
 
 

 

  

Abstract—The amplitude of steady-state evoked potentials 
(SSEP) can be modulated by switching spatial attention within 
one modality. In this article, we show that switching attention 
between different sensory modalities also modulates SSEP 
amplitude. This could be used to combine classifications in each 
modality into a multi-modal brain-computer interface (BCI) 
system. We present the result of combining visual and tactile 
stimulation. Our investigation also revealed an attention-related 
power change of the mu-rhythm. Taking this as an additional 
feature into account results in a three-class BCI system with the 
same accuracy like an SSSEP-based system with only two 
classes. 

I. INTRODUCTION 
brain-computer interface (BCI) is a system providing 

a direct communication channel between the human 
brain and a computer using suitable brain signals [1, 2]. The 
main goal of BCI research is to develop prosthetic devices 
that allow physically disabled or paralyzed people to operate 
a computer and control devices, thereby giving them the 
ability to perform simple tasks autonomously. An important 
type of BCI system is based on SSEP. In a typical steady-state 
visual evoked potential (SSVEP) based BCI system, the 
subject looks at targets flashing at different frequencies on a 
screen [3]. The SSVEP, measured at occipital electrodes, 
follows these frequencies. This can be used to select an action. 
The amplitude of steady-state somatosensory evoked 
potential (SSSEP) can also be modulated. If the subject 
focuses attention to stimulation at the left or right hand, the 
amplitude of SSSEP at the contralateral hemisphere increases 
[4]. A recently proposed BCI system based on modulation of 
SSSEPs reached 70-80% accuracy classifying left and right 
spatial attention after 5 days of training with online feedback 
[5]. 

The amplitude of evoked potentials is not only modulated 
by switching attention within one modality, but also by 
switching it between modalities. Such effects have been 
shown for vision and touch, for example [6, 7]: attending to 
one modality can modulate the modality-specific ERP 
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component compared to unattended conditions. 
Here we investigate if switching attention between 

modalities can also modulate SSEPs and whether this 
phenomenon can be applied in a BCI system. First we analyze 
the modulation of SSSEPs when switching attention between 
a tactile and a visual task. Then we compare the strength of 
the effect to the modulation when switching spatial attention 
within the tactile modality. Finally, we perform an offline 
analysis to determine the classification accuracy of the 
multi-modal BCI system. 

II. METHODS 

A. Subjects 
Eight subjects (three female and five male, graduate 

students from Hamburg University and Tsinghua University), 
aged from 20 to 30 years, participated in this study. Five of 
them were naïve to this experiment. All of them showed 
normal or corrected to normal eyesight and touch sensation. 

B. Stimulation 
1) Tactile stimulation: Tactile stimuli were applied by two 

Braille elements attached to the distal segments of both index 
fingers. The 8 pins (1 mm in diameter) of each element were 
laid out in a rectangular area (3mm×8mm) and driven by 
Piezo-elements. All pins of each element were driven by the 
same signal. The elements were controlled by a 
programmable stimulator (QuaeroSys, Germany). The 
amplitude of the pins moving up and down could be varied 
between 0 and 1.5mm. Within one trial, subjects were 
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Fig. 1.  The experimental setup. TL, TR and V indicate tactile-left, 
tactile-right and visual stimulus respectively. During the experiment 
these stimuli are presented simultaneously. 
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stimulated with the maximum amplitude. The target event 
was a short (100ms) decrease in stimulation amplitude. In 
order to make the subjects really focus attention on the tactile 
stimulus, the amplitude change was minimized. The 
discrimination threshold was determined in a test before the 
experiment for each subject individually to make the reported 
accuracy of targets about 80%. Stimulation to the left and 
right hand was frequency tagged. The optimal frequencies 
were determined in a test before the experiment to yield 
maximal SSSEP amplitude. They ranged between 20 and 
40Hz. The frequency resolution of the stimulator was 1Hz. To 
mask the noise emanating from the stimulators, the subjects 
wore earphones playing white noise. 

2) Visual stimulation: Visual stimuli consisted of 5 capital 
letters (A through E) displayed on an LCD monitor (Dell, 
USA) with 60Hz refresh rate. They were presented centrally 
at 2.4° visual angle. Stimulation sequences consisted of 1 to 7 
presentations of each letter in random order (total 25 letters in 
one sequence). Each letter was flashed for 116ms with the 
same time of blank screen between them, resulting in a 4.3Hz 
steady-state visual stimulation. 

