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Abstract 

 
Determining the neural correlates of loss of balance during walking could lead to improved 
clinical assessment and treatment for individuals predisposed to falls. We used high-density 
electroencephalography (EEG) combined with independent component analysis (ICA) to study 
loss of balance during human walking. We examined 26 healthy young subjects performing heel-
to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt 
(both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near 
anterior cingulate, anterior parietal, superior dorsolateral prefrontal and medial sensorimotor 
cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during 
walking on the balance beam compared to treadmill walking. Left and right sensorimotor cortex 
clusters produced significantly less power in the beta band (12-30 Hz) during walking on the 
balance beam compared to treadmill walking. For each source cluster, we also computed a 
normalized mean time/frequency spectrogram time locked to the gait cycle during loss of 
balance (i.e., when subjects stepped off the balance beam). All clusters except the medial 
sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. 
Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of 
balance occurred in the left sensorimotor cortex at the transition from single support to double 
support prior to stepping off the beam. These findings provide new insight into the neural 
correlates of walking balance control and could aid future studies on elderly individuals and 
others with balance impairments. 
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Introduction 

Identifying neural mechanisms involved in loss of balance during human walking could help in 
designing and targeting fall prevention interventions. Falls are a major problem in the elderly and 
many neurological patient populations (National Center for Injury Prevention and Control 2006). 
Injuries resulting from a fall can have a significant impact on an individual’s ability to 
independently perform activities of daily living. Often the exact cause, timing or symptoms of a 
fall are not clear. Consequently, developing methods for fall prevention is challenging. Recent 
reviews have concluded that no single approach to fall prevention seems to work on the majority 
of the population at risk of falls (Chase et al. 2012; National Center for Injury Prevention and 
Control 2008; Shubert 2011). If specific neural mechanisms were identified as related to a 
specific fall cause or to individual subjects, it might be possible to better target a fall 
prevention/intervention method for a given patient.  

Control of balance requires communication and integration across the nervous system.  
Preventing and recovering from loss of balance requires an integration of visual, vestibular, 
proprioceptive, and other sensory feedback mechanisms (Faraldo-Garcia et al. 2012; Sozzi et al. 
2012). Standing posture has a clear feedforward component, as well as a dependence on sensory 
feedback (Lakie and Loram 2006; Loram et al. 2009). These and other studies (Ahmed and 
Ashton-Miller 2007; Merfeld et al. 1999) suggest that humans use an internal model of their 
body mechanics to sense and predict loss of balance. In addition, there are non-functional (short-
latency) and ‘feet-in-place’ (medium-latency) postural adjustments that are controlled through 
spinal reflex and brainstem circuits (Adkin et al. 2006; Brown et al. 1999; Deliagina et al. 2012; 
Diener et al. 1985; Jacobs and Horak 2007; Loram and Lakie 2002; Rankin et al. 2000). Cortical 
areas activate long-latency movements that produce a change in base of support, such as 
stepping. Specifically, a cerebellar-cortical loop has been implemented in integrating prior 
experience into postural responses, and a basal ganglia-cortical loop is responsible for 
incorporating sensory information on the current posture (Jacobs and Horak 2007). There have 
been some imaging studies that have attempted to provide insight into the cortical mechanisms 
involved in whole body postural responses (Jacobs et al. 2008; Mochizuki et al. 2008, 2009a,b; 
Slobounov et al. 2000, 2005, 2006, 2008, 2009), but they have not explored human locomotion 
and the technical challenges that come with walking. 

Recent technological advancements enable researchers to study electrocortical dynamics 
directly at the level of cortical sources, even during whole body movements including head 
motion (Gramann et al. 2011; Makeig et al. 2009). High-density electroencephalography (EEG) 
can be combined with independent component analysis (ICA) to identify electrocortical areas 
that are synchronized with the gait cycle during human walking (Gwin et al. 2011; Wagner et al. 
2012). Studies that have used electroencephalography in other motor tasks, such as joystick 
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manipulation and standing postural perturbations, have identified that the anterior cingulate 
cortex is highly involved in error detection during motor tasks (Anguera et al. 2009; Gwin et al. 
2011; Mochizuki et al. 2009a). In one recent study, Slobounov et al. (Slobounov et al. 2009) 
found significantly higher spectral power in low theta (4-5 Hz) and alpha (8-12 Hz) frequency 
bands from scalp electrodes located over the anterior cingulate during unstable balance when 
standing on one leg. 

