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Abstract-Low-frequency steady-state visual evoked 
potentials (SSVEPs) are used as the input signal in the 
present SSVEP-based brain-computer interface (BCI). This 
prototype system has a high information transfer rate. On 
the other hand, it has some limitations including visual 
fatigue, false positive, and some possibility of causing a 
seizure. These drawbacks can be largely eliminated when 
using high-frequency stimulations. In this paper, we study the 
amplitude versus stimulation frequency response of SSVEPs. 
The signal-to-noise ratio versus frequency curve suggests that 
the high-frequency SSWP (>20Hz) could help to construct a 
practical BCT system. 
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I. INTRODUCTION 

Brain-computer interfaces (BCIs) translate brain signals 
into a control signal without using muscles or peripheral 
nerves. Most BCIs use noninvasive scalp 
electroencephalogram (EEG) signals as inputs. Event- 
related potentials, mu and beta rhythms, event-related 
synchronization and desynchronization + slow cortical 
potentials , and visual evoked potentials are common 
signals used in EEG-based BCIs [ 1][2][3]. 

Visual evoked potentials (VEPs) recorded from scalp 
over visual cortex reflect the visual information processing 
mechanism in the brain. The steady-state visual evoked 
potential (SSVEP), which is characterized as an increase in 
amplitude at the stimulus frequency, occurs when 
stimulation frequency is higher than 6Hz. Current SSVEP- 
based BCIs harness low-frequency SSVEPs to determine 
gaze directions [4][5]. Several frequency-coded buttons 
flash on the monitor. The user looks at a button and the 
system determines the frequency of the photic driving 
response. The button, which matches the detected frequency, 
is the target the user wants to select. This BCI has the 
following advantages: high information transfer rates, wide 
subject applicability, and little training required for users. 

The low-frequency SSVEP has a good signal-to-noise 
ratio (SNR), a wide distribution over the scalp, and it can be 
induced easily, but it also has some unavoidable limitations. 
First, visual fatigue evoked by durative stimuli will reduce 
the amplitude of response and make the user uncomfortable. 
Second, alpha rhythm (8-13Hz) of spontaneous EEG may 
cause false positive. Additionally, flickering stimuli have 
some possibility of causing a seizure in subjects. 
Considering that the high-frequency SSVEP can eliminate 

the above disadvantages, we attempt to employ it as the 
communication medium in BCI research, though the system 
performance may be decreased due to a lower amplitude 
response and a restricted topographical distribution. 

11. METHODOLOGY 

A.  Data acquisition 

13 volunteers with normal vision (5 female and 8 male) 
participated in the experiments. The subjects sat in a 
comfortable chair facing the visual stimuIus device. White 
light-emitting diodes (LEDs) were used as' the blinking 
buttons. The flashing frequency of each LED was 
controlled by a programmable logic device [ 6 ] .  44-channel 
EEGs were recorded with a BioSemi ActiveTwo system at 
positions of the extended international 10/20 system. The 
repetition rates of stimulation covered the bandwidth from 
21 to 43Hz (2Hz each step). For one subject, the stimulation 
frequency band was from 5 to 45Hz, including both IOW and 
high frequency bands for comparison. 60-second-long data 
in each session corresponding to different frequencies were 
acquired for offline analysis. Signals were sampled at 
256Hz. During periods between sessions, subjects couid 
relax in order to eliminate the reaction of visual fatigue. 

B. Ofline analysis 

The feasibility of using the high-frequency SSVEP in 
BCI application is considered through offline data analysis. 
We compare the signal-to-noise ratio of SSVEPs in 
different frequency bands. The detailed procedures are 
described in three steps as follows: 

1) Determine optimal electrode positions according to 
the spatial signal-to-noise ratio mapping of multichannel 
EEGs . 

In order to detect the frequency components in SSVEPs 
accurately and conveniently during online applications, an 
optimal bipolar lead with high signal-to-noise ratio should 
be selected. In practice, channel with the most significant 
amplitude of SSVEP is considered as the signal channel 
which commonly locates over visual cortex. The difficulty 
is to select a reference channel for the bipolar lead. A 
correct choice of reference channel can greatly enhance the 
signal-to-noise ratio. A comprehensive consideration must 
be taken for optimal lead selection [71. 

Signal-to-noise ratio is used as the criterion to evaluate 
the efficiency of lead selection. The amplitude spectrum is 
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calculated by y=(FFT(x)l, where x is the temporal EEG data. 
FFT(x) is the 1024-point fast Fourier transform (FFT) of x, 
and the fi-equency resolution is 256/1024=0.25Hz. Here, 
when the stimulation frequency is f ;  signal-to-noise ratio is 
defined as the ratio of yv> to mean value of the n adjacent 
points: 

n x v ( f )  SNR = a , 2  

1 [ y ( f  i- 0.25 x k) + y ( f  - 0.25 x k ) ]  
k -1 

It can approximately reflect the signal-to-noise ratio of 
the SSVEP. Fig.1 illustrates the SNR mappings with 
different reference channels of one subject when the 
stimulation frequency is 21Hz. An optimal bipolar lead 
including a signal channel and a reference channel can be 
determined with the aid of these mappings. First, we use 
Fig.f(a), i.e. the SNR mapping with Cz as reference, to 
select the signal channel. According to Fig.l(a), Oz, the 
channel with the highest SNR, is selected as the signal 
channel with prominent SSVEP. Next, as shown in Fig.l(b), 
the SNR mapping with reference to the selected signal 
channel Oz is displayed to find the reference channel. The 
channel with the highest SNR is considered as the reference 
channel. The arrow indicates the selected optimal lead. 

