
D.D. Schmorrow et al. (Eds.): Augmented Cognition, HCII 2009, LNAI 5638, pp. 437–446, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Predicting Intended Movement Direction Using EEG 
from Human Posterior Parietal Cortex 

Yijun Wang and Scott Makeig 

Swartz Center for Computational Neuroscience, Institute for Neural Computation, 
University of California, San Diego, USA 
{yijun,scott}@sccn.ucsd.edu 

Abstract. The posterior parietal cortex (PPC) plays an important role in motor 
planning and execution. Here, we investigated whether noninvasive electroen-
cephalographic (EEG) signals recorded from the human PPC can be used to de-
code intended movement direction. To this end, we recorded whole-head EEG 
with a delayed saccade-or-reach task and found direction-related modulation of 
event-related potentials (ERPs) in the PPC. Using parietal EEG components ex-
tracted by independent component analysis (ICA), we obtained an average ac-
curacy of 80.25% on four subjects in binary single-trial EEG classification (left 
versus right). These results show that in the PPC, neuronal activity associated 
with different movement directions can be distinguished using EEG recording 
and might, thus, be used to drive a noninvasive brain-machine interface (BMI). 

Keywords: posterior parietal cortex (PPC); electroencephalography (EEG); in-
dependent component analysis (ICA); brain-machine interface (BMI). 

1   Introduction 

In current brain-machine interface (BMI) research, predicting intended movement 
trajectory is a widely proposed method for controlling prosthetic limbs [1]. Most 
tested systems for monkey and human subjects are based on neuronal activities re-
corded in the primary motor cortex (M1), where neuron firing patterns encode direc-
tion information about limb movement [2-4]. In neuroscience, it is also well known 
that the parietal cortex plays an important role in movement planning, being in-
volved in sensorimotor transformations from visual input to motor execution. For 
instance, the posterior parietal cortex (PPC) is critically involved in visuo-motor 
control of visually guided reaching movements, continuously updating reaching 
movements to the visual target. According to its role in motor planning, the parietal 
cortex may provide another way to decode intended movement direction, which can 
be potential for BMI applications. In recent monkey studies, direction decoding of 
eye and hand movements has been realized using neuronal signals in the PPC [5]. 
The PPC of monkey brain can be further divided into subareas for different action 
planning, e.g., the lateral intraparietal area (LIP) for saccades and the parietal reach 
region (PRR) for reaches. 
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For real-world application, non-invasive brain-computer interfaces (BCIs) based 
on electroencephalographic (EEG) signals are more practical than invasive BMIs, 
whose human applications are seriously limited by questions about the safety and 
durability of implanted electrodes [6-8]. Various EEG signals have been employed to 
build different kinds of EEG-based BCI systems, e.g., P300 evoked potential, visual 
evoked potential (VEP), and mu/beta rhythm power [7]. So far, movement direction 
decoding using noninvasive methods has been tried only in very few studies [9] [10]. 
In [9], a machine learning paradigm was successfully applied to discriminate  
movement directions using single-trial EEG data recorded during natural and  
delayed reaching tasks. However, the functional brain components contributing most 
to classification have not been specified in this study, and therefore the underlying 
brain dynamics related to direction coding are still unclear. Recently, a magnetoen-
cephalography (MEG) study showed that the direction of hand movements can be 
inferred from brain activities [10]. In their study, movement directions were decoded 
based on power modulation in the low-frequency band (<7Hz) using MEG activities 
from the motor area. To the best of our knowledge, intended direction decoding in the 
PPC based on EEG recordings has been rarely studied, and is ignored in current BCI 
research. In the present study, we investigated brain activity in the human PPC during 
directional movement planning using multichannel event-related potentials (ERPs), 
and propose a BCI scheme based on single-trial EEG classification. 

2   Method 

2.1   Subjects 

Four healthy, right-handed participants (3 males and 1female, mean age 25 years) 
with normal or corrected-to-normal vision performed this experiment. All participants 
were asked to read and sign an informed consent form approved by the UCSD Human 
Research Protections Program before participating in the study. 

2.2   Stimuli and Procedure 

During execution of eye or hand movements, movement artifacts including electro-
oculographic (EOG) and electromyographic (EMG) signals also include direction 
information about the attended movement. To obtain clean brain signals not including 
such information, therefore, a delayed saccade-or-reach task was used in this study, 
allowing us to look for direction information in the EEG during the phase of move-
ment planning. The experiment was comprised of nine conditions differing by move-
ment type (saccade to target, reach without eye movement, or visually guided reach) 
and movement direction (left, center, or right). Each task was indicated to the subject 
by, first, giving an effector cue telling the type of action to be performed, followed by 
a direction cue and, finally, by an imperative action cue. Subjects were seated com-
fortably in an armchair at a distance of 40cm from a 19-inch touch screen. A chin rest 
was used to help them maintain head position.  

Subjects used their right hand to perform reach tasks. At the beginning of each 
trial, the subject’s forearm rested on the table with index finger holding down a key 
on a keypad placed 30cm in front of screen center. The sequence of visual cues in 
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each trial is shown in Fig.1(a). At the beginning of a trial, a fixation cross 
(0.65°×0.65°) was displayed in the center of the screen plus three red crosses 
(0.65°×0.65°) indicating potential target positions. The left and right targets had a 
vertical distance of 6° and a horizontal distance of 15° from the central fixation cross; 
the central target was 12° upwards. After 500ms, an effector cue (0.5°×0.5°, rectan-
gle, ellipse indicating hand and eye movements respectively, see Fig.1(b)) appeared at 
screen center for 1000ms. Next, a central direction cue (0.65°×0.65°, ┤, ┴, ├ for left, 
center, and right respectively) was presented for 700ms. Subjects were asked to main-
tain fixation on the central cue until they started their response, to perform the indi-
cated response as quickly as possible following the disappearance of the direction cue 
(and reappearance of the fixation cross), and finally to return to their initial (key-
down) position. Total trial duration amounted to 3500~4000ms.  

