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For a robust brain-computer interface (BCI) system based on motor imagery (MI), it should be able to tell when the subject is not
concentrating on MI tasks (the “idle state”) so that real MI tasks could be extracted accurately. Moreover, because of the diversity
of idle state, detecting idle state without training samples is as important as classifying MI tasks. In this paper, we propose an
algorithm for solving this problem. A three-class classifier was constructed by combining two two-class classifiers, one specified
for idle-state detection and the other for these two MI tasks. Common spatial subspace decomposition (CSSD) was used to extract
the features of event-related desynchronization (ERD) in two motor imagery tasks. Then Fisher discriminant analysis (FDA) was
employed in the design of two two-class classifiers for completion of detecting each task, respectively. The algorithm successfully
provided a way to solve the problem of “idle-state detection without training samples.” The algorithm was applied to the dataset
IVc from BCI competition III. A final result with mean square error of 0.30 was obtained on the testing set. This is the winning
algorithm in BCI competition III. In addition, the algorithm was also validated by applying to the EEG data of an MI experiment
including “idle” task.

Copyright © 2007 Dan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

People who suffer from severe motor disabilities but are
still cognitively intact, need an alternative method to inter-
act with the environment. Over the past decades, the de-
velopment of the technology called brain-computer inter-
face (BCI) has provided a novel and promising communi-
cation channel for these patients. A BCI is a communication
system in which messages or commands that an individual
wishes to convey to the external world do not pass through
the brain’s normal motor output pathways [1]. A BCI system
can “read out” the intention of the patients and translates it
into physical commands which control devices that serve the
patients.

There are various BCI systems using different methods
to extract the subjects’ intentions from their EEG signals.
One of the practical BCI systems is based on motor im-
agery (MI) [2, 3]. The advantage of this type of BCI sys-
tems is that no external stimulation is needed. Current de-
velopment of MI-based BCI is focused on how to discrim-
inate different MI tasks and many algorithms could be ap-

plied to get satisfied results. However, during practical use
of BCI system, users may stay free of MI tasks (i.e., “idle
state”) at all. In order to make the system robust, the BCI
system should be able to effectively detect the “idle state”
and act properly. Moreover, because idle state may refer to
various brain activities except the specific MI tasks, so it
is not possible to acquire representative training samples
for classifier designing. Therefore, to develop a new algo-
rithm which cannot only discriminate different MI tasks
but also effectively detect the idle state without any train-
ing samples is critical for improving present MI-based BCI
system.

In this paper, an algorithm which integrates two two-
class classifiers with different parameters into one three-class
classifier is proposed to overcome the difficulties mentioned
above. The algorithm was applied to dataset IVc of BCI com-
petition III. A final result with mean square error of 0.30 was
obtained. In addition, an EEG experiment was carried out
with similar setting as the one for the dataset of BCI compe-
tition III; the results showed the effectiveness of the proposed
algorithm.
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2. METHODOLOGY

2.1. Data description

2.1.1. Dataset IVc of BCI competition III

BCI competitions are organized in order to foster the devel-
opment of improved BCI technology by providing an unbi-
ased validation of a variety of data-analysis techniques. The
datasets of brain signals recorded during BCI experiments
were from leading laboratories in BCI technology. Each data
set is split into two parts: one part of labeled data (“train-
ing set”) and another part of unlabeled data (“test set”). Re-
searchers worldwide could tune their methods to the training
data and submit the output of their translation algorithms
for the test data.

Dataset IVc of BCI competition III was recorded from
one healthy subject. The training dataset consisted of 3 ses-
sions (70 trials for each session). Visual cues (letter presenta-
tion) indicated for 3.5 seconds which of the following 2 mo-
tor imageries the subject should perform: left hand, right foot.
The presentations of target cues were intermitted by periods
of random length, 1.75 to 2.25 seconds, in which the sub-
ject could relax. The testing data (6 sessions, 70 trials each)
was recorded more than 3 hours after the training data. The
experimental setup was similar to the training sessions, but
the motor imagery had to be performed for 1 second only,
compared to 3.5 seconds in the training sessions. The inter-
mitting periods ranged from 1.75 to 2.25 seconds as before.
The other difference was that a new task relax was added (also
with visual cues as indications). The subject was required not
to perform any MI tasks during relax task. 118-channel EEG
signals were recorded during the experiment with sampling
rate of 1000 Hz (see [4] for more details).

