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Abstract— Although the performance of steady-state visual
evoked potential (SSVEP)-based brain-computer interfaces
(BClIs) has improved gradually in the past decades, it still does
not meet the requirement of a high communication speed in
many applications. A major challenge is the interference of
spontaneous background EEG activities in discriminating
SSVEPs. An SSVEP BCI using frequency coding typically does
not have a calibration procedure since the frequency of SSVEPs
can be recognized by power spectrum density analysis (PSDA).
However, the detection rate can be deteriorated by the
spontaneous EEG activities within the same frequency range
because phase information of SSVEPs is ignored in frequency
detection. To address this problem, this study proposed to
incorporate individual SSVEP training data into canonical
correlation analysis (CCA) to improve the frequency detection
of SSVEPs. An eight-class SSVEP dataset recorded from 10
subjects in a simulated online BCI experiment was used for
performance evaluation. Compared to the standard CCA
method, the proposed method obtained significantly improved
detection accuracy (95.2% vs. 88.4%, p<0.05) and information
transfer rates (ITR) (104.6 bits/min vs. 89.1 bits/min, p<0.05).
The results suggest that the employment of individual SSVEP
training data can significantly improve the detection rate and
thereby facilitate the implementation of a high-speed BCI.

I. INTRODUCTION

Steady-state visual evoked potentials (SSVEPs) have been
widely used in electroencephalogram (EEG)-based
brain-computer interfaces (BCls) [1, 2]. Frequency coding is
the most popular multi-target coding approach in SSVEP
BClIs. In such a system, users need to fixate their gaze on one
of multiple visual flickers tagged with different stimulation
frequencies. The gazed target can be identified through
recognizing the frequency of the SSVEPs corresponding to the
target stimulus. Currently, an SSVEP BCI typically does not
have a calibration procedure since the frequency of SSVEPs
can be simply recognized by power spectrum density analysis
(PSDA) approaches (e.g., fast Fourier transform, FFT) [3-5].
The use of PSDA-based frequency detection makes it possible
to realize a calibration free system. However, since the phase
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information of SSVEPs is totally ignored in PSDA-based
frequency detection, the detection rate could be seriously
deteriorated by the spontaneous EEG activities within the
same frequency range of SSVEPs. Although the performance
of SSVEP-based BCIs has improved gradually in the past
decades, it still does not meet the requirement of a high
communication speed in many practical applications [6].

In EEG-based BClIs, spatial filtering techniques have been
widely used to improve signal-to-noise ratio (SNR) of EEG
signals. Recently, multi-channel decoding methods based on
spatial filtering have been applied to SSVEP-based BCls [7,
8]. Canonical correlation analysis (CCA) is one of the most
popular approaches. In an unsupervised way, the standard
CCA-based approach finds spatial filters to maximize the
correlation between SSVEPs and sine-cosine reference
signals [8]. Although CCA can significantly improve the
SNR of SSVEPs, the interference from spontaneous EEG
activities still exists in the CCA-based frequency detection.
Fortunately, the interference problem can be alleviated by
characterizing the initial phase in SSVEPs and spontaneous
EEG activities. Theoretically, SSVEPs time locked to stimuli
at the same frequency have the same initial phase due to a
fixed latency delay in the visual system [9], whereas the
spontaneous EEG component at the stimulation frequency
has a random phase. Therefore, SSVEP training data can be
employed to improve frequency detection. Pan et al. [9]
proposed a phase-constrained CCA approach by estimating
the latency delay in the visual pathway using SSVEP training
data. Recently, Zhang et al. proposed multi-way CCA [10]
and multi-set CCA [11] approaches that combined SSVEP
training data in CCA process. These methods improved the
standard CCA approach in complicated ways that are difficult
to understand and implement in real practice [9-11].
Compared to these methods, a more feasible solution is to
calculate correlation coefficient between single-trial SSVEPs
and reference signals obtained from SSVEP training data
after CCA-based spatial filtering. The correlation-based
template matching approach has been employed in the code
modulation VEP-based BCIs and achieved very high BCI
performance [12, 13]. However, to our knowledge, the
combination of CCA and training data-based template
matching has not been reported in SSVEP-based BCls.

