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This paper introduces a Neuroelectromagnetic Forward Head Modeling Toolbox (NFT) running under
MATLAB (The Mathworks, Inc.) for generating realistic head models from available data (MRI and/or
electrode locations) and for computing numerical solutions for the forward problem of electromagnetic
source imaging. The NFT includes tools for segmenting scalp, skull, cerebrospinal fluid (CSF) and brain
tissues from T1-weighted magnetic resonance (MR) images. The Boundary Element Method (BEM) is used
for the numerical solution of the forward problem. After extracting segmented tissue volumes, surface
BEM meshes can be generated. When a subject MR image is not available, a template head model can be
warped to measured electrode locations to obtain an individualized head model. Toolbox functions may
EG
oundary Element Method
EM
ealistic
-layer head model
NI

be called either from a graphic user interface compatible with EEGLAB (http://sccn.ucsd.edu/eeglab),
or from the MATLAB command line. Function help messages and a user tutorial are included. The
toolbox is freely available under the GNU Public License for noncommercial use and open source
development.

© 2010 Elsevier B.V. All rights reserved.
nverse problem
ource localization

. Introduction

In brain electromagnetic source imaging (EMSI), the forward
roblem is to predict the electromagnetic fields measurable on
r near to the scalp given a source distribution in the brain. For
ccurate source localization, the forward problem must first be
olved numerically using a realistic head model. This study intro-
uces the Neuroelectromagnetic Forward Head Modeling Toolbox
NFT), written in C++ and MATLAB. The NFT can be launched from
ithin EEGLAB (Delorme and Makeig, 2004) or used as a standalone

olver. The NFT contains tools to generate realistic BEM models
rom available subject data and using the METU-FP Toolkit (Akalın-
car and Gençer, 2004) as the forward problem solver (Akalin Acar
nd Makeig, 2008).

Source localization and source imaging are valuable tools for
nvestigating electrical activity in the brain. The accuracy of source

ocalization depends largely on the head model used for source
ocalization. Realistic head models employing the Boundary Ele-

ent Method (BEM) or the Finite Element Method (FEM) allow
ore accurate calculation of the electrical and magnetic fields

� This work is supported by NIH (NS047293-04), NSF (0613595), and a gift from
he Swartz Foundation (Old Field, NY).
∗ Corresponding author. Tel.: +1 858 822 7536; fax: +1 858 822 7556.
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S. Makeig).
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compared to simple spherical head models. High quality and
high performance BEM and FEM forward problem solvers are
available to the scientific community (Akalın-Acar and Gençer,
2004; Gençer and Acar, 2004; Wolters et al., 2002). However,
most researchers use either spherical head models or numeri-
cal methods employing relatively simple, template-based head
models. The main reason for this is the difficulty of creating
high quality, realistic, subject-specific head models. The goal of
the NFT is to assist the user in generating such head mod-
els using any and all available information about the subject
and recording session, and to provide a convenient interface
for using the resulting models in functional BEM-based source
imaging.

Source localization accuracy and performance of analytical head
models have been investigated by many researchers. Henderson
and Butler (1975) tested a saline filled conductor and a spherical
head model, reporting a mean 1-cm localization error. Cohen et al.
(1990) used sources implanted within a human brain. Using spher-
ical head models, the average localization error was 8 mm for MEG
and 10 mm for EEG. Weinberg et al. (1986) used a human skull
with implanted sources and obtained a mean 3.5-mm localization
error using a head model that used 25 spheres to model the skull.

Zhang et al. showed that large errors may occur when estimating
the parameters of two simultaneously active dipoles when the shell
model is misspecified (Zhang and Jewett, 1993; Zhang et al., 1994).
These results suggest that analytical head models are not sufficient
for accurate source localization.

dx.doi.org/10.1016/j.jneumeth.2010.04.031
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
http://sccn.ucsd.edu/eeglab
mailto:zeynep@sccn.ucsd.edu
mailto:scott@sccn.ucsd.edu
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The desire for more accuracy has led to the use of realistic
umerical head models. Roth et al. (1993), Crouzeix et al. (1999),
nd Cuffin (1996) investigated dipole localization accuracy using
pherical and realistic meshes in a 3-layer BEM model. They found
hat dipole localization improves by 1–2 cm when realistic head

odels are used. Ramon et al. (2004) examined the effects of soft
kull bone, cerebrospinal fluid (CSF) and gray matter on distribu-
ion of scalp potentials using the finite element method (FEM). They
bserved that the scalp potentials were significantly affected by
hese tissues. Thus, the accuracy of source localization can further
e improved when more realistic head models are used in forward
roblem solutions.

One of the difficulties in creating realistic head models is to cre-
te the head mesh that provides the geometry and conductivity
nformation to the numerical solver. This is usually done by seg-

enting 3-D structural magnetic resonance (MR) and/or computed
omography (CT) images. Some tools available for extracting the
rain and skull surfaces from MRI images include a Brain Extrac-
ion Tool (BET) by Smith (2002), ANATOMIC by Heinonen et al.
1998), and BRain Image ANalysis (BRIAN) by Kruggel and Lohmann
1996). FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) provides
ools to extract a high quality brain surface and to register it with
he Talairach atlas (Talairach and Tournoux, 1998). Commercial
oftware packages such as ANALYZE and CURRY can also be used
o extract skull, scalp and brain surfaces from MR images. The
egmentation tools provided by these software packages are not
ompletely automated and require user input to some degree.

