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Abstract—The posterior parietal cortex (PPC) plays an 
important role in visuomotor transformations for movement 
planning and execution. To investigate how noninvasive 
electroencephalographic (EEG) signals correlate with intended 
movement directions in the PPC, this study recorded 
whole-head EEG during a delayed saccade-or-reach task and 
found direction-related changes in both event-related potentials 
(ERPs) and the EEG power in the theta and alpha bands in the 
PPC. Single-trial (left versus right) classification using ERP and 
EEG spectral features prior to motor execution obtained an 
average accuracy of 65.4% and 65.6% respectively on 10 
subjects. By combining the two types of features, the 
classification accuracy increased to 69.7%. These results show 
that ERP and EEG spectral power modulations contribute 
complementary information to decoding intended movement 
directions in the PPC. The proposed paradigm might lead to a 
practical brain-computer interface (BCI) for decoding 
movement intention of individuals. 
 

I. INTRODUCTION 

Neural decoding of movement intention has been widely 
studies in the area of brain-machine interface (BMI) based 
neuroprosthetics [1]. For example, neuronal activities 
recorded in the primary motor cortex (M1) of monkey and 
human subjects, where neuron-firing patterns encode direction 
information about limb movement, can be used to predict the 
outcomes of planned actions [2-4]. It is also well known that 
the posterior parietal cortex (PPC) plays an important role in 
movement planning, being involved in sensorimotor 
transformations from visual input to motor execution. 
Recently, in monkey studies, direction decoding of eye and 
hand movements has been realized using neuronal signals in 
the PPC [5]. However, in human studies, movement direction 
decoding using noninvasive methods has not been widely 
studied [6-8]. To the best of our knowledge, direction 
decoding based on scalp EEG recordings is ignored in current 
brain-computer interface (BCI) research.  

In the PPC areas, two neural processes, which might 
contribute to predicting intended movement direction, are 
involved in movement planning. The first is the visuomotor 
transformation, which is crucial for transforming visual 
signals into motor commands. Our previous study [8] reported 
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that ERP components, which might reflect the early 
visuomotor transformations of movement directions, 
exhibited a contralateral decrease and ipsilateral increase in 
amplitudes during 180-350ms after the appearance of the 
visual direction cue. In the study, we applied a single-trial 
classification method to decode intended movement direction 
using only temporal ERP features from the PPC areas and 
achieved classification accuracy significantly higher than the 
chance level with four subjects [8]. The second neural process 
that involves in movement planning is visuospatial attention, 
which is important for directing spatial attention to the targets 
before motor execution. Previous studies showed that the 
direction of visuospatial attention could be predicted by 
measuring EEG alpha band power over the two posterior 
hemispheres [9]. Therefore, attention-related EEG spectra 
preceding motor actions could be used to improve the 
accuracy of predicting movement directions. 

This study investigates spatiotemporal EEG dynamics in 
the human PPC during directional movement planning. This 
study also examines whether EEG power changes can 
complement the temporal ERP waveforms for decoding 
movement direction. To this end, this study proposes a feature 
combination scheme for decoding intended movement 
direction based on single-trial EEG data. 

II. METHODS 

A. Stimuli and Procedure 

This study used a delayed saccade-or-reach task, which 
allowed us to look for direction specific information in the 
EEG during the phase of movement planning. Subjects were 
seated comfortably in an armchair at a distance of 40cm from 
a 19-inch touch screen. A chin rest was used to help them 
maintain head position.  