The purpose of this study was to identify specific cortical regions with spectral power 
modulations related to loss of balance during walking. We had healthy young subjects walk on a 
2.5 cm wide by 2.5 cm tall treadmill-mounted balance beam (treadmill and motor learning 
studies described in Domingo et al. 2009, 2010) to induce experimental loss of balance during 
gait. We recorded high-density electroencephalography, electromyography, and body motion 
analysis to identify electrocortical and kinematic correlates of loss of balance. We hypothesized 
that the anterior cingulate and sensorimotor cortical areas would exhibit significant changes in 
spectral power in the theta frequency band related to loss of balance. We based this hypothesis 
on previous studies demonstrating increased spectral power from electroencephalography 
electrodes located near anterior cingulate and sensorimotor regions during motor errors (Anguera 
et al. 2009; Mochizuki et al. 2009b; Slobounov et al. 2009). Although past research has 
identified increased theta power in scalp EEG electrodes over these cortical regions of interest, 
that research has been on sitting/standing posture or hand/arm movement, not locomotion. 
During human locomotion, there is strong involvement of spinal locomotor networks and 
inhibition of cortical multisensory areas (Jahn and Zwergal 2010). As a result, it is not clear if 
results from standing whole body motor tasks can directly transfer to walking.  

Another novel aspect of our study was the combination of high-density 
electroencephalography and electrocortical source imaging via independent component analysis 
and inverse head modeling. These techniques allowed us to look at specific cortical regions 
rather than relying on electrode locations for source localization. Our approach separated 
electrode channel signals into maximally independent source signals, factored out eye, muscle, 
and movement artifacts from brain electrical activity (Jung et al. 2000; Makeig et al. 1996; 
Onton and Makeig 2006) and then further identified distinct three-dimensional cortical source 
regions related to walking balance.  

 

 

 

Methods 
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Subjects. Twenty-six healthy volunteers with no history of major lower limb injury and no 
known neurological or locomotor deficits completed this study. All subjects characterized 
themselves as right hand and right foot dominant (12 females and 14 males, 23 ± 5 years old 
(mean ± s.d.)). All subjects provided written informed consent. The University of Michigan 
Institutional Review Board approved the protocol and the study complied with the standards 
defined in the Declaration of Helsinki. 

Data Collections. We mounted a 2.5 cm wide by 2.5 cm tall balance beam to the belt of a 
modified treadmill (Full Vision, Inc., Newton, KS). The balance beam consisted of small 
wooden blocks that lined up to make a continuous balance beam. We refer to this apparatus, 
which has been used in prior studies (Domingo and Ferris 2010; 2009), as a balance-beam 
treadmill (Figure 1). 

 

Fig. 1. A sketch of the experimental setup showing a subject walking on a treadmill mounted 
balance-beam. A picture of the balance-beam treadmill is also shown (inset). 
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Subjects performed off-beam and on-beam walking for 25 minutes each. Subjects took 
breaks as desired and no subject reported problems with fatigue. The total length of data 
collections varied from 60 minutes to 120 minutes due to subject breaks and technical 
requirements of the protocol. During off-beam walking subjects placed their feet on the treadmill 
belt on either side of the narrow balance beam. During on-beam walking subjects walked heel-
to-toe (i.e., tandem). Subjects were instructed to maintain balance only by moving their torso and 
pelvis side-to-side (i.e., in the frontal plane). During both walking conditions subjects crossed 
their arms in front of their torso (Figure 1) and were instructed to look straight ahead at a flat 
white surface mounted in front of the treadmill. This controlled movement reduced variability 
otherwise arising from extraneous arm movement and thus enabled more reliable evaluation of 
motion and balance characteristics across subjects and trials. When subjects lost their balance 
(i.e., when they had to step off of the balance beam) they then were asked to perform 5 seconds 
of off-beam walking before attempting to re-mount the balance-beam. All subjects wore 
standardized orthopedic shoes. The treadmill belt speed was set at 0.22 m/s based on prior work 
in our lab (Domingo and Ferris 2010; 2009).  

During both walking conditions we recorded motion, electromyography and 
electroencephalography data. We recorded the positions of 28 reflective markers using a motion 
capture system (Motion Analysis Corporation, Santa Rosa, CA, USA at 128 Hz or Vicon, Los 
Angeles, CA, USA at 100 Hz). We placed these markers on subjects’ feet, legs, pelvis, neck and 
shoulders. To record lower limb electromyography (Konigsberg Instruments Inc., Pasadena, CA, 
USA at 1200 Hz or Biometrics Ltd., Ladysmith, VA, USA at 1000 Hz), we placed electrodes on 
the tibialis anterior, soleus, medial gastrocnemius and lateral gastrocnemius. We prepared the 
skin at each electrode site by shaving and cleaning with rubbing alcohol. We used tape to secure 
each electrode over the muscle belly along the long axis. We also secured the electrode wires to 
the limbs using athletic foam wrap. We recorded electroencephalography using a 256-channel 
active electrode array (sampling rate 512 Hz; Active II, Biosemi, Netherlands). Before data 
collection, we measured electrode impedance and used electrode gel to ensure that the 
impedance was less than 20 kΩ for each channel. The recording bandpass filter was DC to 104 
Hz. During data collection, we positioned the electroencephalography amplifier above the 
subject and constrained wire movement to minimize motion artifact. Electrode impedance was 
monitored during subject collections and electrodes were re-gelled as needed to maintain an 
impedance of less than 20 kΩ for each channel. 