This study proposed to incorporate individual SSVEP
training data to improve the CCA-based frequency detection
of SSVEPs. In addition to the standard CCA-based method,
correlations between the single-trial SSVEPs and SSVEP



reference signals provided complementary information for
target identification. To evaluate the performance of the
proposed method, this study compared classification
performance between the proposed method and the standard
CCA-based method using an eight-class SSVEP dataset
recorded from 10 subjects. The goal of this study was to
develop a more efficient target detection approach for
SSVEP-based BCls, which can facilitate the implementation
of a high-speed BCI for practical applications.

II. METHOD

A. Stimulus Presentation

In the conventional frame-based method for rendering
visual flickers on a computer monitor, the number of frames in
a stimulation cycle is a constant. For example, under a 60Hz
refresh rate, a 10Hz stimulus can be realized by reversing the
stimulus pattern between black and white every three frames
(i.e., six frames per cycle). However, a flickering frequency by
which the refresh rate is not dividable (e.g., 11Hz) cannot be
presented on the screen using this method. To solve this
problem, we proposed an approximation approach that can
reliably generate stimulus signals at flexible frequencies [14].
Under a fixed refresh rate, the stimulus sequence c(f, i) for
frequency f can be generated by the following equation:

c(f, i) = square [Zﬂf (i/RefreshRatE)] M

where square() generates a 50% duty cycle square wave with
levels 0 and 1, and { indicates the frame index.

B. Data Acquisition

The dataset was recorded from a simulated online BCI
experiment [15]. In the experiment, a Dell S2409W 24-inch
LCD monitor (Dell Inc.) with a 75Hz refresh rate was used to
present a row of eight flickers (each with a size of 3x3cm) at
frequencies from 8Hz to 15Hz with a 1Hz interval. The
stimulus sequences were generated by the approximation
approach described in (1). The stimulus program was
developed under MATLAB (Mathworks Inc.) using the
Psychophysics Toolbox extensions [16].

Ten healthy adults (8 males and 2 females, mean age: 23
years) with normal or corrected-to-normal vision participated
in the experiment. All subjects signed an informed consent
form approved by the Research Ethics Committee of Keio
University before participating in the experiment. EEG data
were measured using a 16-channel g.USBamp system (g.tec
medical engineering GmbH) at a sampling rate of 256 Hz. 12
EEG electrodes (Cz, P1, Pz, P2, PO7, PO3, POz, PO4, POS,
Ol, Oz, 02) and four electrooculogram (EOG) electrodes
(horizontal and vertical EOG) were placed according to the
international 10-20 system.

During the experiment, the subjects were seated in a
comfortable chair 70cm away from the monitor in a dark
room. They were asked to input a sequence with all eight
targets in a task, and to repeat the task 15 times in the
experiment. The order of targets was randomized in the task
sequence. At the beginning of each trial, a red square marker
(3%3cm) appeared at the position of the target stimulus.
Subjects were asked to shift their gaze to the target within 0.5
second. At 0.5 second after the cue onset, all stimuli started to
flicker concurrently for one second on the monitor. The
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Figure 1. Flowchart of the proposed target identification method.

Is-long EEG data epochs synchronized to the visual stimuli
were extracted for target identification.

C. Data Analysis

For each frequency, 15 trials were extracted according to
event triggers generated by the stimulus program, resulting in
120 trials for each subject. To avoid overfitting in CCA, eight
electrodes (PO7, PO3, POz, PO4, POS8, Ol, Oz, 02) over
parietal and occipital regions were selected for feature
extraction. To remove components irrelevant to SSVEPs, all
data epochs were band-pass filtered from 7Hz to SOHz.

Standard CCA-based approach: In SSVEP-based BCls,
CCA has been widely used to detect the frequency of SSVEPs
[8]. CCA is a statistical way used to measure the underlying
correlation between two multi-dimensional variables.
Considering two multi-dimensional variable X, Y and their
linear combinations x = XTWy and y = YTWy, CCA finds
the weight vectors, Wy and Wy , which maximize the
correlation between x and y by solving the following
problem:

E[wkxyTwy]

2

maxy,, w, P(X,y) = .

