
  

 

Abstract— Although the performance of steady-state visual 
evoked potential (SSVEP)-based brain-computer interfaces 
(BCIs) has improved gradually in the past decades, it still does 
not meet the requirement of a high communication speed in 
many applications. A major challenge is the interference of 
spontaneous background EEG activities in discriminating 
SSVEPs. An SSVEP BCI using frequency coding typically does 
not have a calibration procedure since the frequency of SSVEPs 
can be recognized by power spectrum density analysis (PSDA). 
However, the detection rate can be deteriorated by the 
spontaneous EEG activities within the same frequency range 
because phase information of SSVEPs is ignored in frequency 
detection. To address this problem, this study proposed to 
incorporate individual SSVEP training data into canonical 
correlation analysis (CCA) to improve the frequency detection 
of SSVEPs. An eight-class SSVEP dataset recorded from 10 
subjects in a simulated online BCI experiment was used for 
performance evaluation. Compared to the standard CCA 
method, the proposed method obtained significantly improved 
detection accuracy (95.2% vs. 88.4%, p<0.05) and information 
transfer rates (ITR) (104.6 bits/min vs. 89.1 bits/min, p<0.05). 
The results suggest that the employment of individual SSVEP 
training data can significantly improve the detection rate and 
thereby facilitate the implementation of a high-speed BCI. 

 

I. INTRODUCTION 

Steady-state visual evoked potentials (SSVEPs) have been 
widely used in electroencephalogram (EEG)-based 
brain-computer interfaces (BCIs) [1, 2]. Frequency coding is 
the most popular multi-target coding approach in SSVEP 
BCIs. In such a system, users need to fixate their gaze on one 
of multiple visual flickers tagged with different stimulation 
frequencies. The gazed target can be identified through 
recognizing the frequency of the SSVEPs corresponding to the 
target stimulus. Currently, an SSVEP BCI typically does not 
have a calibration procedure since the frequency of SSVEPs 
can be simply recognized by power spectrum density analysis 
(PSDA) approaches (e.g., fast Fourier transform, FFT) [3-5]. 
The use of PSDA-based frequency detection makes it possible 
to realize a calibration free system. However, since the phase 
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information of SSVEPs is totally ignored in PSDA-based 
frequency detection, the detection rate could be seriously 
deteriorated by the spontaneous EEG activities within the 
same frequency range of SSVEPs. Although the performance 
of SSVEP-based BCIs has improved gradually in the past 
decades, it still does not meet the requirement of a high 
communication speed in many practical applications [6].  

In EEG-based BCIs, spatial filtering techniques have been 
widely used to improve signal-to-noise ratio (SNR) of EEG 
signals. Recently, multi-channel decoding methods based on 
spatial filtering have been applied to SSVEP-based BCIs [7, 
8]. Canonical correlation analysis (CCA) is one of the most 
popular approaches. In an unsupervised way, the standard 
CCA-based approach finds spatial filters to maximize the 
correlation between SSVEPs and sine-cosine reference 
signals [8]. Although CCA can significantly improve the 
SNR of SSVEPs, the interference from spontaneous EEG 
activities still exists in the CCA-based frequency detection. 
Fortunately, the interference problem can be alleviated by 
characterizing the initial phase in SSVEPs and spontaneous 
EEG activities. Theoretically, SSVEPs time locked to stimuli 
at the same frequency have the same initial phase due to a 
fixed latency delay in the visual system [9], whereas the 
spontaneous EEG component at the stimulation frequency 
has a random phase. Therefore, SSVEP training data can be 
employed to improve frequency detection. Pan et al. [9] 
proposed a phase-constrained CCA approach by estimating 
the latency delay in the visual pathway using SSVEP training 
data. Recently, Zhang et al. proposed multi-way CCA [10] 
and multi-set CCA [11] approaches that combined SSVEP 
training data in CCA process. These methods improved the 
standard CCA approach in complicated ways that are difficult 
to understand and implement in real practice [9-11]. 
Compared to these methods, a more feasible solution is to 
calculate correlation coefficient between single-trial SSVEPs 
and reference signals obtained from SSVEP training data 
after CCA-based spatial filtering. The correlation-based 
template matching approach has been employed in the code 
modulation VEP-based BCIs and achieved very high BCI 
performance [12, 13]. However, to our knowledge, the 
combination of CCA and training data-based template 
matching has not been reported in SSVEP-based BCIs. 

This study proposed to incorporate individual SSVEP 
training data to improve the CCA-based frequency detection 
of SSVEPs. In addition to the standard CCA-based method, 
correlations between the single-trial SSVEPs and SSVEP 
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