Data Pre-processing. We identified gait events of heel strike and loss of balance from the motion 
data using Visual 3D software (C-Motion, Germantown, MD). A 6 Hz low-pass filter removed 
marker movement artifacts in motion capture data. We considered pelvic marker movement 
on/near the sacrum (S1/S2 vertebrae) to be representative of center of mass movement. Past 
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studies have found no significant differences between this approach and a more complicated 
body segment model at low walking speeds (Saini et al. 1998; Gard et al. 2004). We determined 
heel strike events for each foot (i.e., the times when the foot contacted the treadmill belt or 
balance beam) based on the velocity of a reflective marker on the ankle. Vertical ankle marker 
position was used to distinguish between foot contact with the treadmill belt (TC) and contact 
with the balance beam (BC).  

We defined loss of balance as the subject stepping off the beam and onto the treadmill. In 
other words, loss of balance occurred between when a foot was in contact with the beam and the 
other foot contacted the treadmill belt. We did not identify an exact time that balance was lost as 
it could be defined at many times between the foot leaving the beam and making contact with the 
treadmill.  

We performed all data analysis in Matlab (The Mathworks, Natick, MA, USA) using 
scripts based on EEGLAB, an open source environment for processing electrophysiological data 
(Delorme and Makeig 2004). We applied a second-order high-pass Butterworth filter with a 20 
Hz cutoff frequency to the electromyography data to remove artifacts arising from electrode wire 
movement plus any DC offset. We then full-wave rectified the electromyography data. We 
synchronized the electroencephalography, electromyography, motion capture data, and gait 
events offline using a common analog timing signal. A 1 Hz high-pass filter removed drift in the 
electroencephalography data. We determined treadmill-contact (TC) and beam-contact (BC) 
events for each foot (i.e., the times when the foot contacted the treadmill belt or the balance-
beam) based on the gait pattern of heel-strike and loss-of-balance events. Particularly noisy EEG 
channels were removed from the data. Initial channel rejection criteria were: a standard deviation 
larger than 1000 µV, kurtosis more than 3 standard deviations from the mean of all channels, or 
correlation coefficient with nearby channels less than 0.4. These criteria were adjusted for each 
subject’s data to improve independent component analysis dipole localization and reduce 
residual variances between the independent component scalp maps and the computed scalp 
projections of the best-fitting single equivalent dipole component models. The remaining 
channels were average referenced. We retained 134±19 (mean ± s.d.) channels for each subject 
based on these criteria.  

 

Analysis of Electrocortical Sources 

For each subject, we used adaptive mixture independent component analysis (AMICA) 
(Delorme et al. 2012; Palmer et al. 2006; Palmer et al. 2008) to parse the electroencephalography 
signals into a sum of maximally independent component processes. Before performing 
independent component analysis decomposition, we concatenated electroencephalography data 
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from all experimental conditions for each subject to form a single data stream and removed 
periods of electroencephalography data with substantial artifact. We defined substantial artifact 
as z-transformed power across all channels in a given time window being larger than 0.8, but 
adjusted this value slightly for each subject’s data to further improve our ability to localize the 
brain source components using a single dipole model (Delorme et al. 2012). The sizes of the data 
matrices so decomposed were 134 ± 19 channels (mean ± s.d.; min: 103; max: 168) by 944,890 ± 
999,950 time points (mean ± s.d.; min: 799,880; max: 1,184,695) or 30.3 ± 3.3 minutes (mean ± 
s.d.; min: 26.0; max: 38.6) of data. This gave the decompositions a favorable mean ratio (time 
points to unmixing coefficients, here 1342) of over 50, i.e., above our heuristic standard 
minimum of 30 based on results of previous analyses. 

We fit a single equivalent current dipole model for each independent component using a 
boundary element method (BEM) head model based on the MNI brain (Montreal Neurological 
Institute, MNI, Quebec) as implemented in the EEGLAB DIPFIT toolbox (Oostenveld and 
Oostendorp 2002). We used component scalp maps learned by AMICA from the data as inputs 
for this modeling. We excluded independent components from further analysis when the 
equivalent current dipole was located outside of the cortical gray matter or when the projection 
of the (best-fitting) equivalent current dipole to the scalp (the dipole scalp map) accounted for 
less than 85% of the independent component scalp map variance. We also rejected independent 
components from further analysis if their topography, time course, and power spectrum were 
reflective of non-brain eye-movement or electromyographic processes (Jung et al. 2000a; Jung et 
al. 2000b). We assumed the remaining independent components (16 ± 8 per subject; min: 7; 
max: 46) reflected activity generated in a cortical source area close to the location of their 
equivalent dipole model (Akalin Acar and Makeig 2013).  