2) Plot the amplitude versus frequency response curve 
through amplitude spectra analysis. 

According to human brain electrophysiological research, 
the amplitude of the SSVEP varies in a complex manner 
with the frequency of stimulation. The amplitude response 
has several peaks with three regions, often referred to as 
subsystems [ 81: low-frequency region, medium-frequency 
region, and high-frequency region, The amplitudes of 
subsystems depend on many factors including electrode 
position, luminance, and flicker modulation depth. 
The amplitude versus frequency response curves for the 
three SSVEP subsystems of one subject are shown in Fig.2. 
EEG data of the optimal lead are used to calculate the 
amplitude response through amplitude spectra analysis. 
Filled dots indicate the original results and solid lines 
denote the polynomial fitting results. The three subsystems 
are centered on 15Hz-low frequency, 3 1Hz-medium 
frequency, and 41Bz-high frequency, respectively. The 
lower frequency region has the larger amplitude response. 

3) Compare the signal-to-noise ratios of different 
frequency regions and select the usable high-frequency 
bands for online application. 

The lower amplitude response may decrease the signal- 
to-noise ratio if the amplitude of background noise is 
unchanged. Fortunately, the noise, i.e. spontaneous EEG, 
also decreases in higher frequency bands. So the signal-to- 
noise ratios of the three subsystems are almost on the same 
level (as shown in Fig.3). Offline frequency detection in 
higher frequency region has been done on this subject. The 
frequency corresponding to the maximum of amplitude 
spectra should be the stimulation frequency when the 
detection is accurate. The length of data section for FFT is 
1024 points, and the frequency resolution is 0.25Hz. The 
detection accuracy is about 97% when the stimulation 
frequencies are in the medium-ftequency region (3 1-35Hz). 
In the high-frequency region (39-45Hz), the average 
accuracy remains as 95%. The total usable bandwidth is 
about 1 OHz, leading to about 40 targets at most. 

For the other subjects, we analyze the SSVEPs with the 
stimulation frequencies from 21 to 43Hz. With the proper 
selection of electrode position and stimulation frequency 
bands, the average accuracy of all the 13 subjects is about 
96%. The results of the individual are listed in Table I. 
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Fig2 The three SSVEP subsystems of one subject. 

Fig. 1. SNR mappings with reference IO (a) Cz and (b) Oz respectively. 
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Fig.3. SNR curves corresponding to the three SSVEP subsystems. 

TABLE I 
OFFLIh’E ANALYSIS RESULTS OF ALL SUBJECTS 

Subjects Frequency Bands (Hz) Accuracy (%) 

CSQ 3 1  -37  97 
css 27 * 35 99 
LH 21 * 27 90 
LL 21 - 31 100 
LY 23 - 37 100 
NTS 27 - 43 100 
S Z I  31 -37,41-43 95 
WH 21 - 4 3  . 100 

WMH 31 - 43 100 
ww 31 - 35,39 * 45 96 
YH 21 - 21 76 
YJ 31 - 35,39 -43 100 
YY 21 -23 ,33 -43  95 

Mean 96 

111. CONCLUSION AND DtSCUSSION~ 

Our results suggest that the high-frequency SSVEP has a 
lower background noise as well as a lower amplitude 
response, so it has a signal-to-noise ratio almost the same as 
the low-frequency SSVEP. The offline analysis 
demonstrates that the high-frequency SSVEP could be 
employed as a good medium in SSVEP-based BCIs. With 
great decrease of visual fatigue, possibility of causing a 
seizure, and interference of alpha rhythm, it makes the 
SSVEP-based BCI a more comfortable and stabIe system. 

The standard method for measuring BCI performance is 
information transfer rate. It is the amount of information 
communicated per unit time. The bit rate (B) of each 
selection can be expressed as 

B = log, fv + Plog, P + (I -P) log,[(l -P) / (N  - I)] 

r‘ 

N is the number of targets and P is the accuracy of target 
selections. B multiplied by selecting speed is the transfer 
rate (bits per minute) [ I ] .  Assume that there are 8 visual 
targets, selection is performed every 4s, the expected 
information transfer rate of the online system could exceed 
30bitdm if the detection accuracy is 90%. 

Other effective signal processing methods for enhancing 
signal-to-noise ratio, e.g. adaptive filtering, could be used in 
future systems. The system parameters such as electrode 
position, number of targets, stimulation frequencies, and 
operating speed, should be optimized for each user 
individually. To implement a practical BCI, a higher 
information transfer rate should be expected, and moreover, 
the research on a portable system realized with digital 
signal processor is ongoing. 
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