Various toolkits are available for segmentation and source local-
zation. BrainVisa/Anatomist is an open source toolkit written in
ython for extracting cortical surfaces and performing EEG/MEG
ource localization (Riviere et al., 2003). BrainSuite is a freely avail-
ble Windows application for extracting scalp, skull, CSF and brain
issues (Shattuck and Leahy, 2002). FreeSurfer, which provides
dvanced MRI segmentation, and surface extraction is also open
ource and freely available for research purposes. MNE is a free
oolkit linked to FreeSurfer for EEG/MEG analysis. It uses a combina-
ion of C and MATLAB, but source code is not available (http://www.
mr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php).

The lack of unified and freely available segmentation and mesh
eneration tools has inhibited the use of high-quality realistic head
odels in brain electrophysiology research. Most researchers con-

inue to use either spherical head models, a fixed template head
esh such as the Montreal Neurological Institute’s (MNI) template

ead model, or low-quality realistic models. Other factors prevent-
ng the widespread use of subject-specific realistic head models
nclude computational requirements and the unavailability of MR
ead images for many subjects.

NFT began as an effort to integrate existing realistic forward
roblem solvers, segmentation and mesh generation tools we have
eveloped in previous research. It runs under MATLAB and to save
ime uses freely available C++ executables to generate BEM matri-
es and for some steps of mesh generation. NFT MATLAB was
eveloped under MATLAB 7.3 and requires the MATLAB image pro-
essing toolbox. The state-of-the-art BEM solver was developed in
++ and released as the METU-FP toolkit (Akalın-Acar and Gençer,
004). While developing the toolbox, some of the functionality of
he forward problem solution is ported to MATLAB for better inte-
ration, but, re-implementing the BEM matrix generation would
ave required a lot of extra development and testing and would
ave increased the memory requirements and computing time.
EM mesh generation also began as native code (C or C++). Open

ource tools and libraries such as ASC and Qslim are used for tri-
ngulation and coarsening respectively. While MATLAB toolboxes
xist that allow similar functionality, using existing open source
ools allowed us to reduce development and testing considerably.
sing MATLAB as the integration platform made it easier to develop
nce Methods 190 (2010) 258–270 259

the graphical user interface (GUI) and to interface to the EEGLAB
environment and to native code tools. This made it possible to focus
on providing a consistent user interface to the underlying tools,
including providing default parameters that result in good quality
head models.

The NFT is released under an open source license, allowing
researchers to contribute to and improve on this work for the bene-
fit of the neuroscience community. By bringing together advanced
head modeling and forward problem solution methods and imple-
mentations within an easy to use toolbox, the NFT complements the
widely used EEGLAB environment, an open source toolkit under
continued development (Delorme and Makeig, 2004). Combined,
NFT and EEGLAB form a freely available EEG (and in future, MEG)
source imaging solution and an attractive environment for intro-
ducing advanced inverse source localization methods into research
laboratories and courses.

NFT implements the major aspects of realistic head modeling
and forward problem solution from available subject information:

1. Segmentation of T1-weighted MR images: The preferred method
of generating a realistic head model is to use a 3-D whole-head
structural MR image of the subject’s head. The toolbox can gen-
erate a segmentation of scalp, skull, CSF and brain tissues from
a T1-weighted image.

2. High-quality BEM meshes: The accuracy of the BEM solution
depends on the quality of the underlying mesh that mod-
els tissue conductance-change boundaries. To avoid numerical
instabilities, the mesh must be topologically correct with no self-
intersections. It should represent the surface using high-quality
elements while keeping the number of elements as small as pos-
sible. The NFT can create high-quality linear surface BEM meshes
from the head segmentation.

3. Warping a template head model: When a whole-head structural
MR image of the subject is not available, a semi-realistic head
model can be generated by warping a standard template BEM
mesh to the digitized electrode coordinates (instead of vice
versa).

4. Registration of electrode positions with the BEM mesh: The dig-
itized electrode locations and the BEM mesh must be aligned
to compute accurate forward problem solutions and lead field
matrices.

5. Accurate high-performance forward problem solution: The NFT
uses a high-performance BEM implementation from the open
source METU-FP Toolkit (Akalın-Acar and Gençer, 2004) for bio-
electromagnetic field computations.

The NFT has two major parts; generation of realistic head models
and numerical solution of the forward problem. Toolbox functions
are detailed in Section 2. Section 3 describes the toolbox compo-
nents, together with some screenshots from the GUI. In Section
4, examples of NFT head models are shown and the accuracy and
efficiency of BEM-based equivalent dipole localization is estimated.

2. Toolbox functionality

This section describes forward problem solutions, image
segmentation, mesh generation, template warping, and co-
registration of the electrode locations.

2.1. Boundary Element Method
The Boundary Element Method (BEM) is a numerical com-
putational technique for solving partial differential equations. In
electromagnetic source imaging (EMSI) of brain activity, BEM may
be used to solve the forward problem using realistic head models.
When using BEM for head modeling, the head is assumed to be com-

http://surfer.nmr.mgh.harvard.edu/
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
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ig. 1. The segmentation algorithm used in NFT. Scalp, brain, outer skull, and inner s
nd watershed segmentation.

osed of uniform conductivity regions (i.e., scalp, skull, brain, etc.)
hose tissue boundaries may be represented by triangular surface

lements.
The properties of the BEM implementation may be summarized

s follows:

. To eliminate possible singularities in the BEM matrix, the
method of matrix deflation (Lynn and Timlake, 1968) is
employed.

. The Isolated Problem Approach (IPA) is used to overcome numer-
ical errors caused by large conductivity differences near the skull
layer. The IPA used in this implementation of BEM is generalized
to allow layers within the modified boundary which is the inner
skull. It has been shown that this implementation of IPA cor-
rects the electric field by 11–15% (RDM) for tangential dipoles,
and 11–217% for radial dipoles in a 4-layer spherical head model
(Gençer and Akalın-Acar, 2005).