Each time a subject stepped off the balance beam and onto the treadmill belt (i.e., lost 
their balance), we computed a single-trial time/frequency log spectrogram for each independent 
component source activity using 3-cycle Morlet wavelets. To enable averaging and statistical 
reliability testing, these spectrograms were linearly time-warped so that treadmill-contact and 
beam-contact events occurred at the same adjusted latencies in each spectrogram. The 
spectrograms were computed over a two-stride window (one stride before step-off and one stride 
after step-off). To visualize changes in the spectrograms associated with loss of balance, we 
subtracted the average log spectrum for the first step in the two-stride cycle from each latency of 
the mean event-related spectrogram (Makeig 1993). Time-warping of the spectrograms 
standardized the time intervals between five successive gait events, with the exact times defined 
based on the median values, rounded to the nearest 100 ms. Actual median event times for the 
time-warped gait events of beam contact (BC) and treadmill contact (TC) were 0, 1100, 2200, 
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3300, and 4400 ms (TCàTCàTCàTCàTC for steady-state balance beam trials; 
BCàBCàTCàTCàTC for loss of balance trials. 

We analyzed trials of walking on and off the balance beam using the same methodology. 
We computed a single-trial time/frequency log spectrogram for each independent component 
source activity using 3-cycle Morlet wavelets. These spectrograms were linearly time-warped so 
that treadmill-contact events occurred at the same adjusted latencies in each spectrogram. 
Because walking on and off the balance beam are steady state tasks, the spectrograms were 
computed over a one-stride window. To visualize changes in the spectrograms associated with 
the gait cycle and steady state balance, we subtracted the average log spectrum for the entire 
stride cycle from each latency of the mean event-related spectrogram (Makeig 1993). Time-
warping of the spectrograms standardized the time intervals between three successive gait 
events, with the exact times defined based on the median values, rounded to the nearest 100 ms. 
Actual median event times for the time-warped gait events of right treadmill contact (RTC) and 
left treadmill contact (LTC) were 1100, 2200, and 3300 ms (RTCàLTCàRTC). Time periods 
of 0 to 1100 ms and 3300 ms to 4400 ms were not included to enable evaluation of steady state 
walking (e.g. edge effects could exist in those time periods due to a subject about to lose balance 
or recovering from a loss of balance). 

Group Analysis and Statistics. For group analysis, we clustered independent component sources 
from all subjects using EEGLAB routines implementing k-means clustering on vectors jointly 
coding differences in component equivalent dipole locations, scalp topographies (i.e., projection 
patterns of the independent component sourced to the scalp) and component mean log power 
spectra during on-beam and off-beam walking. Before clustering, the resulting joint vector was 
reduced to 10 principal dimensions using principal component analysis. Clusters containing 
components from fewer than 12 of the 26 subjects were excluded from further analysis.  

We then computed grand mean log power spectra for on-beam and off-beam walking for 
each independent component cluster. For each cluster, we used Wilcoxon tests to evaluate mean 
power differences between conditions within a moving 2 Hz frequency window (α=0.05). Next, 
for each independent component cluster we created grand average baseline-normalized log 
spectrograms (Makeig 1993) for loss of balance events by averaging across data windows time 
locked to all loss of balance events for all subjects. Subjects who had fewer than three loss of 
balance events to either side (i.e., right foot step-off or left foot step-off) were not included in the 
loss of balance spectrograms (n=9). Altogether, the loss of balance analysis included a total of 
302 trials from 17 subjects comprising 18±5 trials per subject (mean ± s.d.; min: 10 trials; max: 
28 trials). Significant changes in spectral power during these trials, compared to baseline, were 
identified using the nonparametric bootstrapping statistical comparison approach in EEGLAB 
(α=0.05).  
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We created grand average baseline-normalized log spectrograms for each independent 
component cluster (Makeig 1993) for steady state walking on and off the balance beam by 
averaging across data windows time locked to treadmill-contact events for all subjects. 
Altogether, this steady state walking analysis included a total of 10,600 trials from 26 subjects 
comprising 204±110 trials per subject (mean ± s.d.; min: 28 trials; max: 623 trials). Significant 
changes in spectral power during these trials, compared to baseline, were identified using the 
nonparametric bootstrapping statistical comparison approach in EEGLAB (α=0.05).  

 

Results 

                
Fig. 2. Clusters of independent component (IC) EEG sources localized in and near anterior 
cingulate (orange), posterior cingulate (two clusters, magenta and cyan), superior dorsolateral 
prefrontal (yellow), anterior parietal (green), left and right lateral sensorimotor (red), and 
medial sensorimotor (blue) cortex. (Top row) small spheres indicate the equivalent current 
dipole locations of each clustered IC source. (Bottom row) larger spheres show the locations of 
the cluster centroids.  