Competitors of this data set were required to classify a set
of single-trial electroencephalograph (EEG) data recorded
from three-class tasks in the testing set. The output of the
classification must be a real number between −1 and 1 (ide-
ally, −1 for left hand, 0 for relax, and 1 for right foot). The
challenge was that the training set consists of only two-class
data (left hand and right foot). One problem existed for the
classification is that the testing set contains a new class relax
with no training data. And there are two other problems: (1)
the MI tasks in the testing set were performed for only 1 sec-
ond instead of 3.5 seconds as in the training set; (2) the test-
ing data was recorded more than 3 hours after the training
data was acquired, so the distribution of some EEG features
could be effected by long-term nonstationarities. All of these
are practical problems in current MI-based BCI systems. The
main difficulty is detecting an additional state relax without
training samples, which is the same as “idle state” we men-
tioned in the previous section.

2.1.2. Datasets from our MI experiments

The data set provided by BCI competition III was acquired
from only one subject and the details of the experiment were
not so clear. In order to thoroughly investigate the effective-

ness of our algorithm, an MI experiment was carried out
with a similar paradigm.

Three right-handed volunteers (two females and one
male, 22 to 24 years old) participated in this experiment.
There were three kinds of tasks in the experiment: left hand,
right hand, and relax. Left hand and right hand referred to
two MI tasks; while the subject was required not to per-
form any MI tasks during relax period. The subject was in-
formed about which task to be performed by a visual cue on
a PC screen before each trial. The trials lasted for 4 seconds
with intermitting period of 2 seconds. 32-channel EEG (Ac-
tiveTwo system, BioSemi Instrumentation, Netherland) was
recorded at the scalp over the motor cortex areas with a sam-
pling rate of 256 Hz. For every subject, 50 trials for each task
were collected.

Compared to the data set of BCI competition III, “relax
with no training data” was emphasized while the other is-
sues were ignored: the tasks were performed for 4 seconds
instead of 3.5 seconds/1 second and all trials were performed
continuously. The purpose of increasing trial time was to im-
prove the performance because it was difficult to get satisfied
results for normal subjects in such a short time as 1 second.
And long-term nonstationarities were not concerned here for
the complexities and characteristics of MI tasks.

2.2. Feature selection

Motor imagery can be seen as mental rehearsal of a motor act
without any obvious motor output [2]. It is broadly accepted
that mental imagination of movements involves similar EEG
patterns that are also found in real movements. The main
difference between real movements and MI is that execu-
tion would be blocked at some corticospinal level in the lat-
ter case [3]. Recent studies show that when performing mo-
tor imagination, mu (8–12 Hz) and beta (18–26 Hz) rhythms
are found to reveal event-related synchronization and desyn-
chronization (ERS/ERD) over sensorimotor cortex just like
when one actually does the motor tasks [5].

Event-related desynchronization (ERD) represents
power decrease in given frequency bands of the ongoing
EEG activity [5]. Preparation of movement is typically
accompanied by ERD in mu and beta rhythms over so-
matosensory or motor cortex. Figure 1 displays the averaged
ERD spatial mappings of the two MI tasks in the training set.
We use the ratio of power decrease in the imagery state and
the power in the rest state as the quantification of ERD [5].
The brain regions containing significant ERD over motor
cortex are marked as A1 and A2 in Figure 1. The ERD of
right-foot imagery exists in the central area (A2) while the
ERD of left hand is localized in both hemispheres (A1) with
contralateral dominance. This difference is the basis for
classifying left-hand and right-foot imageries.

The mental state of relax differs substantially from those
of left hand and right foot since no brain activity patterns sim-
ilar with MI is evoked. It is reasonable to assume that during
a relax task there is no obvious ERD over somatosensory or
motor cortex. So relax status can be distinguished from left
hand and right foot. Left hand can be recognized by existence
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Figure 1: Averaged ERD spatial mappings of (a) left hand and (b) right foot in the training set.

of ERD in A1 area and right-foot is corresponding to the
brain state with ERD in A2 area, while relax is just the brain
state with no ERD in either A1 or A2 areas.