. A recursive integration technique is employed to increase the
accuracy of the BEM implementation. In recursive integration,
the surface elements are divided into sub-elements and numer-
ical integration is performed on each sub-element. This process
is repeated recursively until a subdivision criterion is met. Since
the potential field is calculated at the original nodes, the size of
the BEM matrix equation remains the same, but the accuracy of
the computed surface integral is improved.

. The BEM implementation allows the use of quadratic surface
elements in realistic head models for increased accuracy with
a smaller number of elements.

. Intersecting tissue boundaries are supported by allowing the
BEM mesh to have more than two elements sharing a single
edge. This allows modeling of complex tissues such as eyes.
Currently, the toolbox does not support generating intersecting
meshes, but can use them if they are generated externally. The
validation of intersecting surfaces is given in (Akalın-Acar and
Gençer, 2004) by comparing BEM solutions with FEM solutions
using a 3-layer head model with a disk-shaped inhomogene-
ity intersecting the skull layer. The electric field differences
for different dipole positions and varying conductivity of the
inhomogeneity between BEM and FEM solutions were smaller
than 1%.

. To decrease computation time, transfer matrices are computed
that relate source projections to field strengths at given sensor

locations. By pre-computing transfer matrices, forward solutions
of electric and magnetic field problems are reduced to simple
matrix–vector multiplications.

More details of the BEM formulation and its accuracy using
imple spherical head models can be found in Gençer and Tanzer
e segmented using filtering, thresholding, region growing, morphologic operations,

(1999), Akalın-Acar and Gençer (2004) and Gençer and Akalın-Acar
(2005).

2.2. Segmentation

When tomographic images of the subject’s head are available, it
is possible to create a realistic model of the head tissue boundaries.
Since T1-weighted MR images are now commonly acquired for
structural imaging, the toolbox makes use of T1-weighted images,
when available, to generate a 4-layer head model consisting of
scalp, skull, CSF, and brain surfaces. The segmentation algorithm
used in this study is shown in Fig. 1.

The segmentation procedure starts with anisotropic filtering of
the 3-D head image to enhance image quality. This smoothes the
image while preserving gradient (boundary) information (Ibanez et
al., 2005). Filtering is followed by scalp segmentation. The thresh-
old for the scalp surface boundary is found by Otsu thresholding
(Nobuyuki, 1979). After thresholding the 3-D image, the resulting
binary image is morphologically closed. The toolbox then applies
3-D region growing to eliminate any image noise outside the scalp.
Finally, any holes in the scalp are filled by applying the ‘filling’ mor-
phological operation in the sagittal, coronal and axial directions.
For anisotropic filtering and Otsu thresholding, the MATITK MAT-
LAB interface to the ITK image processing toolkit is used (Chu and
Hamarneh, 2005). The morphological operations are performed
using functions from MATLAB’s image processing toolbox.

For brain segmentation, a watershed segmentation algorithm
from the ITK toolkit is used (Ibanez et al., 2005). After masking the
filtered MR image with segmented binary scalp image, an initial
brain segmentation is performed using watershed segmentation.
This initial brain volume also includes skull marrow where the skull
is thin in the MR image. To eliminate the bone marrow, thresh-
olding, morphological erosion and dilation, and region growing
operations are applied. In some cases, the watershed segmenta-
tion includes tissues below the cerebellum such as the brain stem
and inferior scalp tissues. To prevent this, the lower boundary of
watershed segmentation is limited by a user-supplied indication
of the lowest point of the cerebellum.

While soft tissues are easy to identify from T1-weighted MR
images, it is difficult to distinguish skull from CSF and other head
cavities (sinuses). Therefore, skull and cerebrospinal fluid (CSF)
(inner skull) boundaries are deduced from segmented masks for

the scalp and the brain.

An initial segmentation for outer skull is performed by thresh-
olding the filtered MR image with the scalp mask. For final skull
segmentation the segmented, eroded, and closed inner skull vol-
ume is used. For some subjects, the eyes remain connected to the
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kull. To prevent this, the user selects a point in each eye from an
xial view in which the eyes are seen clearly. The eyes are extracted
y region growing from the user-indicated points.

The CSF boundary is obtained from the eroded skull and dilated
rain boundaries. At the end of segmentation, the skull and scalp
urfaces are improved to avoid thin regions in the skull.

.3. Mesh generation

To solve the forward problem, the geometrical information
btained by image segmentation should be converted into a numer-
cal form (i.e., as a set of meshes). To generate the BEM surface

eshes, an improved version of the mesh generation algorithm
escribed by Akalın-Acar and Gençer (2004) is used. The steps for
enerating surface meshes from segmented 3-D volume images are
escribed below.

The first step in mesh generation is the triangulation of the seg-
ented image. For this purpose, an implementation of the adaptive

keleton climbing (ASC) algorithm is used that is freely available
or academic, research and internal business purposes (Poston et
l., 1998). For each tissue, the volume is converted to a raw format
ompatible with the ASC application. It is then triangulated using
SC which places one or more triangles in each boundary voxel.
his results in a very fine mesh representing the tissue surface. This
esh needs further processing and coarsening, however, before it

an be used as a BEM mesh.
The triangulated surface is then smoothed using a surface sig-

al low-pass filter algorithm (Taubin, 1995). This smoothing helps
uppress high frequencies caused by noise and slice effects in the
R image. During the smoothing process, the vertices of the trian-

ulated surface are moved but the connectivity of the faces remains
nchanged.