Independent component analysis produced clusters of electrocortical sources in or near 
anterior cingulate (52 sources, 21 subjects), posterior cingulate (two clusters; 40 sources, 16 
subjects; 28 sources, 13 subjects), superior dorsolateral prefrontal (22 sources, 11 subjects), 
anterior parietal (22 sources, 12 subjects), left lateral sensorimotor (18 sources, 14 subjects), 
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right lateral sensorimotor (33 sources, 14 subjects), and medial sensorimotor (37 sources, 15 
subjects) cortex (Figure 2).  

It also identified clusters in or near insular cortex and visual cortex, but these clusters 
contained sources from 10 or fewer subjects. These clusters also had no areas of significant 
difference in their loss-of-balance spectrograms, nor significant changes in spectral power 
between on-beam versus off-beam walking. As a result, we excluded the insular and visual 
cortex clusters from further analysis. 

 

Fig. 3. A) Grand average spectral power for each cluster of electrocortical sources during 
walking on the balance beam (red line) and walking on the treadmill belt (off the balance beam) 



Electrocortical Dynamics during Balance Beam Walking 

 

 12 

(blue line). The lowest frequency shown is 3 Hz. Significant differences in spectral power 
between the on beam and off beam conditions are indicated by the shaded regions; reddish 
(theta band) regions indicate larger power in balance beam walking, bluish regions (higher 
frequencies) indicated larger power in treadmill walking  (p<0.05). The colors of the plot titles 
correspond to the colors of the equivalent current dipoles in Figure 2.  B) Grand average 
normalized log spectrograms showing changes in spectral power during and after loss of 
balance relative to average spectral power during the last successful step prior to loss of 
balance (left of the red vertical line). Mean step period (left BC to right BC) was 1100 ms. Four 
steps are shown, with BC indicating foot-to-Beam Contact and TC indicating foot-to-Treadmill 
Contact. After the second Beam Contact event, the subject loses balance and recovers by 
stepping off of the beam and onto the treadmill. Non-significant differences from baseline 
(p>0.05) have been set to 0 dB (green). The colors of the plot titles correspond to the colors of 
the equivalent current dipoles and dipole clusters in Figure 2. The left sensorimotor cluster plot 
averages only those trials where a loss of balance occurred toward the right side of the beam; 
the right sensorimotor cluster plot averages only those trials where a loss of balance occurred 
toward the left side of the beam. All other results shown here average all trials when a loss of 
balance occurred, both to the left and right. Theta spectral power increases began in the left 
sensorimotor sources, followed by the posterior cingulate, anterior cingulate and right 
sensorimotor sources, and finally in anterior parietal and superior dorsolateral-prefrontal 
sources. 

During walking on the balance beam compared to walking on the treadmill belt, 
independent component sources in the left and right sensorimotor cortex clusters exhibited lower 
spectral power in the alpha (8-12 Hz) and beta (12-30 Hz) frequency bands, as well as in higher 
frequency bands (Figure 3A). This difference was significant for both hemispheres in the beta 
band, but was only significant for the alpha band in the left hemisphere cluster. Clustered 
independent component sources in or near anterior cingulate, anterior parietal, superior 
dorsolateral prefrontal, right sensorimotor and medial sensorimotor cortex exhibited significantly 
larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam 
compared to off-beam walking (Figure 3A).  

Loss of balance analyses included 17 subjects with 18 ± 5 trials per subject (mean ± s.d.; 
min: 10 trials; max: 28 trials per subject), for a total of 302 trials. Data comprised 152 trials of 
electroencephalography, 148 trials of electromyography, and 157 trials of center of mass motion 
data for left side loss of balance, and 150 trials of electroencephalography, 149 trials of 
electromyography, and 156 trials of center of motion data for right side loss of balance. Missing 
data for some trials arose from movement artifacts and/or equipment malfunctions. Event times 
used for the time-warped gait events of beam contact (BC) and treadmill contact (TC) were 0, 
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1100, 2200, 3300, and 4400 ms (TCàTCàTCàTCàTC for steady state balance beam trials; 
BCàBCàTCàTCàTC for loss of balance trials). 

All independent component source clusters except the medial sensorimotor cortex cluster 
exhibited a significant increase in theta band spectral power during loss of balance (i.e., before 
the first foot contact on the treadmill, TC, in these trials) (Figure 3B). The strongest power 
increase was in the left sensorimotor cortex cluster, which exhibited a 2 dB increase immediately 
at the beginning of double support with both feet on the balance beam (i.e., at the BC preceding 
TC in Figure 3B). Anterior cingulate, anterior parietal, superior dorsolateral prefrontal, and 
medial sensorimotor cortex exhibited alpha (8-12 Hz) and theta band (4-7 Hz) decreases in 
spectral power after first treadmill contact following loss of balance (Figure 3B).  