Subjects used their right hand to perform reach tasks. At 
the beginning of each trial, the subject’s forearm rested on the 
table with the index finger holding down a key on a keypad 
placed 30cm in front of screen center. Fig. 1 shows the 
sequence of visual cues in each trial. At the beginning of each 
trial, a fixation cross (0.65°×0.65°) was displayed in the center 
of the screen plus three red crosses (0.65°×0.65°) indicating 
potential target positions. The left and right targets had a 
vertical distance of 6° and a horizontal distance of 15° from 
the central fixation cross; the central target was 12° upwards. 
After 500ms, an effector cue (0.5°×0.5°, rectangle, ellipse, and 
a mixture of them indicating hand, eye, and two-effector 
movements respectively) appeared at screen center for 
1000ms. Next, a central direction cue (0.65°×0.65°, ┤, ┴, ├ 
for left, upward, and right respectively) was presented for 
700ms. Subjects were asked to maintain fixation on the central 
cue until they started their response, to perform the indicated 
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response as quickly as possible after the direction cue 
disappeared, and finally to return to their initial (key-down) 
position. Total trial duration amounted to 3500~4000ms. 

 
Figure 1.  Time sequences of cue presentation in a trial. In each trial, three 
central cues (first, effector cue, next, direction cue, and finally, go cue) were 
presented. The 700 ms delay period between the “Direction cue” and “Go 
cue” was considered the phase of directional movement planning. 

B. Data Acquisition 

Ten healthy, right-handed participants (7 males and 3 
females) with normal or corrected-to-normal vision performed 
this experiment. All participants were asked to read and sign 
an informed consent form approved by the UCSD Human 
Research Protections Program before participating in the 
study.  

EEG data were recorded using Ag/AgCl electrodes from 
128 scalp positions distributed over the entire scalp using a 
BioSemi ActiveTwo EEG system (Biosemi, Inc.). Eye 
movements were monitored by additional bipolar horizontal 
and vertical EOG electrodes. Electrode locations were 
measured with a 3-D digitizer system (Polhemus, Inc.). Three 
cue presentation events and two manual response events 
(“button release” and “screen touch”) were recorded on an 
event channel synchronized to the EEG data. All signals were 
amplified and digitized at a sample rate of 256 Hz. The 
experiment consisted of four blocks (with breaks in between) 
each including five runs of 45 trials. Within each block, there 
was a 20-second rest between runs. A total of 900 trials were 
equally distributed among the nine tasks, which were 
presented to the subjects in a pseudorandom sequence. 

C. Data Preprocessing 

This study focuses on the estimations of planned direction 
of movement. For simplicity, this study focuses on “left” and 
“right” conditions for “hand” tasks. The same analysis could 
be applied to data under “eye” and “both” conditions. Epochs 
from the response delay period, 0 to 700ms following the 
onsets of direction cues, were extracted from the continuous 
data, and labeled by movement directions. The period [-100ms 
0] was used as the baseline for each trial. Electrodes with poor 
skin contact were identified by their abnormal activity patterns 
and removed from the data. 

We used independent component analysis (ICA) as an 
unsupervised spatial filtering technique to remove artifacts 
arising from eye and muscle movements [10]. All trials were 

band-pass filtered (1-30 Hz), concatenated, and then 
decomposed using the ICA function of the EEGLAB toolbox 
[11]. To retain the low-frequency EEG activities, ICA weights 
of the decomposition were applied to original unfiltered data 
before artifact removal.  

D. Feature Extraction and Classification 

The location of source activities related to the intended 
movement direction can be estimated by source localization of 
the two lateralized PPC components extracted by ICA [8]. 
Fourteen channels (seven channels on each hemisphere) 
around the estimated sources were used for feature extraction. 
We adopted ERP features, EEG spectral features, and the 
combination of the two features to classify the intended 
movement directions (i.e., reach left vs. reach right) 
respectively. A support vector machine (SVM) [12] classifier 
was employed for classification. 