The number of mesh triangles is reduced using a coarsening
lgorithm based on iterative edge contraction and quadric error
etrics (Heckbert and Garland, 1999). For this purpose, the QSlim

ool is used, an open source tool available under the GPL license
Garland and Shaffer, 2002). At every coarsening step, the neigh-
or nodes with lowest errors are connected and a coarser mesh is
btained.

The resulting mesh may still contain some undesirable topolog-
cal artifacts such as disconnected or multiply-connected element
dges and singular nodes. These artifacts are corrected to create a
ingle manifold surface that represents the given surface boundary
Guziec et al., 2001). To summarize, multiple iterations of the fol-
owing steps are performed to obtain a topologically correct, high
uality mesh:

Any isolated vertices (those with no elements attached) are iden-
tified and removed.
Edges with more than two elements are marked and corrected
(Guziec et al., 2001).
For each edge, neighboring elements are checked; the edge is
flipped, if possible, to improve the aspect ratio of the elements.
Very small face elements are identified and removed.
Elements with poor aspect ratios (elements where the ratio of the
shortest edge to longest edge is smaller than 0.3) are identified
and removed.
Isolated groups of elements are removed.

As previously shown, the accuracy of BEM inverse solutions
epend on the eccentricity of the dipoles. As the dipoles approach

he brain surface, forward problem solution accuracy decreases;
hen the meshes are refined, solutions become more accurate

Roth et al., 1993; Akalın-Acar and Gençer, 2004). A theoretical rea-
oning for this fact was given in Drechsler et al. (2009) and Wolters
t al. (2007). Another type of inaccuracy occurs when two mesh lay-
nce Methods 190 (2010) 258–270 261

ers are too close to each other. If the distance between two meshes
is less than the edge length of the neighboring elements, then the
accuracy of the numerical solutions decreases. NFT handles this by
performing local mesh refinement in regions where neighboring
meshes are close to each other.

The aim of local mesh refinement is to make sure that the
distance between meshes is not too small compared to edge
length, of the neighboring elements. For this purpose, mesh ele-
ments with relatively long edges are refined when their edge
length is larger than the local distance of two neighboring meshes.
For each surface, edges that are close to the outer neighboring
surface are detected, and elements belonging to that edge are
refined. This is repeated until there are no large edges close to
the neighboring surface. This procedure is repeated for all surfaces
beginning from the innermost layer. The local mesh refinement
(LMR) ratio used for this purpose is computed as: LMR(node,mesh) =
(mean edge length)/(mesh distance), where the mean edge length
of the node is calculated by averaging the lengths of all the edges
connected to that node, and mesh distance is the shortest distance
from the node to the neighboring mesh.

2.4. Registration of electrode locations and scalp surface

After creating the head model from the MR image, electrode
locations must be mapped onto the scalp mesh. It is assumed that
the coordinate systems of the digitizer and the MRI can be mapped
through a rigid-body transform (rotation and translation). For reg-
istering the electrode locations to the head model, the rigid-body
transform parameters that can best match the scalp and the elec-
trodes are computed. For this purpose, six parameters of rotation
and translation are calculated so as to minimize the total squared
distance between the scalp mesh and the electrode positions using
non-linear optimization (Akalın-Acar and Gençer, 2004).

2.5. Warping

When the MR image of the subject head is not available, a fre-
quently used approach to source localization is to map the recorded
3-D electrode locations to a mean subject template head mesh. An
alternative approach suggested by Darvas et al. (2006) is to warp a
template mesh to fit the observed sensor locations. NFT implements
this approach to generate subject-adapted head models when MR
images are not available. This results in more realistic head models
compared to mapping electrodes to a template mesh.

Scalp surface warping parameters are computed based on three
fiducial points: the nasion and left and right preauricular points
(Fig. 2). The preauricular points are defined as the bony indentation
in front of the ears. The nasion is the bridge of the nose at the fore-
head. From these three points, the vertex of the scalp is computed
in both the template model and the subject head surface implied
by the recorded electrode locations. Using these four points, the
sensor locations and head model are brought into same coordinate
system.

After this initial co-registration, 19 landmarks are located on
both the head model and sensors, as described in Darvas et al.
(2006). These landmarks are used to find the best-fitting warping
parameters using a non-rigid thin plate spline method (Bookstein,
1999). All the surfaces and the source space are warped using the
same warping parameters. Reverse warping parameters that warp
the sensor coordinates to the template mesh are also computed.
These parameters can be used to map source localization results to
the template head.
3. NFT components

After installing and configuring the toolbox, one may start it by
typing, on the MATLAB commandline:
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ig. 2. The nasion and left and right preauricular points shown on an MNI head
odel.

� Neuroelectromagnetic Forward Modeling Toolbox
or, if preferred,
� NFT
The main NFT window appears as shown in Fig. 3. This win-

ow is divided into three panels. The top panel is used to select

he working folder and to name the subject and session. The lower
anel is the head modeling panel. The lowest panel in the main
FT menu initiates forward model generation, opening the forward
odel generation interface used to compute the BEM coefficient

ig. 3. The NFT main user interface. This window is divided into three panels. The
op panel is used to select the working folder and to name the subject and session.
he lower panel is the head modeling panel. The lowest panel in the main menu of
FT cues forward model generation.
nce Methods 190 (2010) 258–270

matrix, create the transfer matrices for each sensor, and generate
lead field matrices for a given source distribution.

In the following sub-sections, NFT module components are
introduced. Inputs and outputs of each module are explained and
their user interfaces are illustrated.

3.1. Head modeling: segmentation

The input to the segmentation module is a T1-weighted MR
image. When the image is loaded, sagittal, axial, and coronal slices
are shown for an indicated voxel. It is easy to change the slices dis-
played by using the scroll bars or clicking on the images (Fig. 4). The
Display image panel allows the user to select which image volume
to display. The available choices are the MR volume, the filtered
volume, or the image volume in various stages of segmentation.