2.3. Feature extraction

The signals specific to the tasks are usually accompa-
nied by interferences (such as noise, spontaneous EEG and
other nontask activities). The common spatial subspace
decomposition (CSSD) proposed by Wang et al. [6] was
employed to extract the task-related source activities and
to eliminate the background activities. The purpose of this
method is to construct spatial filters which can distinguish
two classes of signals based on simultaneous diagonalization
of their covariance matrices [7].

In our method, we selected 37 EEG channels according
to ERD distribution (see Figure 1), so only brain regions A1
and A2 are taken into consideration. Then we used the se-
lected single-trial EEG data as the input matrix X with 37
(channels) by 280 (samples, 0.71–3.50 seconds) to construct
spatial filters SFH and SFF for left hand and right foot, respec-
tively. The spatial covariance of the EEG data can be obtained
from

C = X · XT. (1)

The spatial covariance of each class is calculated as CH

andCF by averaging over the trials in the corresponding class.
The sum covariance matrix CSum is factorized into the prod-
uct of eigenvectors and eigenvalues

CSum = CF + CH = U0 · Σ ·UT
0 . (2)

The eigenvalues are assumed to be sorted in descending
order. The whitening transformation matrix is then formed
as

P = Σ−1/2 ·UT
0 . (3)

If CH and CF are transformed as

SCF = P · CF · PT , SCH = P · CH · PT , (4)

then CH and CF share common eigenvectors and the sum
of the corresponding eigenvalues for the two matrices will
always be 1, that is,

SCF=U · ΣF ·UT , SCH=U · ΣH ·UT , ΣF + ΣH=I.
(5)

As the sum of two corresponding eigenvalues is always
one, the eigenvector with largest eigenvalue for SF has the
smallest eigenvalue for SH . This transformation is an effective
way for separating variances in the two matrices CH and CF .
Taking out the first mF eigenvectors from Uas UF and the last
mH eigenvectors from U as UH , the spatial filters for class F
and class H are

SFF =
(
UF
)T · P, SFH =

(
UH
)T · P. (6)

The eigenvectors left in U correspond to the common
spatial subspace of the two classes. The task-related compo-
nents SH and SF are estimated by

SF = SFF · X , SH = SFH · X. (7)

X is a recorded data matrix of multichannel single-
trial EEG. The columns of SF−1

F /SF−1
H are spatial patterns

corresponding to right-foot/left-hand components as time-
invariant EEG source distribution vectors [8].

The features used for classification are obtained by de-
composing the EEG using SFF and SFH . The feature vectors
of one single trial are defined as

fH ,i = log
(
var
(
SH ,i

))
, i = 1, . . . ,mH ,

fF,i = log
(
var
(
SF,i
))

, i = 1, . . . ,mF.
(8)
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SH ,i/SF,i represents the ith row vector of SH/SF . The log-
transformation serves to approximate normal distribution of
the data. Our experiences on the training set indicated that
setting mF = 3 and mH = 3 was enough to get a fairly good
performance.

During left-hand imagery, ERD occurs in region A1, lead-
ing to a relatively decreased EEG variance in this area. There-
fore, right foot has a higher EEG variance than left hand in
region A1. This behavior is reflected by large coefficients
for channels covering region A1 in the spatial pattern cor-
responding to right-foot imagery. Figure 2 displays the most
important spatial pattern of the two tasks. As shown in
Figure 2(b), the most important spatial pattern of right foot
accords with the ERD distribution of left hand. The spatial fil-
ter SFF serves as extracting the component with a source dis-
tribution like the corresponding spatial pattern. Therefore,
the component extracted by SFF can be considered as the
source activity concerning left-hand ERD, which has a sig-
nificant distribution over region A1. A weak source activity
leads to a small variance of relative scalp EEG, which is cor-
responding to significant ERD. Due to no ERD in region A1,
the component of right foot has a larger variance than that of
left hand when filtered by SFF , that is,

var
(
SFF · XF

)
> var

(
SFF · XH

)
, (9)

where XH and XF are single-trial EEG corresponding to left
hand and right foot, respectively. We can also get another in-
equality as follows:

var
(
SFH · XH

)
> var

(
SFH · XF

)
. (10)

Note that according to the above definitions, left-hand MI
causes a relatively increased EEG variance over area A2 (cor-
responding to right-foot task) because event-related desyn-
chronization of EEG takes place on area A1. This behavior is
reflected in large coefficients for electrodes on area A2 in the
spatial filter of left-hand (SFH) [8], and vice versa for right
foot.