C. Experimental paradigm 
 The experimental setup is shown in Fig. 1. During the 
experiment, the subjects had to focus attention to the visual 
stimulus (V) or the tactile stimuli either at the right (TR) or at 
the left hand (TL). The visual task was to count the number of 
occurrences of a certain letter and the tactile tasks were to 
detect if there was an amplitude decrease or not. Subjects 
reported the results orally and their response was logged by 
the experimenter. Before each trial a cue was displayed on the 
screen instructing the subject which stimulus to attend to. 
After the cue the visual and tactile stimuli were presented 
simultaneously for 5s. Each session consisted of 60 trials (20 
for each task) in random order. Each subject participated in 5 
sessions, resulting in a total of 100 trials per task per subject. 
Presentation of the stimuli was programmed using the 
software package Presentation (Neurobehavioral Systems, 
USA). 

D. EEG and EMG recording 
A 32-channel EEG (ActiveTwo system, BioSemi 

Instrumentation, Netherland) was recorded at the scalp with a 
sampling rate of 1024Hz. The locations of the 32 electrodes 
were selected according to the 10-20 system. In addition, two 
electrodes were placed on each hand for bipolar recording of 
the EMG signals of finger movements. 

E. Data analysis 
The classification process is shown in Fig. 2. First a CAR 

(Common Average Reference) spatial filter was applied to 
enhance the signal-to-noise ratio of the EEG signals. In this 
method, the signals of all electrodes are re-referenced to the 
mean value of all channels. This approximates a 
reference-free EEG recording. Because it emphasizes the 
signal components that are present in many electrodes, CAR 
reduces singular components and functions as a high-pass 

spatial filter [8]. 
After spatial filtering, all trials were transformed to the 

frequency domain and averaged within each task. The 
amplitudes at the frequencies of the visual and tactile 
stimulations constitute three feature values for classification. 
Two other features used are the averaged power values of  the 
mu-rhythm (8-14Hz) at peri-central electrodes C3 and C4. 

In order to find the EEG channels with the strongest task 
modulated response, we computed the squared Pearson 

product-moment correlation coefficient (r2) between the 
feature values for each trial and the task. Coefficients close to 
1 indicate a linear relationship between the feature and the 
task, whereas for values close 0 there is no such correlation. 

 To investigate the possibility of building a BCI system 
based on multi-modal attention, we performed an offline 
classification using the support vector machine (SVM, [14]) 
algorithm and the features from the electrodes with the 
highest r2 values. The SVM classifier was trained using 
10×10-fold cross-validation. 

All analyses were carried out using Matlab (The 
Mathworks, USA). 

III. RESULTS 
The spatial mappings of r2-values in the three conditions 

are shown in Fig. 3. When switching attention between the 
two tactile tasks, the highest r2 values based on SSSEP are 
observed over fronto-central electrode locations contralateral 
to the attended finger (Fig. 3a). This is consistent with 
previous findings on attention modulated SSSEPs [4]. In Fig. 
3b the SSSEP is shown when attention switches between the 
visual and the tactile task. The change in amplitude is 
statistically significant in 5 out of 8 subjects (t-test and 

=0.05). Fig. 3c shows that the SSVEP can also be modulated 
by switching attention between modalities. The change in 
amplitude is statistically significant in all subjects (t-test and 

=0.05). 
An interesting observation is the attention-related power 

change of mu-rhythm over peri-central cortex (Fig. 4, the 
change in amplitude is statistically significant in all subjects, 
t-test and =0.05). The resulting correlation coefficients 
(r-value) were Fisher z transformed before averaging over 
subjects, then retransformed, squared (r2 value) and plotted on 

Fig. 2.  Flow chart of the classification process. fL and fR are subject- 
specific frequencies (20-40Hz) for tactile stimuli. 
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Fig. 4b. Depending on the baseline, this change can be seen as 
either a decrease during task TR/TL or an increase during task 
V. Since the mu-rhythm is associated with motor planning 
and execution, and attention typically increases amplitude of 
evoked potentials [4], this change was not expected. The 
correlation between the task (TR/TL vs. V) and the EMG at 
stimulation frequencies of tactile stimulus is very low (Table 
1), verifying that the classification was not affected by finger 
movements relative to the stimulators. 

The classification capabilities of the features were tested in 
three different configurations. Using only the SSSEP feature 
yields 63.0±8.8% accuracy over all subjects for classifying 
the left and right tactile task. This is consistent with previous 
results [5]. Switching attention between the visual and tactile 
task and using all features, i.e. SSSEP, SSVEP and mu-band 
power, increases the two-class (TR/TL vs. V) classification 
accuracy to 83.2±7.2%. Since there are two conditions in the 
tactile modality and one condition in the visual modality, we 
can distinguish 3 classes. In this configuration 61.7±9.7% 
accuracy can be obtained. For single subject results, refer to 
Table 2. 