For both loss of balance to the left and to the right, significant theta band increases in 
spectral power of left sensorimotor cluster sources occurred at the beginning of double support 
on the balance beam before losing balance (Figures 4 & 5). During losses of balance to the left 
side, in the right sensorimotor cluster there was generally a less pronounced and later change in 
theta band power. For losses of balance to the right side, there were no significant changes in 
theta band spectral power for the right sensorimotor cluster.  
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Fig. 4. Timing comparison of mean sensorimotor source cluster changes in EEG spectral power, 
lower leg EMG, and center of mass motion for losses of balance to the LEFT side of the beam. 
Four steps are shown (BC, beam contact; TC, treadmill contact). After the second BC (black 
vertical line), the subject loses balance and recovers by stepping off of the beam and onto the 
treadmill. For the sensorimotor cluster EEG spectral changes, non-significant differences from 
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baseline (p>0.05) have been set to 0 dB (green); the lowest frequency shown is 3 Hz. For the 
lower limb EMG and center of mass position data, red lines show loss of balance trial averages, 
blue lines are on beam walking averages, and dashed lines indicate +1 standard deviation. The 
cluster dipole images are replicated from Figure 3. 

 
Fig. 5. Timing comparison of mean sensorimotor source cluster changes in EEG spectral power, 
lower leg EMG, and center of mass motion for losses of balance to the RIGHT side of the beam. 
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Four steps are shown (BC, beam contact; TC, treadmill contact). After the second BC (black 
vertical line), the subject loses balance and recovers by stepping off of the beam and onto the 
treadmill. For the sensorimotor cluster EEG spectral changes, non-significant differences from 
baseline (p>0.05) have been set to 0 dB (green); the lowest frequency shown is 3 Hz. For the 
lower limb EMG and center of mass position data, red lines show loss of balance trial averages, 
blue lines are on beam walking averages, and dashed lines indicate +1 standard deviation. The 
cluster dipole images are replicated from Figure 3. 

Because the electromyography data for steady state beam walking were highly variable 
from step to step, the loss of balance muscle activity patterns in most cases did not diverge from 
steady state beam walking patterns beyond one standard deviation until after treadmill contact 
for the swing limb (Figures 4 & 5). The electromyography data for the stance or stabilizing limb 
(i.e. the limb that remained on the beam the longest) show loss of balance muscle activity 
patterns that diverge from steady state beam walking patterns beyond one standard deviation 
near the end of double support, i.e. the beginning of the swing phase in which the subject stepped 
off the beam. The large variations made electromyography data a poor predictor of when the loss 
of balance occurred. The lateral center of mass position data for the two conditions (loss of 
balance and steady state beam walking) show differences larger than one standard deviation at 
about the time of first treadmill contact after loss of balance (Figures 4 & 5). The vertical center 
of mass position data did not show any differences between the two conditions larger than one 
standard deviation. 

Steady state walking on and off the beam electroencephalography analyses included 26 
subjects with 204 ± 110 trials per subject (mean ± s.d.; min: 28 trials; max: 623 trials per 
subject), for a total of 10,600 trials. Event times used for the time-warped gait events of right 
treadmill contact (RTC) and left treadmill contact (LTC) were 1100, 2200, and 3300 ms 
(RTCàLTCàRTC). No independent component source clusters exhibited a significant increase 
in theta band (4-7 Hz) spectral power during steady state walking neither on nor off the balance 
beam (Figure 6). In fact, there are no sustained significant variations that appear to correlate with 
the gait cycle. 
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Fig. 6. Grand average normalized log spectrograms during walking off and on the balance beam 
(Treadmill and Balance Beam, respectively). Two steps are shown, with RTC indicating Right 
foot-to-Treadmill Contact and LTC indicating Left foot-to-Treadmill Contact. Mean step period 
was 1100 ms. Non-significant differences from baseline (p>0.05) have been set to 0 dB (green). 
The colors of the plot titles correspond to the colors of the equivalent current dipoles and dipole 
clusters in Figure 2. There were no substantial changes in theta spectral power during treadmill 
walking or balance beam walking compared to those seen during loss of balance on the balance 
beam (Figures 3-5). 
 

Discussion 

The purpose of this study was to assess electrocortical dynamics associated with maintaining and 
losing walking balance in humans. In particular, we hypothesized that anterior cingulate and 
sensorimotor cortical areas would exhibit significant theta band (4-7 Hz) electroencephalography 
power increases during loss of walking balance. When subjects lost their balance and stepped off 
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the narrow treadmill-mounted balance beam, significant increases in theta band spectral power 
occurred in independent component source clusters located in and near anterior cingulate, 
posterior cingulate, anterior parietal, left and right sensorimotor, and superior dorsolateral-
prefrontal cortex. These spectral power increases arose at the beginning of double limb support 
with both feet on the balance beam. These changes in spectral power did not occur during steady 
state walking on or off the balance beam (Figure 6). This suggests that these broadly distributed 
electrocortical changes were specifically related to calculating an imminent loss of balance, and 
that sensory information from the leading limb contact with the balance beam was critical to the 
assessment of balance.  