2.4. Classification method

The paper of Garrett et al. [9] showed that if features were
properly extracted, the performance of linear classifiers can
behave as well as that of complex nonlinear classifiers, so
we simply used Fisher discriminant analysis (FDA) in our
method.

After using CSSD to extract ERD feature out of the train-
ing set, FDA was applied for classification and an accuracy of
(99.1±1.2)% was obtained on the training set using a 10×10-
fold cross-validation. The result of FDA proves that there is
no need to use other complicated methods.

2.5. Classification on the testing set

Denote XR as a single-trial EEG of relax, as no ERD occurs
in both regions A1 and A2 during relax tasks, the following

inequalities come into existence:

var
(
SFF · XR

)
> var

(
SFF · XH

)
, (11)

var
(
SFH · XR

)
> var

(
SFH · XF

)
. (12)

Both components of relax and right foot are larger than
that of left hand when filtered by SFF , so left-hand motor im-
ageries can be discriminated from right-foot/relax. Similarly,
right foot can be discriminated from left-hand/relax when fil-
tered by SFH .

The required classification outputs of left hand and right
foot are defined as −1 and +1. If we do a two-class classifi-
cation based on the feature vectors fH extracted by SFH and
set the classification outputs of left hand and right foot to −1
and +1 as required, then samples of relax are also classified
to −1 as it is the same as left hand according to (9) and (11).
Samples of relax are classified to +1 according to (10) and
(12). Table 1 shows the different outputs of the three tasks
in ideal conditions. Column “ fF” and “ fH” shows the two
two-class classification results. Column “( fF + fH)/2” repre-
sents the mean value of two outputs corresponding to fF and
fH in the same row. Ideally, the two classifiers correspond-
ing to “ fF” and “ fH” will result in opposite outputs for relax
(+1/−1) and the final classification result of relax can be set
to 0 easily by “( fF+ fH)/2.” Therefore, it is possible to separate
the three classes.

Our strategy goes as following: at first, a two-class clas-
sifier was used to classify samples of relax to output 0 (see
Table 1). Then the second two-class classifier was defined to
classify the remaining samples into either right foot or left
hand. The whole procedure of the classification algorithm is
shown in Figure 3.

Step 1 (Discriminating the relax trials). The classification
process of this step is showed in Figure 4. A subject-specific
bandpass filter of 12–14 Hz (with most significant ERD fea-
ture for the subject of dataset IVc) and a time window of
0.71–3.50 seconds (eliminating the first 0.7 seconds as reac-
tion time) were set for CSSD algorithm to calculate two spa-
tial filters SFF1 and SFH1 from the training data. Because the
duration of each trial in the testing set is much shorter than
that of the training set, CSSD filter cannot get enough in-
formation with such a short time window to keep a high ac-
curacy. Here we bring forward another assumption that the
spatial pattern in the intermitted time (1.75–2.25 seconds)
after a relax trial is similar to that of the relax trial (however,
the intermitted time after an MI task cannot be simply con-
sidered as relax because the subject might keep on doing MI
for a certain period even after he saw the cue for stop). With
this assumption, a time window of 2.75 seconds (1 second
for the task and at least 1.75 seconds for intermitted time)
was selected as the input of the CSSD filters for the testing
set. The effective duration of relax can thus be prolonged,
making the classification results more reliable than those ob-
tained by only using a short-time window.

Bagging strategy [10] was used here for reducing variance
of classification accuracy. 160 trials were randomly selected
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Figure 2: Most important spatial pattern of (a) left hand and (b) right foot.

Table 1: Ideal classification results of the three tasks.

Feature task fF fH ( fF + fH)/2

Left hand −1 (ERD in A1) −1 (no ERD in A2) −1 (−1/ − 1)

Right foot +1 (no ERD in A1) +1 (ERD in A2) +1 (+1/ + 1)

Relax +1 (no ERD in A1) −1 (no ERD in A2) 0 (+1/ − 1)

“( fF + fH )/2” represents the mean value of two outputs corresponding to fF and fH in the same row.