The segmentation algorithm does not perform well for volumes
effected by inhomogeneity artifacts. The “Check inhomogeneity”
button checks whether the current image volume needs inhomo-
geneity correction or not. The adjacent checkbox “Swap L|R” can be
used to exchange left and right when needed.

Segmentation steps are performed in this order:

1. Anisotropic filtering. (User inputs: filter parameters.)
2. Scalp segmentation.
3. Brain segmentation. (User input: A seed point for brain segmen-

tation; the lowest point of the cerebellum.)
4. Outer skull segmentation. (User input: A seed point near the

center of either eye.)
5. Inner skull segmentation.

The segmentation module outputs filtered MR images and scalp,
skull, CSF, and brain masks. It is possible to save the results of
any stage of segmentation in MATLAB data format. The filtered MR
images are saved in MATLAB double precision; the masks are saved
as a MATLAB structure.

Fig. 5 shows segmentation results for scalp, skull, CSF, and brain
for four subjects whose MR head images were acquired using a 3-T
GE scanner.

3.2. Head modeling: mesh generation

The second step in realistic head modeling is mesh generation.
The NFT mesh generation module uses the results of the segmen-
tation and outputs either 3-layer or 4-layer BEM head meshes. A
3-layer mesh includes scalp, outer skull, and CSF surfaces. The CSF
and the brain are considered a single region. A 4-layer mesh models
scalp, skull, CSF, and brain by including an additional inner skull
surface separating the CSF from the brain. It is also possible to
apply local mesh refinement to locally refine the meshes where
one surface comes close to a neighbouring surface.

The mesh generation interface is shown in Fig. 6. The generated
mesh file can be used directly by the BEM solver.

Fig. 7 shows the meshes generated for the volumes shown in
Fig. 5.

3.3. Source space generation

A source space is a set of dipole sources placed within the brain
volume. It is used to generate the lead field matrix (LFM) that
maps the amplitudes of possible dipolar sources to electrode poten-
tials. An LFM using a regular grid source space can be used for

single-dipole parametric inverse problem solution to give a coarse
estimate of source location.

The NFT contains an option to generate a simple dipolar source
space consisting of a regular 3-D voxel grid. The grid is generated
by placing three orthogonal dipoles at each grid location inside the
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Fig. 4. The NFT head tissue segmentation interface. When a T1-weighted MR image is loaded, anisotropic filtering, scalp, brain, outer skull, and inner skull segmentation are
performed.

Fig. 5. Segmentation results showing (a) scalp, (b) skull, (c) CSF and (d) brain volumes computed from four subject MR head images acquired using a 3-T GE scanner.
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Fig. 6. The NFT mesh generation user interface. The mesh generation module uses the results of the segmentation and outputs either 3-layer or 4-layer BEM head meshes.

Fig. 7. BEM models of the scalp, skull, CSF and the brain for four subjects: (a) scalp mesh, (b) skull mesh, (c) CSF mesh, (d) brain mesh generated for the volumes shown in
Fig. 5.
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Fig. 8. The NFT user interface for warping a temp

rain volume. User inputs are the spacing between the dipole ele-
ents and the minimum distance of a dipole element to the brain
esh. The grid spacing determines the minimum distance between

wo dipoles.

.4. Co-registration of electrode locations

The BEM mesh is generated from the 3-D MR volume and uses
he same coordinate system as the MR volume. When working
ith EEG recordings, the electrode coordinates measured by a dig-

tizer must be mapped to the mesh coordinates. This step is called
o-registration of electrode locations to the mesh volume. The
nput to the electrode co-registration module is the set of elec-
rode locations. The subject scalp mesh is loaded automatically
nd the electrodes are co-registered to the scalp mesh. The co-
egistration is accomplished in two steps. First the user manually
oughly co-registers the sensors. The second, automated step finds
he translation and rotation parameters that minimize the total
quared distance between the sensors and the model scalp surface.

.5. Head modeling using template warping

When the MR image of the subject head is not available, the
oolbox can generate a subject-adapted template head model.
he template head model is warped to the electrode locations

rather than warping the electrode positions to the template
ead model). The warping is based on three fiducials: the nasion
nd left and right preauricular points. The inputs of the warping
odule are these fiducials and the electrode locations (obtained

rom a 3-D position digitizer). The outputs are the warped mesh,

Fig. 9. Three views of the nodes of the template mesh (blue) and the w
ead model to measured 3-D electrode locations.

the warped source space, indices of the electrodes on the mesh,
fitted electrode locations, and the warping parameters. The warp-
ing parameters may be used to warp the localized sources back
to the template model. The template head model included in
the toolbox is based on the MNI averaged MR image available
at http://www.bic.mni.mcgill.ca/software/. It is possible to use
another head model as a template head model by replacing the
template mesh files as long as corresponding fiducials and land-
marks are also specified. Note that the number of warped electrodes
may be lower, since the MNI head is not a complete whole-
head model and some electrodes on the neck might lie below
the template mesh. Fig. 8 shows the user interface for the warp-
ing module, and in Fig. 9, a warping result is shown in different
views.

3.6. Forward problem solutions: BEM

The forward problem solution module is written mainly in MAT-
LAB and includes a set of functions to read the mesh, generate the
BEM matrices, register the electrodes to the BEM mesh, and com-
pute the forward problem solution and lead field matrices. These
functions can also be accessed using the user interface. The BEM
user interface is shown in Fig. 10.

The binary BEM solver that computes the BEM matrices is an
executable program written in C++ that is launched from MATLAB

with parameters necessary to compute and save the BEM matrices.
The solver is called transparently by MATLAB and need not be called
explicitly by the user.

