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EEG has millisecond temporal resolution, necessary for analysis of transient cortical dynamics. However, the 
poor spatial resolution of scalp EEG combined with the confounding effects of volume conduction and non-brain 
artifacts complicates interpretation of neural dynamics when examined at the level of scalp electrodes. Accurate 
localization of sources of EEG activity is a difficult, ill-posed problem. One approach is to apply Independent 
Component Analysis (ICA) to scalp EEG recordings to obtain time courses and scalp maps of maximally-
independent sources of EEG activity with projections resembling single or dual symmetric equivalent dipoles. 
These sources can then be localized using appropriate forward and inverse models, while adaptive vector 
autoregressive models may be fit to the source time series to model transient information flow. Applied to 
different subjects, this typically results in varying numbers and locations of source dipoles across subjects which 
complicates efforts to obtain robust group-level statistics. Here we develop a Bayesian spatiotemporal model for 
multi-subject source-localized EEG which provides group inferences on the spatial locations and causal 
relationships among localized sources. Each subject's localized sources are modeled as arising from a mixture 
distribution of spatial coordinates and time-varying multivariate granger causality. Model inference is obtained via 
a Markov Chain Monte Carlo algorithm. This approach can be generalized to other non-ICA approaches for 
separation and localization of dipolar sources, such as beamforming. The utility of this method is initially 
demonstrated by application to a large multi-subject EEG dataset, where we examine network dynamics 
underlying error commission in an ERN-producing task. 

Theory!

Results!

MULTI-SUBJECT INFERENCE!
!
Group-level inferences of multi-subject source-localized (dipolar) independent components (ICs) can be 
problematic. Two or more subjects performing the same task may end up with differing numbers of retained IC 
sources and different source locations. Thus, unlike scalp channel recordings or region-of-interest (ROI) source 
analysis there is an inherent uncertainty in matching IC sources across subjects, and therefore in obtaining 
reliable group inferences regarding functional connectivity between these sources. While various disjoint 
clustering methods can be used to identify similar sources across subjects, these methods often suffer from poor 
statistical properties as the number of missing variables increases. It is thus preferable to employ a method which 
propagates uncertainty regarding source identification to inferences regarding group-level effective connectivity 
(EC) estimates.!
 !
MIXTURE MODEL!
!
Let the Mi x T matrix of IC time series for the ith subject be denoted by Yi and let the estimated Mi corresponding 
dipole spatial locations be denoted by Si. Let M be the total number of group-level sources (e.g. clusters or ROIs) 
under consideration for all N subjects (currently M is chosen by a preliminary a priori decision, though in the future 
we will determine this automatically within the inferential framework as in [1]).!
!
The data are modeled as coming from a mixture distribution [2]. To implement this mixture model, for each subject 
we augment the observed data {Yi, Si} with an Mi x M matrix of latent indicators Zi. The jth row of Zi consists of 
zeros with exactly one entry equal to one in column k: this indicates that the jth source for subject i corresponds to 
the kth cluster.!
!
Conditional on the Zi we assume!
!

  Pr( Si  | Zi ) = Πj=1:MiΠk=1:M [ N(Sij | µk, Σk) ]zijk         (1) 
 !

In addition to the spatial information, we want to incorporate information regarding the dynamics of the source-
localized times series Yi into the mixture model. Suppose we summarize the EC information contained in the 
source time series Yi via time-varying EC estimates Fi(t). We include this information in the mixture model via!
!

  Pr( Fi  | Zi ) = Πj=1:MiΠk=1:M [ Pr(Fi | βk) ]zijk                 (2) 

!
where  βk are parameters which determine the distribution of Fi conditional on Zi.   !
!
In the following example, we obtain Fi(t) by computing the graph-normalized Direct Directed Transfer Function 
(dDTF, [3]) – a frequency-domain measure of multivariate Granger-causal relationships – for each pair of IC 
sources. We obtain time-varying dDTF estimates using a sliding-window vector autoregressive (VAR) model with 
a 500 ms window length and 30 ms step size producing 80 time points. The dDTF is integrated over the theta 
band (3-7 Hz) and modeled as a smooth function of time via a penalized B-spline; the βk are the fixed effects 
group level of the coefficients bi of the spline basis functions.!
!