118-channel
EEG data

Step 1

Step 2

Classify

Classify Left hand

Right foot

Relax

Figure 3: Flow chart of our algorithm.

37-channel
EEG data

0 (relax)

y1

(left-hand/
right-foot)

Preprocessing
12–14 Hz

0.71–2.75 s

k1 < y1 < k2 y1 = (yF1 + yH1)/2

SFH1

SFF1

fH1

fF1

FDA

FDA

yH1

yF1

Figure 4: Classification process of Step 1.

out of all 210 trials in the training set to derive a classifier
which was applied on each trial in the testing set. This pro-
cess was repeated for 100 times, of which the classification
outputs were averaged to get the final result. As shown in

Figure 4 there are two FDA classifiers following two spatial
filters SFF1 and SFH1. The outputs of these two classifiers (yF1

and yH1) were normalized to real number between −1 and 1
and were averaged to get a higher classification accuracy [11].
In Step 1 the averaging also has an effect of setting relax to 0.

After classification, two thresholds (upper boundary
above 0 and lower boundary below 0) were determined man-
ually, according to the distribution of training samples. The
samples with classification outputs near 0 were labeled as re-
lax. The remaining samples are left unlabeled to be fed as the
input of Step 2. The process is shown as following where k1

and k2 denote the two thresholds:

z =
⎧
⎨

⎩
0, if k1 < y1 < k2,

y1, if y1 < k1 or y1 > k2.
(13)

In our algorithm, we propose these two thresholds could
be chosen to make P1 (in percentage) of the trials of MI tasks
with nonzero classification output. (P1 was set to 70% for the
results submitted to dataset IVc based on our former experi-
ences)

Step 2 (Discriminating the remaining trials). Step 1 is good
for picking out relax but not optimal for classifying left hand
and right foot because the intermitted time has been taken
into consideration. During the intermitted time after left
hand and right foot, the subject is told to “relax.” So a short
time window (0.61–1.20 seconds) was defined as for this step.
Besides, our investigation showed that a widepass band for
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temporal filtering (11–27 Hz) was better for classifying left
hand and right foot. This wider frequency band including
both mu and beta band is also good for generalization. The
same time window as in Step 1 (0.71–3.50 seconds) was ap-
plied to calculate SFF2 and SFH2 with the training set.

The classification process of this step is shown in
Figure 5. After classification we also set two thresholds man-
ually to label samples with outputs congregating near−1 and
1 to right hand and left foot, respectively, and the others to a
real number between −1 and 1. The normalization process
is as follows, where y is the original output and z is the nor-
malized output, k3 and k4 denote the two thresholds:

z =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if y2 < k3,

− y2

k3
, if k3 ≤ y2 ≤ 0,

y2

k4
, if 0 ≤ y2 ≤ k4,

1, if y2 > k4.

(14)

In our algorithm, we propose these two thresholds could
be selected to make P2 (in percentage) of trials of MI tasks
with classification outputs of ±1. (P2 was set to 70% for the
results submitted to Data Set IVc).

For the data from our MI experiments, a time window of
0.5–4 seconds was applied to calculate spatial filters for both
Steps 1 and 2. The frequency band used in Step 1 was subject-
specific and 11–27 Hz were chosen in Step 2. Half samples
of MI tasks (25 trials for left hand, 25 trials for right hand)
were employed in the training set while the rest were used as
the testing set. By randomly selecting trials for training, the
classification process was repeated for 50 times to get aver-
age results. Features were extracted from both task and inter-
mitting periods (6 seconds) in Step 1 while only task periods
were considered in Step 2. Furthermore, we investigated how
to choose threshold k1−k4 to get a better performance (refer
to Section 3 for details).

