiment (Logothetis et al., 2001; Niessing et al., 2005; Shmuel et al., 2006). 
At the neuronal level, a recent report showed that blockage of GABAA receptors in ferret 
pyramidal cells decreases spectral power of intracellularly recorded synaptic currents 
between 10 Hz and 200 Hz (Hasenstaub et al., 2005), implicating the collective action of 
fast-spiking inhibitory cell networks in the production and regulation of high-frequency 
cortical field activity. Influences on cortical GABA concentration might thus provide a 
mechanism for the local and distributed broadband modulations of EEG source power 
spectra we report here.  
 

The reported correlation between high-frequency local field power and BOLD 
signal level in human auditory cortex during auditory stimulation suggests a possible 
functional significance for high-frequency local field activity during active cortical 
processing (Mukamel et al., 2005), as do the frequently reported linkage between 
increased high-frequency EEG power and attention (Fries et al., 2001) or ‘focused 
arousal’ (Sheer, 1989) and the results reported here.  However, the frequently studied 
more narrow-band gamma-band sensory-induced responses (Freeman and Barrie, 2000; 
Fries et al., 2001; Singer and Gray, 1995; Tallon-Baudry et al., 1996) might be a quite 
different phenomenon or reflect in part a mixture of specific gamma-band and broad-
band modulations. 
 
4.8. Conclusions 
 
Here we report that during eyes-closed imagination of emotional states and 
circumstances, many of the locally synchronous cortical field potential phenomena that 
produce scalp EEG activity exhibit a pattern of broadband, spectral modulation of beta, 
gamma, and high gamma band activity from near 15 Hz to 200 Hz or higher. Our results 
demonstrate that high-density EEG data contains reliable high gamma band activity that 
can be separated by ICA from spatially overlapping, large-amplitude broadband signals 
from scalp muscle and ocular motor activities, as well as from overlapping signals in 
lower frequency bands. This finding further underlines the importance for EEG analysis 
of applying source separation by ICA or other methods.  

Further, our results show that the actions of these broadband modulations of brain 
source activity spectra were related to the valence of the imagined emotions, albeit with 
individual differences in expression, a result that suggests further exploration and testing. 
Conceivably, better understanding of the modes and mechanisms of spectral modulation 
of cortical brain activity, requiring application of the methods presented here to many 
types of datasets, might allow design of multidimensional cognitive state monitoring 
using emerging dry, portable, wireless EEG systems (Lin, 2008), and/or might clarify the 
brain mechanisms supporting learned volitional control of EEG spectral features as 
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applied in current brain-computer interface (BCI) and EEG feedback research (Delorme 
and Makeig, 2003).  
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