
 
 

 

  

Abstract—A motor imagery based brain-computer interface 
(BCI) translates the subject’s motor intention into a control 
signal through real-time detection of characteristic EEG spatial 
distributions corresponding to motor imagination of different 
body parts. In this paper, we implemented a three-class BCI 
manipulated through imagination of left hand, right hand and 
foot movements, inducing different spatial patterns of 
event-related desynchronization (ERD) on mu rhythms over the 
sensory-motor cortex. A two-step training approach was 
proposed including consecutive steps of online adaptive training 
and offline training. Then, the optimized parameters and 
classifiers were utilized for online control. This paradigm 
facilitated three directional movement controls which could be 
easily applied to help the motion-disabled to operate a 
wheelchair. The average online and offline classification 
accuracy on five subjects was 79.48% and 85.00% respectively, 
promoting the three-class motor imagery based BCI a 
promising means to realize brain control of a mobile device. 
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I. INTRODUCTION 
N recent years, brain-computer interface (BCI) systems 
based on classifying single trial EEGs during motor 
imagery have developed rapidly [1],[2]. The physiological 

studies on motor imagery indicate that the spatial distribution 
of EEG differs between different imagined movements, e.g. 
motor imagination of hand and foot. Brain activities at mu 
(8-12Hz) and beta (18-26Hz) rhythms display specific areas 
of event-related desynchronization (ERD) corresponding to 
each imagery state [3]. Also, lateral readiness potential (LRP), 
which is a slowly decreasing potential, can be recorded with 
the maximum amplitude over the motor cortex contralateral 
to the involved hand movements, whereas the readiness 
potential preceding a foot movement shows no lateralization 
[4]. 

ERD/ERS has a higher frequency band than LRP.  
Therefore, it is more robust and of a better signal-to-noise 
ratio than LRP in scalp recorded EEG signals which may be 
contaminated by low-frequency artifacts, e.g. eye blink. Most 
of the current motor imagery based BCIs are based on 
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characteristic ERD/ERS spatial distributions corresponding 
to different motor imagery states. The first motor imagery 
based BCI was developed by Pfurtscheller et al. and was 
based upon the detection of EEG power changes caused by 
ERD/ERS of mu and beta rhythms during imagination of left 
and right hand movements [5]. Another motor imagery based 
approach proposed by Wolpaw et al. was to train the users to 
regulate the amplitude of mu and beta rhythms to realize 2-D 
control of cursor movement [6]. Two linear equations were 
used to transform the sum and the difference of EEG power 
over left and right motor areas into vertical and horizontal 
movement. 

Motor imagery BCIs are mainly focused on two-class 
classification of motor imagination patterns [7]. When the 
number of brain patterns increases, great difficulties in both 
aspects on signal processing and machine learning algorithms 
stand out. In the multi-class paradigm, the classification 
accuracy will be decreased due to the interference of the new 
brain states, which may be unreliable and make the subject 
confused during online user training. To obtain useful 
information which can be fit for discriminating the new 
patterns, the method of feature selection has to be 
reconsidered. Besides, the design of the multi-class classifier 
also plays an important role in improving the classification 
accuracy.  

In this study, three states of motor imagery were employed 
to implement a multi-class BCI. Considering the reliable 
spatial distributions of ERD/ERS in both primary 
sensory-motor cortex areas, imagination of motor activity 
including left hand, right hand and foot were considered the 
detectable brain patterns. We designed a straightforward 
online feedback paradigm, where real-time visual feedback 
was presented to indicate the controls of three directional 
movements, i.e. left hand, right hand and foot denote moving 
left, right, and forward respectively. 
 

II. METHODS 

A. Data Acquisition 
Five right-handed volunteers (three males and two females, 

22-27 years old) participated in the study. They were chosen 
from the subjects who could successfully fulfill two-class 
online BCI control in our previous studies (4-7 hours of 
online training) [8]. The recording was made using a BioSemi 
ActiveTwo system. 32 EEG channels were measured at 
positions involving the primary motor area (M1) and the 
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supplementary motor area (SMA) (see Fig.1). 
Electromyogram (EMG) recording was omitted due to the 
recognized finding that EMG signals show low correlations 
with the imagery tasks on well-trained subjects [6]. Signals 
were sampled at 256Hz and preprocessed by a 50Hz notch 
filter and a 4-35Hz band-pass filter. 

FCz

C3 C4

 
Fig.1 Electrode positions of the 32 channels in the experiment. C3/C4 and 
FCz electrodes in the 10-20 systems are involved to record EEG signals over 
M1 and SMA areas. 
 

B. Online Feedback Paradigm 

 
Fig.2 Online feedback paradigm of the three-class motor imagery tasks. 
Three examples are the tasks corresponding to foot, left hand and right hand 
imagination respectively. The progress bars provide real-time visual 
feedback. 
 