IV. DISCUSSION AND CONCLUSION 
Switching attention between visual and tactile stimulation 

and using the ensuing modulation of SSSEP and SSVEP 
results in a BCI system with a performance that compares 
well with other SSSEP-based systems [5]. By combining two 
input modalities, however, a larger number of classes can be 
distinguished. Compared to BCI systems based on motor 
imagery [15, 16], our system obtains a similar classification 
accuracy for between modality classification but without any 
training of the subject. This clearly is an advantage for the 
practical application. Training the subjects can be expected to 
further improve the results. 

One reason for the unexpected decrease of mu-band power 
when attending to the tactile task might be event-related 
desynchronization (ERD) in the motor cortex due to the 
occurrence of finger movements. The EMG recording and the 
missing correlation with the task exclude this possibility. 
ERD in mu-band has also been observed under tactile 
stimulation [13] and during motor imagery [10]. Our 

Fig. 4.  (a) Averaged power change during task TR, TL and V, left/right for 
channel C3/C4, using averaged power of all interval time as baseline, 
subject CL (t=0 indicates onset of trials); (b) Spatial mapping of r2 values 
based on mu-rhythm energy (left/right for TL/TR vs. V), averaged over all 
subjects. 

TABLE II 
CLASSIFICATION ACCURACY IN DIFFERENT CONFIGURATIONS 
Subject TR vs. TL TR/TL vs. V TR vs. TL vs. V

CL 55.8±4.1% 90.7±1.8% 63.9±3.2% 
IN 63.8±4.2% 81.7±4.0% 56.9±3.2% 
NI 63.1±3.5% 89.2±2.3% 61.8±3.7% 
ZH 69.4±2.1% 83.2±4.7% 65.9±0.9% 
WA 78.5±3.7% 90.2±3.1% 80.1±2.4% 
CO 48.8±2.1% 76.2±3.3% 46.1±3.7% 
AL 64.3±1.8% 83.5±2.9% 61.9±3.2% 
TI 60.4±3.3% 70.6±4.6% 57.3±3.2% 

Average 63.0±8.8% 83.2±7.2% 61.7±9.7% 
 

Fig. 3.  Averaged spatial mappings of r2 values of subject WA: (a) task 
TR vs. TL, based on SSSEP features (left figure for EEG components at 
stimulation frequency of the left finger and right figure for EEG 
components of right finger); (b) left: task TL vs. V, based on SSSEP 
feature at stimulation frequency of left finger; right: task TR vs. V, 
based on SSSEP feature at stimulation frequency of right finger; (c) 
left: task TL vs. V, based on SSVEP feature; right: task TR vs. V, based 
on SSVEP feature. 

TABLE I 
CORRELATION OF THE EMG SIGNALS AND THE TASK 
Subject Left hand r2 Right hand r2 

CL 0.0010 0.0003 
IN 0.0003 0.0002 
NI 0.0027 0.0001 
ZH 0.0098 0.0426 
WA 0.0006 0.0018 
CO 0.0076 0.0003 
AL 0.0049 0.0114 
TI 0.0003 0.0001 

Low r2 values indicate less correlation of the EMG signals and the 
task (TR/TL vs. V). All subjects show corresponding p-values >> 0.05.
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hypothesis is that the attention-related ERD observed in our 
experiment and motor imagery ERD could have a common 
underlying mechanism. This will be investigated in a future 
experiment. 

An alternative way of interpreting such effect is to consider 
it as event-related synchronization (ERS) during the visual 
task. ERS may correspond to an idle state of motor or 
somatosensory cortex. Due to limited resources, when 
focusing on the visual task, the attention system may switch 
somatosensory areas into this idle state. Vice vesa, focusing 
on the tactile task could be considered as a reduction of 
attention to visual stimulation. Our results show that this 
modulates the amplitude of SSVEPs. Likewise, it has been 
shown that changing the strength of attention to a visual 
stimulus can modulate the SSVEP amplitude. This 
mechanism has been applied in a practical BCI system [11]. 
We hypothesize that the SSVEP modulation in our 
experiment is caused by similar mechanism. 

In summary, we investigated the modulation effect of 
attention on steady-state brain response. The results show that 
SSSEP can be modulated by switching spatial attention but 
also by switching attention between modalities. We found 
mu-band ERD during attending to tactile stimulation, which 
is an interesting discovery. The accuracy of the offline 
classification confirms that the multi-modal approach is 
suitable for a BCI system. Taking the auditory modality into 
consideration could be the next step. Furthermore, we 
propose the idea of combining spatial attention in every 
modality and the attention between modalities, which could 
result in a new type of BCI systems. 
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