The first significant changes in electrocortical dynamics came from the left sensorimotor 
source cluster at the start of double support on the balance beam (Figure 3B). The theta band 
increase in right sensorimotor cortex was less pronounced than in the left sensoriomotor cortex 
(Figure 3B). This was true for both steps off to the right of the balance beam and steps off to the 
left of the balance beam (Figures 4 & 5). In fact, for steps off to the right, there were no 
significant changes in spectral power below 12 Hz during the loss of balance in the right 
sensorimotor source cluster. This suggests that, in these right-handed and -footed subjects, the 
left sensorimotor cortex plays a larger role in sensing loss of balance during walking than the 
right sensorimotor cortex. This conclusion is supported by previous literature indicating that the 
left hemisphere plays a more dominant role than the right hemisphere in skilled complex 
movements (Serrien et al. 2006). We note, however, that the medial sensorimotor region did not 
show significant theta activation associated with loss of balance. 

Theta spectral power increases in other electrocortical regions also began during the 
double support phase, shortly after the theta spectral power increase in the left sensorimotor 
cortex (Figure 3B). Posterior cingulate and superior dorsolateral-prefrontal areas showed 
significant increases in theta spectral power, following similar increases in the left sensorimotor 
cluster but before those in anterior cingulate. Posterior cingulate cortex has been associated with 
self-referential processing, episodic memory, and vestibular functions (Kim 2012; Lopez et al. 
2012). The involvement of this brain region in loss of balance is likely due to sensory/vestibular 
processing, and might provide information to the anterior cingulate, which exhibited a 
subsequent theta spectral power increase.  

The superior dorsolateral prefrontal cortex cluster exhibited a theta spectral power 
increase similar to that of the anterior cingulate cluster. The source localization and scalp 
projections of the superior dorsolateral-prefrontal cluster suggests that theta spectral power from 
this cluster could be the neural generator largely responsible for scalp electrode signals attributed 
in other studies to ventral anterior cingulate, medial-frontal, frontocentral, or posterior 
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frontomedial cortices during error monitoring (Adkin et al. 2006; Debener et al. 2005; Dehaene 
et al. 1994; Luu et al. 2003; Maki and McIlroy 2007; Quant et al. 2004).  

The increase in theta band power in the anterior cingulate cluster appears to have become 
significant somewhat after the theta band increases in posterior cingulate and superior 
dorsolateral-prefrontal clusters (Figure 3B). This supports the idea that a primary role of the 
anterior cingulate cortex in walking balance is in error detection. Past studies on human balance 
have speculated that the nervous system compares current sensory information with that 
expected from an internal forward-looking model, with sufficient mismatch triggering a postural 
response (Ahmed and Ashton-Miller 2005; 2004; 2007).  

During loss of balance, both anterior parietal and anterior cingulate clusters exhibited 
significant concurrent increases in theta band power. The parietal lobe is involved in sensory 
information integration and generates decision-related activity (Romo and de Lafuente 2012). 
Information from the parietal lobe may contribute to anterior cingulate processing regarding 
error trend detection for walking balance.  

Following loss of balance, upon adoption of a stable, off-beam gait both theta and alpha 
band spectral power decreased significantly below the stable beam-walking baseline (Figure 3B). 
This decrease was consistent across anterior cingulate, posterior cingulate, anterior parietal, 
medial sensorimotor and superior dorsolateral-prefrontal clusters.  

In general, successful balance beam walking was associated with significantly higher 
mean theta band power in the anterior cingulate, anterior parietal, superior dorsolateral 
prefrontal, and right and medial sensorimotor cortical clusters compared to off-beam walking on 
the treadmill surface (Figure 3A). This is similar to findings for averaged scalp electrode data 
comparing unstable and stable single-leg standing postures (Slobounov et al. 2009). The higher 
theta band power did not show many significant changes within the gait cycle for either steady 
state walking on the balance beam or steady state walking off the balance beam (Figure 6). This 
suggests that walking involves baseline theta band activity (in regions shown in Figure 3A) that 
significantly increases with loss of balance (in regions shown in Figure 3B). Hence, what is 
commonly thought of as theta band error detection extends to postural error detection during gait 
and loss of balance during gait. 

These findings show the earliest changes in left sensorimotor cortex activity occurred 
regardless of the direction of the loss of balance (to the left or right). The significant changes in 
left sensorimotor cortex activity occurred just as the subjects transitioned from single limb 
support to double limb support. The added proprioceptive information that comes from having 
both limbs on the balance beam compared to just one limb on the balance beam is likely crucial 
to computing and updating the sense of loss of balance. The second foot on the ground provides 
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proprioceptive information about center of mass calculations similar to how light touch with a 
finger can improve stability during standing or walking (Jeka 1997).  