The user interface for the forward problem module uses three
MATLAB data structures to store the state of forward problem com-

arped mesh (red). The warped mesh fits the electrode locations.

http://www.bic.mni.mcgill.ca/software/
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eration required only a few seconds, so these are not given in the
tables.

The memory used for matrix computations is slightly larger than
the total size of the BEM matrices. The in-memory size of the BEM

Table 1
Computational complexity for the realistic model.

Segmentation 25 min
Mesh generation 38 min
Co-registration 25 min
BEM matrix generation (16,016 nodes) 120 min
Transfer matrix calculation (141 sensors) 192 min
Lead field matrix calculation (6075 dipoles) 60 min

Total 735 min (7.25 h)

Table 2
Computational complexity for the warped model.
ig. 10. The NFT BEM construction user interface has four panels: (Upper panels)
anel) Predict scalp potentials produced by given dipole(s).

utations:

The mesh structure: stores the mesh information, i.e., the geome-
try of the head.
The model structure: holds the mesh coefficients, solver (i.e., IPA)
parameters, and tissue conductivities.
The session structure: contains the model structure and electrode
coordinates on the mesh.

A BEM forward problem solution proceeds through the follow-
ng steps:

. Compute the BEM matrices for the given head model.

. Compute the transfer matrix for the given set of electrode loca-
tions.

. Obtain the electrode potentials generated by activity of each
source dipole.

The default conductivity values for scalp, skull, and brain are
et to 0.33, 0.0042, and 0.33 S/m, respectively (Geddes and Baker,
967). In Baumann et al. (1997), CSF conductivity at body temper-
ture was found to be 1.79 S/m, here used by default. The toolbox
llows the user to change these values using the forward problem
olution GUI. In this study we used the default values.

The toolbox can also make use of the MATLAB Parallel Processing
oolbox (if installed) to distribute the computation of the transfer
nd lead-field matrices to multiple processors. To do this, before
unning NFT, the user must simply enter

� matlabpool(n) % n: the number of compute nodes
vailable

In parallel mode, wait bars do not appear while computing the
ransfer and lead-field matrices.

. Results
This section presents statistics on the runtime performance of
he toolbox and the effect of local mesh refinement, and gives an
xample of source localizations obtained using different head mod-
ls.
a mesh, load or generate BEM meshes, load or generate transfer matrices. (Lower

4.1. Computational complexity

The computational cost of using a realistic head model is related
to the size of the BEM matrices, which depend on the number of
nodes in the meshes. The aim of this section is to indicate how long
different stages of the head modeling and forward problem solution
require on current (2009) computers.

In this section, a 4-layer realistic model generated from an MR
head image is used. The mesh had 16,016 nodes, and 32,024 faces in
all. Local mesh refinement used an LMR ratio of 2. The scalp, skull,
CSF, and brain surfaces had 6944, 7084, 9298, and 8698 elements,
respectively.

Table 1 shows computation times for realistic head modeling
and forward model generation of a head model from an MR image.
These computations used a single 2.4-GHz 64-bit Opteron proces-
sor.

Table 2 shows the computation times for forward model gener-
ation when the head model was obtained by warping a template
head model. Warping a template head model and source space gen-
Generation of BEM matrices (6006 nodes) 19 min
Calculation of the transfer matrix (135 sensors) 15 min
Calculation of the lead field matrix (10,131 dipoles) 30 min

Total 64 min (1.1 h)
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Table 3
Relative difference measures (%RDMs and RDM*s) for various tangential (x-directed)
dipoles located on the z axis (z = 1 − 6 cm) in a 4-layer spherical head model. The
results are presented for solutions with and without the use of IPA.

Distance (cm) With IPA Without IPA

%RDM RDM* %RDM RDM*

1.0 0.30 0.0006 28.44 0.0105
1.5 0.31 0.0009 28.53 0.0109
2.0 0.31 0.0012 28.65 0.0112
2.5 0.31 0.0015 28.79 0.0116
3.0 0.32 0.0018 28.95 0.0120
3.5 0.32 0.0022 29.12 0.0124
4.0 0.33 0.0026 29.34 0.0139
4.5 0.35 0.0031 29.81 0.0198
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Table 4
Relative difference measures (%RDMs and RDM*s) for various radial (z-directed)
dipoles located on the z axis (z = 1 − 6 cm) in a 4-layer spherical head model. The
results are presented for solutions with and without the use of IPA.

Distance (cm) With IPA Without IPA

%RDM RDM* %RDM RDM*

1.0 0.31 0.0009 28.21 0.0103
1.5 0.34 0.0019 28.02 0.0104
2.0 0.49 0.0040 27.74 0.0112
2.5 0.78 0.0073 27.36 0.0136
3.0 1.23 0.0120 26.88 0.0184
3.5 1.83 0.0181 26.31 0.0259
4.0 2.56 0.0255 25.80 0.0364

tion of EEG, and Rullmann et al. (2009) investigated the effects on
source localization of compartments (i.e., lesions) of varying con-
ductivities. Source localization results are shown in Table 6. Adding
the fourth (CSF) layer to the model gave an up to a 3-cm improve-
ment in source localization. The effect of local mesh refinement

Table 5
Properties of the meshes used in the simulations.