3. RESULTS

The result of dataset IVc was evaluated by mean square er-
ror criterion. Defining the true labels for 420 trials in the
testing set as y1, y2 · · · y420, and the classification outputs as
z1, z2 · · · z420, the mean square error (MSE) was calculated as

MSE = 1
420

420∑

i=1

(
yi − zi

)2
. (15)

As the winning algorithm in BCI competition III, a mean
square error of 0.30 was achieved by our algorithm, which
was much lower than the result of the second best com-
petitor, who achieved 0.59 [12]. Figure 6 shows the distri-
bution of the classification results of the three classes. Ap-
proximately 60% samples of true left hand and right foot are
correctly classified to −1 and 1, and about 40% of relax sam-
ples are classified to 0. The particular strength of this method
was that it managed to identify nearly half of the relax tri-
als and none of the other submissions to this dataset han-

dled the idle state well even if they discriminate the two MI
tasks as well as our algorithm [12]. This could be the evi-
dence that traditional algorithms are not so effective for clas-
sifying idle state. The results proved the effectiveness of this
algorithm.

MSE is a specific performance measure used in BCI com-
petition III. Two other measures with more direct meaning
are defined as below.

(a) Probability of detection (POD)

For a certain task A, considering all trials of task A, let ND

denote the number of trials correctly detected as task A, NM

the number of trials missed, then POD is defined as

POD = ND

ND + NM
. (16)

POD represents the true positive rate of certain brain
states. Two values were calculated based on POD: POD of
MI tasks and POD of idle states (relax task). For POD of MI
tasks, we only care if MI tasks could be discriminated from
idle states. Whether MI tasks were classified correctly is an-
other issue. For a practical BCI system, the POD of idle states
is critical because false alarms during idle states may lead to
unexpected action of the BCI system when the subjects are
resting or idling.

(b) Classification accuracy (CA)

For a certain MI task A, considering all trials of task A, let NC

denote the number of trials correctly classified as task A, NW

the number of trials classified as other MI tasks, then CA is
defined as

CA = NC

NC + NW
. (17)

According to this definition, the number of trials classi-
fied as idle states is not included in (17). It is easy to un-
derstand: failure of detection will not lead to execution of
improper commands; only the average time for carrying out
one command will be lengthened. From this point of view,
the POD of MI tasks together with CA decides the speed of
the synchronized BCI system. The mean CA value of both MI
tasks was calculated as the average CA.

Referring to our proposed criterion for selecting thresh-
olds, k1 − k4 were decided by P1 and P2. Varying these two
probabilities leads to changes of the performance measures
defined above. Ideally, a BCI system with good performance
is associated with CA, POD of MI tasks and idle states close
to 100%. Therefore, P1 and P2 should be chosen carefully to
make the real BCI system with a good performance.

To simplify this problem, we make both P1 and P2 equal
to a certain value P. Table 2 listed the results calculated by in-
creasing P from 0.6 to 1 in step of .05 for subject FL. The val-
ues of CA and PODIdle are negative correlated with P, while
PODMI is positive correlated with P. The basic principle for
choosing P value is to reduce false alarm during idle states
(i.e., increase PODIdle) while keeping PODMI and CA at an
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Figure 5: Classification process of Step 2.
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Figure 6: Distribution of classification results with respect to the three true labels.

acceptable level. The optimal P value for subject FL is man-
ually selected as 70% with high CA and PODIdle as well as a
relatively high PODMI (see Table 2). In the same way, the op-
timal P values for the other two subjects are chosen as 80%
(ZD) and 90% (ZYJ); the corresponding results are shown in
Table 3. The data of all three subjects achieved nearly 100%
CA for discriminating the two MI tasks, with average PODMI

about 70% and average PODIdle above 90%.

4. CONCLUSIONS AND DISCUSSION

The most important characteristic of our algorithm was
combining two two-class classifiers to construct a three-class
classifier. We broke down the problem into two steps and
solved them consecutively with parameters separately opti-
mized in each step for its own purpose. The analysis of the
final result validated this strategy.

The basic assumption was that during relax task there is
no obvious ERD over somatosensory or motor cortex. This
assumption is shown to be reasonable according to the final
results. Figure 7 displays the averaged spatial mapping of re-
lax (calculated in a same way as in Figure 1) in the testing set.
There is no obvious ERD in region A1 and A2. Figure 8 shows
the classification results of the samples in the testing set by
these two classifiers and the true labels are given by differ-
ent legends. Most samples of relax are located in the second

A1 + A2

Relax +

−
Figure 7: Averaged spatial mapping of relax (calculated in a same
way as in Figure 1) in the testing set.

quadrant, while right-foot and left-hand samples are in the
first and third quadrants. This distribution is in accordance
with the analysis in Table 1.