Because of the large step-to-step variability in the electromyography and center of mass 
position data, traditional metrics used for indicating deviations in these gait parameters (e.g., 
divergence by more than 1 standard deviation (Kao et al. 2010)) did not provide a clear 
indication of when loss of balance occurred. This result suggests that it is difficult to determine 
the moment that a person detects the loss of balance during gait from the muscle activation 
patterns and kinematics. Past studies have demonstrated that post hoc analysis of muscle activity 
and kinematics can discriminate between losses of balance and gait without loss of balance (Mak 
et al. 2011; Yang et al. 2011), but these analyses are not determining the time point that balance 
is lost in real time. Our data indicate that changes in the support limb electromyography 
amplitudes of more than 1 standard deviation may be useful in defining when corrective action 
for loss of balance begins but not when loss of balance is detected. In the future, it may be 
possible to use more portable, less obtrusive electroencephalography electrodes (Chi et al. 2012; 
Liao et al. 2011) to detect the exact moment humans detect their loss of balance during everyday 
activities. 

A major limitation of our study was the difficulty in knowing the exact instant of 
biomechanical loss of balance. In many stance perturbation studies, researchers control for this 
limitation by controlling the timing of the external perturbation. For example, fixed-support 
(feet-in-place) postural control strategies during standing elicit activation of ankle muscles 
approximately 80-140 ms after perturbation (Maki and McIlroy 2007). In our study we did not 
apply discrete postural perturbations but instead, relied on naturally occurring loss of balance 
during a difficult walking balance task. However, this made it more difficult to discern the time 
marking the beginning of a loss of balance. The single trial loss of balance data showed wide 
variations in the timing of changes in cortical source power. The lack of an exact biomechanical 
loss of balance marker prevented us from calculating any loss of balance event related potentials 
(ERPs), which might be expected to include, e.g., an error-related negativity (ERN) (Luu et al. 
2004). The analysis approach that we used included time-warping the single-trial spectrograms 
to intervals between ground contact events to allow event-locked averaging to multiple step 
events and statistical analysis of spectral power changes in cortical clusters (Figure 3B). Time-
warping after translation of the single trials to spectrograms avoided frequency shifts that would 
have occurred if time-warping had been applied to the raw independent component data epochs. 

Another limitation of our study concerned the treadmill walking control condition. We 
did not compare the beam walking to completely normal gait, but to a walking condition at a 
slower than normal speed with a slightly wider than normal step width (due to straddling the 
balance beam). The treadmill speed we used in all conditions, 0.22 m/s, was chosen to allow 
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subjects to successfully walk on the balance beam (Domingo and Ferris 2010; 2009). A typical 
walking speed for a healthy young subject is around 1.25 m/s. We did not want to introduce the 
confounding variable of walking speed into our comparison between treadmill and balance beam 
walking conditions. Relative to normal walking speeds, slow walking is less automatic from a 
neural perspective and less dependent on passive dynamics from a biomechanical perspective. 
As a result, slow walking may involve more cortical control than fast walking, making it 
infeasible to directly compare the results of this study to previous results using faster walking 
speeds (Gwin et al. 2011; 2010; Wagner et al. 2012). 

One of the most important findings from our study was that several widely distributed 
cortical regions appear to be involved in sensing and detecting a loss of balance during walking. 
There was a significant mean increase in theta band spectral power for independent component 
electroencephalography sources localized to multiple cortical areas, including sensorimotor, 
anterior cingulate, and anterior parietal regions when our subjects experienced loss of balance on 
a narrow beam. This was not the case during steady state walking on the treadmill and steady 
state walking on the balance beam. This increase in theta band power in anterior cingulate cortex 
may likely be related to the posited function of the anterior cingulate cortex in error detection 
(Anguera et al. 2009; Gehring et al. 2012).  

The observed spectral power increases in theta band source activity in several cortical 
areas were likely related to sensorimotor control, sensory information processing, and motor 
decision-making. The left sensorimotor cortex showed a stronger theta band response than the 
right sensorimotor cortex and appeared to precede the theta spectral power increase in anterior 
cingulate. The early appearance of increased theta spectral power beginning in the left 
sensorimotor cortex suggests the central nervous system recognized the loss of balance as soon 
as the both feet were on the balance beam for the last time.  

The ensuing widespread theta band increases might reflect activity occurring across a 
cortical network to plan a corrective step and evaluate its possible biomechanical consequences 
with maximum precision. In summary, these results provide insight into the cortical brain 
dynamic substrates of human walking balance and suggest there is a multi-focal cortical network 
involved in detecting and correcting loss of walking balance.  
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