Mesh name Number
of layers

Number
of nodes

Number
of faces

LMR
ratio

Mesh 3 3 10,337 20,678 None
5.0 0.39 0.0037 30.91 0.0354
5.5 0.44 0.0044 31.10 0.0503
6.0 1.42 0.0118 32.45 0.1366

atrix is N × N × 8 bytes, where N is the number of nodes and
ach entry uses 8 bytes for double precision floating point. If IPA
s applied, then two additional matrices are also calculated and
tored. These two matrices consume N1 × N × 8, and N2 × N2 × 8
ytes respectively, where N1 is the number of nodes of the skull

ayer and N2 is the number of nodes in the inner layers (CSF and
rain if a 4-layer model is used). Similar realistic subject-specific
ead models generated by NFT using IPA would require approxi-
ately 4.8 GB of memory.
The transfer matrix computation and lead-field matrix genera-

ion steps may be executed on multiple processors if the MATLAB
arallel Processing Toolbox is available. We have measured a 2.6×
peed-up by generating the transfer matrix on a quad-core instead
f a single core processor.

.2. Accuracy of the BEM implementation

To assess the accuracy of the BEM solutions, we performed an
rror analysis, comparing analytical solutions with numerical solu-
ions obtained using a 4-layer spherical BEM head model. The four
ayers representing brain, CSF, skull, and the scalp had conductiv-
ties 0.33, 1.79, 0.0042, and 0.33 S/m, respectively. The radii of the

odel spheres were 61, 65, 71, and 75 mm as recommended in
eijs et al. (1989). The analytical solutions provided by Kavanagh

t al. (1978) were compared with the NFT numerical solutions using
he RDM and RDM* metrics (Meijs et al., 1989).

A similar error analysis was performed in Gençer and Akalın-
car (2005) for the same BEM implementation. We used the same
pherical quadratic BEM mesh which has 512 elements and 1026
odes per layer. The only difference in the head model is the
onductivity of the CSF. The previous study used 1.0 S/m for CSF
onductivity. This study used 1.79 S/m to match the value reported
y Baumann et al. (1997).

Percentage RDM and RDM* values for various tangential (x
irected) dipoles along z axis are given in Table 3. The numerical
olutions were computed twice, once with IPA and once without
PA. Application of IPA improved the solutions significantly. Com-
ared to the earlier study of Gençer and Akalın-Acar (2005), the
DM and RDM* values are very close when IPA was applied, while

or the solutions derived without using IPA the RDM values almost
oubled because of the higher conductivity difference at the skull
oundary used in this study. The use of IPA eliminates this error.

Table 4 gives the same information for radial (z directed) dipoles.
he errors were higher for radial dipoles compared with tangen-

ial dipoles as the dipole was closer to the surface. The accuracy
f the numerical solutions depends on how well the mesh ele-
ents can match changes in the field. For tangential dipoles, the

hange in the field is distributed over many elements. For radial
4.5 3.41 0.0339 25.51 0.0505
5.0 4.33 0.0431 24.17 0.0743
5.5 5.45 0.0512 26.08 0.2536
6.0 13.61 0.0338 277.76 1.9164

dipoles, however, the rapid changes in the field need to be handled
by increasingly smaller elements as the dipole position is closer to
the surface. Using smaller elements helps increase this accuracy, as
does using higher order elements.

Note that, the dipole at z = 6 cm is only 1 mm away from
the brain layer which accounts for the increased error for this
dipole.

4.3. Source localization comparisons

This section presents source localization results using various
head models. First, simulation studies are presented that compare
single dipole source localization differences between 3-layer and
4-layer BEM meshes with and without local mesh refinement. Fol-
lowing this, localization results with realistic data are shown. Again
we used 0.33, 0.0042, 1.79, and 0.33 S/m for scalp, skull, CSF, and
brain conductivities, respectively.

4.3.1. Effect of LMR ratio on 3-layer and 4-layer BEM head models
To compare the localization difference between 3-layer or 4-

layer models of different mesh complexity, six different head
models were generated using different LMR ratios. The results for
the 4-layer BEM model with an LMR ratio of 1.6 were considered
reference results, equivalent dipole source localization was per-
formed for these potentials. For testing purposes, 24 dipoles of
different eccentricities in three orthogonal directions inside the
brain were simulated. Table 5 shows the properties of the meshes
generated for this test. Mesh 4b, the finest mesh, was used as a
reference for source localization.

A number of researchers have stated that including the highly
conductive CSF layer in head models is important for accurate local-
ization (Ramon et al., 2004; Akalin Acar, 2005). Wendel et al. (2008)
have shown how the CSF conductivity affects the scalp distribu-
Mesh 3a 3 12,057 24,118 2
Mesh 3b 3 14,769 29,542 1.5
Mesh 4 4 13,775 27,550 None
Mesh 4a 4 18,499 36,998 2
Mesh 4b 4 20,789 41,578 1.6
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Fig. 11. Scalp projections (two left columns) and equivalent dipole source locations (right column) of two independent components extracted from a 140-electrode EEG
recording by infomax ICA. Top row: Scalp maps and equivalent dipole positions computed using the individual subject MR-based BEM head models, (green dipoles) 4-layer
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nd (yellow dipoles) 3-layer. Middle row: Scalp maps and equivalent dipole position
aps and equivalent dipole positions based on electrode positions warped to the sta

ipole positions; their computed Talairach locations are shown (green/yellow lette

s also visible for the 4-layer meshes, for which mesh refinement
mproved localization accuracy by up to 1 cm.

.3.2. Real EEG data example
In this section, source localization results for different head

odels are compared for one subject with an MR head image.
EG data were collected during a reaching task using 140 elec-
rodes. Infomax Independent Component Analysis (ICA) (Bell and

ejnowski, 1995), developed for application to EEG data by Makeig
t al. (1996) and Jung et al. (2001), was used to remove eye and
uscle activity artifacts and also to identify and separate function-

lly independent cortical EEG processes. After ICA decomposition,
ingle-dipole source localization was performed for two inde-

able 6
ocalization error (LE) for 24 dipoles relative to Mesh 4b (in mm).