(1) ERP features  

ERP signals from the PPC areas showed a contralateral 
decrease and ipsilateral increase during movement planning. 
Therefore, temporal ERP amplitudes can be directly used as 
features for distinguishing the left and right movement 
directions. To improve the signal-to-noise ratio (SNR) of 
ERPs and reduce the feature dimension at the same time, we 
employed the canonical correlation analysis (CCA) [13] 
algorithm to design spatial filters. Here, CCA sought channel 
weights, which aimed to maximize the correlation between the 
projection of all seven channels and that of the three channels 
in the central region of the PPC area, for the left and right 
hemispheres respectively. The spatial filtering procedure can 
be described as 

 *Z W X                                      (1) 

where X is the multi-channel EEG signal of a trial and W is the 
CCA-based spatial filter. We obtained two projected vectors 
ZL and ZR, which corresponded to electrodes on the left and 
right hemispheres, after spatial filtering. To further reduce 
feature dimension, ZL and ZR were downsampled by 
calculating the mean of five continuous data points without 
overlapping. Finally, ZL and ZR were concatenated together to 
form a feature vector as 

  ERP L R[ ]V Z Z                             (2) 

(2) EEG power features  

We adopted continuous time Fourier transform (CTFT) 
[14] to convert EEG time series into a time-frequency 
representation of the data. For each channel, the data were 
transformed to spectral domain using a 250-ms time window, 
which moved through each trial in 15.625-ms (i.e., four data 
points) steps.  Then, a time-frequency distribution matrix can 
be obtained as 
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Time-frequency distributions of the EEG spectral power 
were calculated using event-related spectral perturbation 
(ERSP) [11]. As shown in Fig. 3, after 300ms, the ERSP 
images showed a significant contralateral decrease and 
ipsilateral increase of alpha-band power with respect to the 
movement direction, which is consistent with the findings in 
previous visuospatial attention studies [9]. Besides, in the right 
PPC area, the theta-band power also showed a significant 
difference around 200ms, which behaved differently from the 
alpha power modulation. The power modulation of the 
theta-band activities occurred at the same time window as the 
ERP modulation; therefore, it might reflect the process of 
visuomotor transformation. 

C. Classification Accuracy 

TABLE I.  TEN-FOLD CROSS-VALIDATION ACCURACIES FOR USING 
THREE DIFFERENT KINDS OF FEATURES. 

Subject 
Cross-Validation Accuracy 

ERP Features Spectral Features Combined Features 

1 65.00 61.43 66.43 

2 69.29 70.00 77.86 

3 67.14 66.43 65.71 

4 65.71 65.71 72.86 

5 68.57 57.14 71.43 

6 49.29 62.14 62.86 

7 63.57 63.57 58.57 

8 66.43 66.43 72.14 

9 72.14 80.00 75.00 

10 67.14 62.86 74.29 

Mean 65.43 65.57 69.71 

 
Table I lists the results of cross-validation assessment for 

the three different types of features. On average, the 
classification accuracy using ERP and spectral features was 
comparable (65.4% vs. 65.6%). The combined features 
achieved an improvement to 69.7%. A paired one-tailed t-test 
showed that the improvement is statistically significant 
(combined features vs. ERP features: p=0.015; combined 
features vs. spectral features: p=0.038). These results verified 
the hypothesis that ERP and EEG spectral features provide 
complementary information for decoding movement 
direction, and thus, significantly improve the classification 
accuracy through feature combination. The accuracy 
improvement was found in most of the subjects. In particular, 
Subjects 2, 4 and 10 had a significant improvement of 7-8% 
when using combined features. However, some subjects (e.g., 
Subject 7) showed no performance improvement, which 
might be attributed to the decrease of generalization ability of 
the classifier due to the increase of the feature dimension in 
feature combination. 

IV. CONCLUSION 

This study designed a delayed movement paradigm to 

investigate brain activities in the human PPC during planning 
of movements. Experimental results showed that EEG signals 
generated in the PPC areas carry information about intended 
movement direction. This study also tested the feasibility of 
decoding movement intention by combining ERPs and EEG 
spectral changes in the PPC areas. The resulting classification 
accuracy (~70%) at the single-trial level suggested the 
practical potential of an EEG-based BCI for decoding 
movement intention. 
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