In Section 2.1 we listed three problems in dataset IVc, our
algorithm addressed the problem of no training data for re-
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Table 2: Performance measures of subject FL corresponding to different P values.

P(P1&P2) PODMI PODIdle CA

100% 100.0± 0.0% 0.0± 0.0% 89.0± 2.3%

95% 96.1± 1.8% 4.2± 1.2% 94.9± 1.8%

90% 90.0± 1.6% 61.2± 2.1% 96.8± 1.1%

85% 84.2± 2.3% 71.0± 3.2% 97.2± 2.5%

80% 74.1± 1.9% 81.4± 1.8% 96.6± 2.1%

75% 65.3± 2.2% 91.0± 1.6% 97.6± 1.4%

70% 62.7± 3.2% 95.5± 0.9% 98.9± 0.8%

65% 51.8± 2.0% 98.1± 2.2% 98.7± 1.0%

60% 45.1± 1.6% 99.6± 0.9% 99.3± 1.2%

Table 3: Performance measures of three subjects with the optimal P values.

Subject Optimal P PODMI PODIdle CA

ZYJ 90% 78.2± 1.7% 90.2± 1.3% 98.3± 1.2%

FL 70% 62.7± 3.2% 95.5± 0.9% 98.9± 0.8%

ZD 80% 61.2± 2.2% 96.1± 1.1% 99.4± 0.4%
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Figure 8: Distribution of classification results in Step 1.

lax. The other two problems may lead to nonsignificant in-
terference with the application of CSSD algorithm, which is
essentially determined by the spatial patterns of different MI
tasks.

The problems of shortened trial time and long-term non-
stationarities seem to be not so critical here because the
two MI tasks still can be discriminated well (see Figure 6).
One possible reason is because this data set is from a very
good subject (classification accuracy on training set is around
99%). For subjects with ordinary performance, the results
might be worse. However, most subjects could achieve bet-
ter performances after a certain period of training.

Another issue worth mentioning is the difference be-
tween relax and idle states. Relax might be slightly different
from idle states, which are always referred to a quite long
period with no MI going on rather than 1-second trials in
these testing sessions. The brain states during relax trials in

the testing sessions could be better described as “noncontrol”
or “non-MI” states. In our algorithm, relax trials are only
considered as brain states quite different from MI trials and
no information were retrieved from these trials for designing
the algorithm. From this point of view, we consider them as
equal terms in this paper.

The traditional ways of idle-state detection mainly focus
on developing powerful and robust algorithm mathemati-
cally. Our strategy aims at building a practical BCI system. In
our opinion, how to integrate these methods in an effective
way is also very important. Because the nature of idle states
is quite different from those MI states, it is worth to set up an
additional step with optimal parameters for separating these
relax trials from the rest trials.

The proposed algorithm achieved satisfied results on our
MI datasets. It shows the effectiveness of our algorithm for
practical BCI systems. This result is also much better than
dataset IVc of BCI competition III. The main reason might
be due to the lengthened trial time, which is important for
the subjects’ performance.

The probabilities (P1 and P2), which decide the thresh-
olds k1− k4, are crucial to the performance of our algorithm.
For dataset IVc, we simply select 70% for both P1 and P2

based on our former experiences. These P values could be
carefully chosen to make the performance better based on
the three indexes (PODMI, PODIdle, CA) defined above. De-
creasing P value will lead to higher PODIdle but lower PODMI,
which is the key factor for the speed of the synchronized
BCI system. Also higher CA will be achieved because more
ambiguous MI trials are labeled relax. Our current strategy
is to insure a high PODIdle (i.e., above 90%) first, and then
make PODMI and CA as high as possible. We have not estab-
lished an automatic way to make a balance between PODMI

and PODIdle yet. These results might be further improved by
selecting optimal thresholds k1 − k4 based on advanced sta-
tistical theories.
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A BCI system that can distinguish patterns not included
in training data is very attractive. Solving the problem of
dataset IVc is a good step towards this target. The proposed
algorithm is especially useful to reduce the false alarms in
current BCI system based on MI when the subjects are not
performing MI tasks. Although we perform offline anal-
ysis here, this algorithm could be easily moved to online
system.
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