\/E[W)T(XXTWX]E[W};YYTW;/]
The maximum of p with respect to Wy and Wy is the
maximum canonical correlation. In SSVEP detection, X refers
to multi-channel SSVEP signals and Y refers to reference
signals that have the same length as X. To detect the frequency
of SSVEPs in an unsupervised way, sinusoidal signals can be
used as the reference signals ¥ ¢:

sin(2mfn)
cos(2mfn)
. 1 2 N
Y, = : ,Tl=7,7, s (3)
sin(2eNyfn) §08 s
cos(2mNy fn)

where f is the target frequency, N, is the number of
harmonics (N, = 3), and N is the number of sampling points.
To recognize the frequency of SSVEPs, CCA calculates the
canonical correlation between multi-channel SSVEP signals
and the reference signals at each stimulation frequency. The
frequency of the reference signals with the maximal
correlation is considered as the frequency of SSVEPs.



CCA with SSVEP training data: This study developed an
extended CCA-based method to incorporate SSVEP training
data in target identification. Fig. 1 shows the flowchart of the
proposed method. In addition to the standard CCA method, the
proposed method combined correlations between single-trial
SSVEPs and SSVEP reference signals in target identification.
For each stimulation frequency, the training SSVEP reference
signals X can be obtained by averaging multiple SSVEP trials
in a training set. Correlation coefficients between projections
of test set X and training reference signals X using
CCA-based spatial filters can be used as features. Specifically,
the following three weight vectors are used as spatial filters to
enhance the SNR of SSVEPs: (1) Wy (XX) between test set X
and training reference signals X, (2) W (XY) between test set
X and sine-cosine reference signals ¥, and (3) Wx(XY)
between training reference signals X and sine-cosine
reference signals Y . The target can be identified by
recognizing the training reference signal that maximizes the
correlation to X. A correlation vector p is defined as follows:

oy [PATWAXN), YWy (X))
pa| _ |P(XTWx(XX), X" Wx(XX)) @
P3| |p(XTWx(XY), X" Wx(XY)) )

P8 L p(XT Wy (RY), R Wy (RY))

p:

where p(a, b) indicates the correlation coefficient between a
and b. An ensemble classifier can be used to combine features
derived from the four methods described above. In practice,
the following weighted correlation coefficient g is used as the
final feature in target identification:

p = Xiqsign(py) - p? Q)

where sign() is used to remain discriminative information
from negative correlation coefficients between test set X and
training reference signals X. The training reference signal that
maximizes the weighted correlation value is selected as the
reference signal corresponding to the target.

D. Performance Evaluation

Individual SSVEP training data were required to implement
the proposed method. This study used a leave-one-out
cross-validation to estimate simulated BCI performance.
Training SSVEP reference signals were obtained from the
training data in cross-validation. Classification accuracy and
information transfer rate (ITR) [15] were calculated for the
proposed method and the standard CCA method separately.
To estimate the optimal BCI performance, this study also
calculated accuracy and ITR using different data lengths.

III. RESULTS

Fig. 2 shows an example of correlation values for a 10Hz
SSVERP trial in target identification. Due to the interference
from spontaneous EEG, the standard CCA method obtained
higher correlation values at 8Hz and 12Hz than 10Hz,
resulting in an error in target detection. In contrast, the
proposed method obtained a distinct peak value at 10Hz. The
correlation values at 8Hz and 12Hz were significantly
decreased after combining correlation values derived from
correlation analysis with SSVEP training data. Fig. 3
illustrates averaged correlation values for all stimulation
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Figure 2. Correlation values between a 10Hz SSVEP trial and reference
signals at all stimulation frequencies (8-15Hz).
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Figure 3. Averaged correlation values between SSVEP trials and reference
signals at all stimulation frequencies. The dotted line in each subfigure
indicates the stimulation frequency.

frequencies across all subjects. The proposed method
significantly decreased the correlation values at non-target
frequencies, while the value at the stimulation frequency
remained at the same level with a minor decrease. Therefore,
the proposed method significantly enhanced the
discriminability between target SSVEPs and non-target
background EEG activities.