  Fig. 2 shows the paradigm of online BCI training with 
visual feedback. The “left hand”, “right hand” and “foot” 
movement imagination were designated to control three 
directional movements, i.e. left, right, and upward 
respectively. The subject sat comfortably in an armchair, 
opposite to a computer screen for displaying the visual 
feedback. The duration of each trial was 8 seconds. During 
the first 2 seconds, while the screen was blank, the subject 
was in the “relax” state. At second 2, a visual cue (arrow) was 
presented in the screen, indicating the imagery task to be 
performed. The arrow pointing left, right, and upward 
indicated the imagination of left hand, right hand, and foot 
movement respectively. At second 3, three progress bars with 
different colors started to increase simultaneously from three 
different directions. The value of each bar was determined by 
the accumulated classification results and it was updated 
eight times per second (every 125ms). For example, if the 
current classification result is “foot”, then the “up” bar will 
increase one step and the values of the other two bars are 
retained. The features extracted for classification were 

band-pass power of mu rhythms on left and right primary 
motor areas (C3 and C4 electrodes). At second 8, a true or 
false mark appeared to indicate the final result of the trial 
through calculating the maximum value of the three progress 
bars, and the subject was asked to relax and wait for the next 
task. The experiment consisted of 2 or 4 sessions and each 
session consisted of 90 trials (30 trials per class). The dataset 
comprising 360 or 180 trials (120 or 60 trials per class) was 
used for further offline analysis. 
 

C. Multi-step training and controlling procedures 
1) Online feedback training 

Linear discriminant analysis (LDA) was used to classify 
the band-pass power features on C3/C4 electrodes referenced 
to FCz [9]. A linear classifier was defined by a normal vector 
w and an offset b as: 

Tsign( )y b= +w x                                                (1) 
where x was the feature vector. w and b were determined by 
Fisher discriminant analysis (FDA). The three-class 
classification was solved by combining three binary LDA 
discriminant functions: 

T
C3 C4( ) [ ( )]t P t P t= ( )  x  

T( ) sgn( ( ) ), 1 3i i iy t t b i= +  = −w x                        (2) 
where PC3(t) and PC4(t) are values of the average power in 
nearest 1s time window on C3 and C4. Each LDA was trained 
to discriminate two different motor imagery states. The 
decision rules are listed in Table I. Two combinations were 
not classified, and the remaining six combinations were 
designated to the three motor imagery states respectively. 
 

TABLE I 
DECISION RULES OF CLASSIFYING THE THREE MOTOR IMAGERY STATES 

THROUGH COMBINING THE THREE LDA CLASSIFIERS 
 

Left vs Right Left vs Foot Right vs Foot Decision 

+1 +1 -1 Left 
+1 +1 +1 Left 
-1 +1 +1 Right 
-1 -1 +1 Right 
+1 -1 -1 Foot 
-1 -1 -1 Foot 
+1 -1 +1 None 
-1 +1 -1 None 

 
 An adaptive approach was used to update the LDA 
classifiers trial by trial. The initial normal vector wi

T of the 
classifiers were selected as [+1 -1], [0 -1], and [-1 0] 
(corresponding to the three LDA classifiers in Table I) based 
on the ERD distributions. They were expected to recognize 
the imagery states through extracting the power changes of 
mu rhythms caused by contralateral distribution of ERD 
during left/right hand imagery, but bilateral power 
distribution duringfoot imagery over M1 areas [3]. The initial 
b was set to zero. When the number of samples reached 5 
trials per class, the adaptive training began. Three LDA were 
updated trial by trial, gradually improving the generalization 
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ability of the classifiers along with the increase of the training 
samples. This co-adaptation manner can speed up the user 
training and system calibration in an online BCI due to 
simultaneous cooperation of brain and machine. 
 
2) Offline training and online control 

To improve the classification accuracy, we used the 
common spatial patterns (CSP) method to improve the 
signal-to-noise ratio of the mu rhythm through extracting the 
task related EEG components. The main idea of CSP is to use 
a linear transform to project the multi-channel EEG data into 
low-dimensional spatial subspace with a projection matrix, 
each row of which consists of the weights corresponding to 
each channel. This transformation can maximize the variance 
of two-class signal matrices. The algorithm is based on the 
simultaneous diagonalization of the covariance matrices of 
both classes [10]. 

The EEG signals under two tasks A and B can be modeled 
as the combination of task-related components specific to 
each task and non-task components common to both tasks. 
The aim of the CSP method was to design two spatial filters 
(SFA and SFB), which led to the estimations of task-related 
source activities (SA and SB) corresponding to two tasks 
respectively. Then, spatial filtering was performed to 
eliminate the common components and extract the 
task-related components. SA and SB were estimated by SA = 
SFA·X  and SB = SFB·X, where X was a data matrix of 
preprocessed multi-channel EEG. After spatial filtering, the 
feature vector was defined as: 

A B[log(var( )) log(var( ))]f = S S .                        (3) 
The CSP multi-class extensions have been considered in 

[11]. Three different CSP algorithms were presented based on 
one-versus-one, one-versus-rest, and approximate 
simultaneous diagonalization methods. Similar to the design 
of binary classifiers, the one-versus-one method was 
employed in our system to estimate the task related source 
activities as the input of the binary LDA classifiers. It can be 
easily understood and with less unclassified samples 
compared with the one-versus-rest method. The design of 
spatial filters through approximate simultaneous 

diagonalization costs large amount of calculation and the 
selection of the CSP patterns is more difficult than the 
two-class version. 