Mesh name Mean LE Minimum LE Maximum LE

Mesh 3 17.1 7.1 23.7
Mesh 3a 16.1 3.9 26.2
Mesh 3b 16.9 4.1 29.3
Mesh 4 5.6 2.6 9.1
Mesh 4a 0.9 0.2 1.8
Mesh 4b 0.0 0.0 0.0
e electrode position-warped standard 3-layer MNI head model. Bottom row: Scalp
3-layer MNI head model. Slices shown are nearest to the (left posterior) equivalent

pendent component scalp maps that each highly resembled the
projection of a single equivalent current dipole (likely represent-
ing the far-field potential projected by coherent field activity across
a single cortical source patch).

Four realistic head models were generated using NFT from
the subject MR head image: (a) a subject-specific realistic 4-layer
BEM model; (b) a subject-specific realistic 3-layer BEM model;
(c) an electrode position-warped MNI template model; (d) the
standard MNI 3-layer BEM template model with electrode posi-
tions warped to the model head. In the 3-layer model, the CSF
was included within the brain model compartment. The electrode
position-warped head model was generated by warping the MNI
template head model to the recorded scalp sensor locations using
NFT, whereas in the MNI model, the recorded electrode locations
were warped to the model MNI scalp surface using dipfit in EEGLAB.

Fig. 11 shows the component scalp maps and equivalent dipole
source localization results. The electrode position-warped MNI
model (middle row) is squeezed toward the back of the head and

the equivalent dipole sources are localized closer to the surface
compared to the sources localized using the standard MNI model
(bottom row). In the 4-layer BEM model (top right, green), the
equivalent dipoles are closer to the cortex because the highly con-
ductive CSF tissue layer concentrates the flow of current within
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Table 7
The percentage residual variance (rv) of the scalp map versus the equivalent dipole
map.

Head model % rv (left component) % rv (right component)

MR-based 4-layer 3.9 7.1
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MR-based 3-layer 4.2 7.2
Position-warped MNI 2.9 7.5
Standard MNI 3.0 7.0

tself, reducing the diffusion produced by the current passing
hrough the skull (Wolters et al., 2006; Wendel et al., 2008).

The residual variances of the scalp maps versus the equivalent
ipole maps are close to each other across the different head mod-
ls (Table 7), although the computed Talairach coordinates of the
quivalent dipoles for the left component in the four head mod-
ls (Fig. 11, right column) differed by up to more than 1 cm. More
xtensive comparisons for a large number of simulated equivalent
ipole source positions (not shown here) demonstrate that differ-
nces in equivalent dipole locations between these head models
ary with source location and orientation.

.4. Known issues

A known problem with the segmentation module occurs when
rocessing MR images with high inhomogeneity. Using fixed MRI

ntensity thresholds for scalp, skull and brain is insufficient if the
mage has inhomogeneity. The “Check Inhomogeneity” button in
he segmentation user interface can be used to determine whether
he current image needs correction. If this inhomogeneity check
ails the function recommends performing inhomogeneity correc-
ion using a tool such as found in Freesurfer. The NFT user manual
xplains how to pre-process MR images.

. Conclusion and discussion

Here we have introduced the Neuroelectromagnetic Forward
ead Modeling Toolbox (NFT), a GUI-integrated collection of mod-
les for defining and solving the EEG forward problem using
ealistic BEM or semi-realistic warped template head models. BEM
ead models may be generated from T1-weighted MR head images
r by warping a template head mesh to recorded 3-D electrode
ocations.

Using the Boundary Element Method (BEM) allows easier mesh
eneration from available data compared with the Finite Element
ethod (FEM). While FEM potentially allows more accurate head
odels using more tissue types and allowing specification of tis-

ue anisotropy, generating these models requires extra information
uch as direction anisotropy information gleaned from diffusion
ensor (DT) images. For isotropic head models, BEM is at least as
ccurate as FEM and also provides better control over source dipole
ocations (Acar and Gençer, 1999).

The accuracy of the forward solution is also related to the size
f the BEM mesh used to solve the forward problem. The distance
etween layers determine the maximum size of the elements. Typ-

cal four layer meshes generated by NFT have about 19,000 nodes.
he most memory intensive computation in NFT is the generation
f BEM matrices done by the METU-BEM toolkit. The memory used
or matrix computations is slightly larger than the total size of the
EM matrices. For subject-specific realistic models generated by
he toolbox, this will be approximately 4.8 GB of memory using IPA

nd 3 GB not using IPA. A 3-layer mesh without IPA requires only
.6 GB for generating the matrices.

While the BEM matrix generation is resource intensive, it is
ithin the capabilities of modern workstations. Once the trans-

er matrices are generated, individual forward problem solutions
nce Methods 190 (2010) 258–270 269

take much less memory and computational resources. It may be
possible to reduce the memory requirements further by paralleliza-
tion (Ataseven et al., 2008). On-disk size of the matrices can also
be reduced by using data compression techniques. These features
are planned for future releases. Other future plans include improv-
ing image segmentation to use multi-modal MR images which will
allow increased accuracy of CSF segmentation. We also plan to add
software for performing inverse source imaging using a high reso-
lution cortical surface-derived source space. Adding other forward
problem solvers including FEM and analytical concentric spheres is
also being considered.

The NFT includes an interface to EEGLAB, and EEGLAB func-
tions and data structures are compatible with NFT structures.
The toolbox released under the GPL(v2) license may be down-
loaded from http://sccn.ucsd.edu/nft or via the EEGLAB web site
(http://sccn.ucsd.edu/eeglab/)
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