 Pr( bi  | Zi ) = N(bi | βk, σ2
bkI)                  (3) 

!
BAYESIAN INFERENCE!!
We place Dirichlet(αi) prior distributions on the allowable patterns of the latent indicator matrices Zi. Along with the 
augmented likelihood derived from Eq. (1)-(3), we complete the Bayesian specification of the model by placing 
Inverse Wishart (IW) prior distributions on the Σk , Inverse Gamma distributions on the σ2

bk , and diffuse normal 
distributions on the  μk and βk. !
!
Model inference proceeds via a Markov Chain Monte Carlo (MCMC) algorithm. Full conditional posterior 
distributions are standard. In particular, the allowable patterns of the indicator matrices Zi are multinomial. 
Allowable patterns have exactly one nonzero element in each row and at most one non-zero element in each 
column. Since the number of allowable patterns is too large to sample from directly (in general Mi ! / (M-Mi)!), we 
sample a subset of the allowable patterns at each iteration of the MCMC algorithm as follows:!
!

(i)  For subject i, randomly sample two distinct row indices j1 and j2 between 1 and Mi. !
(ii)  Keeping all other indices fixed, compute the conditional posterior over all allowable patterns permuting the 

column indices k1 and k2 for which the j1 and j2 rows are nonzero. !
(iii)  Sample Zi from the conditional distribution keeping other rows fixed.!

Sampling of all other parameters conditional on the latent data Zi  is straightforward. !
!
!
!
!
!
 !
 !
!
!

We have demonstrated a preliminary application of a novel Bayesian spatiotemporal model for obtaining group-
level inferences and confidence intervals on expected dipolar source locations and dynamics (e.g. connectivity). 
In this application we demonstrated the emergence of statistically significant causal relationships between dorsal 
MCC and several cortical and cingulate structures during error commission. This is commensurate with theoretical 
and experimental evidence for a significant causal role of MCC in error processing [6]. We realize this model 
represents a first step which can be further improved upon. We are currently working on expanding this to the 2D 
time-frequency plane using a tensor product of 1D splines (allowing different degrees of smoothing across time or 
frequency). We also plan to use a Dirichlet hyperprior to automatically select the optimal number of clusters as in 
[1]. The method also can be adapted to gracefully handle outliers, which should help improve the confidence 
interval estimates from those shown above. Finally, while in this example prior distribution parameters were 
determined using mean and covariance information from an initial k-means clustering step, it is straightforward to 
incorporate biologically-plausible priors for source locations and dispersion, which can be determined via existing 
numerical simulation data as well as task-specific prior expectations. The method can also be extended naturally 
to modeling statistical interactions between multiple experimental conditions via hierarchical modeling, which is a 
current avenue of research for us. !
!
Once fully developed, we expect this approach will have a significant impact on the ability to flexibly obtain robust 
group-level inferences and statistics on the spatiotemporal dynamics and/or interactions of point-process (dipolar) 
sources. The approach may also have utility when used with distributed source localization algorithms and we are 
currently exploring the use of source spatial distributions obtained from Sparse Bayesian Learning.!
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Color-coded clustering of all 246 dipoles

128-channel (256 Hz) EEG data were collected from 24 subjects 
performing a visual letter two-back task with auditory feedback [4]. Trials 
were segregated based on response type (Incorrect vs. Correct). 
Following zero-phase FIR high-pass filtering (1 Hz), response-locked 
datasets were subjected to Infomax Independent Component Analysis 
(ICA). ICA is effective at separating source components that are maximally 
instantaneously independent, which can be further analyzed for transient 
dependencies [5]. A single (or dual symmetric) equivalent dipole model 
was then fit to each independent component (IC) using EEGLABʼs 
DIPFIT2 function. We rejected ICs corresponding to artifacts such as eye 
blinks and muscle activity, and those with a poor dipole fit (> 15% r.v., or 
lying outside brain volume).!

Data!

Below: All retained dipolar sources from 
all subjects color-coded by cluster 
membership (k-means clustering). !
R i g h t : F r a m e s f r o m a C a u s a l 
BrainMovie3D showing group inferences 
on source locations and effective 
connectivity (integrated over 3-7 Hz theta 
band) as obtained from Bayesian mixture 
model. K-means cluster centroids and 
spatial dispersion used as initial values 
and priors for MCMC algorithm. A cluster 
is retained if more than 33% of subjects 
have greater than 50% probability of 
cluster membership. We retain only 
connectivity that deviates significantly 
from [-750 -500 ms] baseline (p<0.01).!

Below: Time-varying theta-band (3-7 Hz) dDTF group-level inferences with 99% confidence intervals. Mean source 
locations with Talairach coordinates and anatomical designations (Talairach Daemon) are shown on the marginals. 
Translucent regions indicate time intervals that deviate significantly from the [-750 to -500] ms baseline (p<0.01, 
uncorrected). Note the significant outflow from a source in the dorsal middle cingulate cortex (BA24/MCC) – likely the 
rostral cingulate zone (RCZ) – immediately before, during, and following responses made in error. All connectivity 
analysis and visualizations are produced using the EEGLAB-compatible Source Information Flow Toolbox [7].!
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