As illustrated in Fig.3, before online BCI control, the CSP 
based training procedure was performed to determine the 
parameters for data preprocessing, the CSP spatial filters, and 
the LDA classifiers. A sliding window method was integrated 
to optimize the frequency band and the time window for data 
preprocessing in the procedure of joint feature extraction and 
classification. The accuracy was estimated by a 10×10-fold 
cross-validation. The optimized parameters, CSP filters, and 
LDA classifiers were used to implement the online BCI 
control and ensured a more robust performance compared 
with the online training procedure. In our BCI demo, two 
subjects have successfully played a robot-cup soccer game 
through controlling the movement of two robot dogs (one as 
the goalkeeper and the other as the forward). 
 

III. RESULTS 
The EEG power spectra of one subject under three 

different motor imagery states are displayed in Fig.4. It 
presents a significant contralateral dominance during hand 
movement imagery. The C3 electrode has a much lower 
power during right hand imagery than left hand. On the 
contrary, the lower power is corresponding to left hand 
imagery on electrode C4. In contrast to hand movements, foot 
imagination shows a high power on both hemispheres. 
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Fig.4 Average power spectra on C3/C4 electrodes for one subject. For each 
class, 120 trials were used for averaging. 
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Fig.3 Flowchart of offline training and online controlling in the motor imagery based BCI. 
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Fig.5 shows the probability of the online feedback (the 

normalized values of the three progress bars) under the three 
different tasks. The maximum value of the three progress bars 
was consistent with the task. For example, during foot 
imagination, the “upward” bar had a much higher value than 
the “left” and “right” bars; therefore, for most foot imagery 
tasks, the final decision was correct although some errors may 
occur during the feedback period (from 3s to 8s). 
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Fig.5 Probability of the three progress bars corresponding to the three motor 
imagery tasks for one subject (statistical results over 120 trials per class). 
 

Table II lists the parameters for data preprocessing and 
classification results of all the subjects. The pass band and the 
time window are subject-specific parameters which can 
significantly improve the classification performance. 
Average accuracy derived from online and offline analysis 
was 79.48% and 85.00% respectively. For subjects SJH and 
WW, no significant difference existed between the 
classification results of the three binary classifiers and a high 
accuracy was obtained for three-class classification. For the 
other three subjects, the foot task was difficult to be 
recognized and the three-class accuracy was much lower than 
the accuracy of classifying left and right hand movements. It 
may be caused by less training of the foot imagination, 
because all the subjects did more training sessions of hand 
movement in previous studies of two-class motor imagery 
classification [8]. The average offline accuracy was 5.52% 
higher than the online result due to the employment of 
parameter optimization and the CSP algorithm applied to 
multi-channel EEG data. 
 

IV. CONCLUSION 
An online three-class motor imagery based BCI has been 

implemented in our study. An adaptive approach was used 

during the online training procedure, and expected to reduce 
the training time through simultaneous brain-machine 
co-adaptation. To improve the classification accuracy, offline 
data analysis was performed before online BCI control. A 
significant performance gain was achieved after using the 
CSP based algorithm. In our future work, online training 
based on the multi-class CSP algorithm will be tested and 
further facilitate user training in the motor imagery based 
BCI. 
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  TABLE II 
CLASSIFICATION ACCURACIES CORRESPONDING TO ONLINE AND OFFLINE CLASSIFICATION ON FIVE SUBJECTS 

 

Offline accuracy 
Subjects Trials Pass band Time window 

Left vs Right Left vs Foot Right vs Foot Total 
Online 

accuracy 

SJH 360 10-35Hz 2.5-8s 99.33±0.44% 99.61±0.27% 97.94±0.59% 98.11±0.70% 94.00% 
WW 360 13-15Hz 2.5-7.5s 99.83±0.35% 96.92±0.97% 98.92±0.40% 97.56±1.23% 94.67% 
ZYJ 180 9-15Hz 2.5-7s 98.20±2.57% 82.40±4.88% 90.60±5.17% 80.13±4.68% 74.71% 
FL 180 10-28Hz 2.5-6s 96.33±1.72% 83.67±2.92% 85.67±2.63% 77.00±2.82% 68.00% 
ZD 180 10-15Hz 2.5-7.5s 95.17±1.83% 78.17±5.06% 71.83±8.66% 72.22±4.32% 66.00% 

Mean — — — 97.77% 88.15% 88.99% 85.00% 79.48% 

5062