Table I lists the classification accuracy and simulated online
ITR using the standard CCA-based method and the proposed
method. Paired t-tests showed that the proposed approach
obtained significantly higher classification accuracy (95.2%
vs. 88.4%, p<0.05) and ITR (104.6 bits/min vs. 89.1 bits/min,
p<0.05) than the standard CCA-based method. The subjects
with lower performance (<90% using the standard CCA
method) achieved more significant improvements using the
proposed method (S1: 10.0%, S3: 15.0%, S4: 10.0%, S10:
22.5%). To our knowledge, the resulting ITR of 104.6 bits/min
was higher than ITRs reported in other SSVEP-based BClIs
using the frequency coding method [1, 2].

Fig. 4 illustrates classification accuracy and ITR using
different data lengths from 0.1s to 1s with a 0.1s step. For all
conditions, the proposed method obtained significantly
improved performance. The difference was more significant
when using a short data length. The proposed method obtained
a highest ITR of 132.0 bits/min with a 0.4s data length. Paired
t-tests indicated significant improvements of accuracy and



TABLE L. SIMULATED ONLINE BCI PERFORMANCE
Accuracy (%) ITR (bits/min)
Subject  Standard CCA with Standard CCA with
CCA training data ~ CCA training data
S1 88.3 98.3 86.1 113.2
S2 93.3 98.3 98.3 113.2
S3 83.3 98.3 75.2 113.2
S4 85.8 95.8 80.5 105.3
S5 91.6 95.8 94.0 105.3
S6 99.1 97.5 116.2 110.4
S7 93.3 95.8 98.3 105.3
S8 91.6 93.3 94.0 98.3
S9 98.3 97.5 113.2 110.4
S10 59.1 81.6 35.1 71.9
Mean 88.4+11.4 95.2+5.0 89.1+£22.9  104.6+£12.4
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Figure 4. Averaged classification accuracy and ITR using different data

lengths. Error bars indicate standard errors. The asterisks indicate

significant difference between the two methods (*: p<0.05, **: p<0.01, and
**%: p<0.001).

ITR (Accuracy: 47.9£13.1% vs. 85.0£7.6%, p<10°; ITR:
39.0+25.6 bits/min vs. 132.0+25.0 bits/min, p<10).

IV. CONCLUSIONS AND DISCUSSIONS

To solve the problem of interference from spontaneous
background EEG activities in SSVEP discrimination, this
study proposed to incorporate individual SSVEP training data
to improve the detection of SSVEPs. In addition to the
standard CCA-based method, correlations between single-trial
SSVEPs and SSVEP reference signals were used as new
features for target identification. In correlation analysis, this
study designed three CCA-based spatial filters to improve the
SNR of SSVEPs. The proposed method significantly
improved BCI performance over the standard CCA-based
method in terms of accuracy (95.2% vs. 88.4%, p<0.05) and
ITR (104.6 bits/min vs. 89.1 bits/min, p<0.05) on a dataset
recorded from an SSVEP BCI with a high selection speed (1.5
seconds per selection). The results using different data lengths
further suggested that the proposed method could be
especially useful for high-speed BCIs that can select a target
within several hundred milliseconds (see Fig. 4).

The SSVEP dataset used in this study was from a gaze
dependent BCI [6]. The proposed method is also applicable to
gaze independent BCIs based on visual selective attention
[17]. In addition to frequency detection of SSVEPs, the

proposed method can also benefit detection of SSVEPs coded
by other multi-target coding methods [6]. For example,
individual training data were typically required for target
identification in BCIs using phase coding [1] or mixed
frequency and phase coding [18]. Therefore, the proposed
method can be easily adopted to improve target detection in
these systems without extra effort in data collection.
Furthermore, other future work will include optimization of
the ensemble classifier illustrated in (5) and a quantitative
comparison of performance between the proposed method and
other extended CCA-based methods [9-11].
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