 

 
                                                 (a)                                                                       (b) 

Fig. 1. (a) Time sequence of cue presentation in a trial and (b) visual cues used to indicate 
effector and direction of a task. In each trial, three central cues (first, effector cue, next, direc-
tion cue, and finally, go cue) were presented. The 700 ms delay period between the “Direction 
cue” and “Go cue” was considered the phase of directional movement planning. EEG data 
segment within this period was used for further analysis. 

Auditory feedback was given to help the subjects fulfill the instructions correctly. 
Four different tones were used to mean “correct”, “error”, “early”, and “time out”, 
respectively. In the reach tasks, if the point on the screen touched by the subject was 
outside the boundary of a (5.5°×5.5°) square centered on the target cross, the “error” 
tone sounded. If the response began during the movement preparation period  
(0-700ms after direction cue onset), the “early” warning sounded. The “time out” 
feedback sounded when response time was >500ms. All other trials were followed by 
the “correct” feedback sound. Only those trials are considered here. Subjects were 
instructed to perform tasks accurately to achieve a high score (percentage of correct 
trials). Their score was displayed on the screen at the end of each block. Some  
practice blocks were run before starting the EEG recording. For each subject, the 
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experiment consisted of four blocks (with breaks in between) each including five runs 
of 45 trials. Within each block, there was a 20-second rest between runs. A total of 
900 trials were equally distributed between the nine tasks, which were presented to 
the subject in a pseudorandom sequence. 

2.3   Data Recording 

EEG data were recorded using Ag/AgCl electrodes from 128 scalp positions distrib-
uted over the entire scalp using a BioSemi ActiveTwo EEG system (Biosemi, Inc.). 
Eye movements were monitored by additional bipolar horizontal and vertical EOG 
electrodes. All signals were amplified and digitized at a sample rate of 256 Hz. Elec-
trode locations were measured with a 3-D digitizer system (Polhemus, Inc.). Three 
cue presentation events and two manual response events (“button release” and “screen 
touch”) were recorded on an event channel synchronized to the EEG data by  
DataRiver software (A. Vankov). 

2.4   Data Processing and Analysis 

Here, we only focused on estimations of planned direction of movement. Therefore 
we first separated the trials for each subject into three classes (left, right, and center) 
for offline analysis. In each class, the three tasks with different effectors (hand, eye, 
both) were mixed together. Investigation of effector-specific (hand or eye) EEG acti-
vations will not be included in this paper.  

Data were analyzed using tools in the EEGLAB toolbox [11]. Epochs from the re-
sponse delay period, 0 to 700ms following direction cue onset, were extracted from 
the continuous data, and labeled by movement direction. The period [0, 100ms] was 
used as baseline for each trial. Electrodes with poor skin contact were identified by 
their abnormal activity patterns and then removed from the data. For each subject, 
electrode locations were co-registered with a spherical four-shell head model used for 
dipole source localization. 

Spatial Filtering  
Independent component analysis (ICA) has been widely used in EEG analysis [12-
14]. It can decompose the overlapping source activities constituting the scalp EEG 
into functionally specific component processes. Here, we used ICA as an unsuper-
vised spatial filtering technique to extract parietal EEG independent component (IC) 
activities that excluded noise from eye and muscle components as well as brain activi-
ties from other functional processes (e.g., in motor, visual, and frontal areas). For each 
subject, all trials were band-pass filtered (1-30 Hz), concatenated, and then decom-
posed using the extended infomax ICA algorithm [15]. Two lateralized temporo-
parietal components were easily identified in each subject’s decomposition by their 
spatial projections and significant contributions to the average event-related potential 
(ERP) waveforms time locked to onsets of the movement direction cue.  

Figure 2 shows the scalp projections of the two parietal component clusters for all 
four subjects, plus their mean scalp maps. Clustering was done based on IC scalp 
maps using EEGLAB tools. These components contributed most to the scalp ERPs 
obtained by averaging the channel data over all the trials. To indicate the anatomical 
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source location of these components, IC maps were subjected to equivalent dipole 
localization using the EEGLAB plug-in DIPFIT [11]. Source locations were specified 
in the Talairach coordinate system. Equivalent dipole localization (average Talairach 
coordinates: [-33, -59, 28] in the left hemisphere and [40, -49, 30] in the right hemi-
sphere) indicated that these IC sources originated from the PPC (Brodmann Area 
39/40). These results demonstrate that the PPC is activated during intended movement 
planning. To further explore the underlying neural mechanism of direction coding in 
the PPC, the parietal ICs were selected and back-projected onto the scalp to visualize 
their separate contributions to the scalp data. 

 

                                       (a)                                                                 (b) 

Fig. 2. Two clusters of lateralized temporo-parietal components with equivalent dipole loca-
tions in the (a) left hemisphere and (b) right hemisphere. Large cartoon heads show the mean 
scalp map for each cluster. Small heads show the clustered component maps for each of the 
four subjects. 

ERP Modulation 
To extract the direction-specific portion of the ERPs, we compared the spatiotemporal 
patterns of the parietal EEG components for the different movement directions. For 
all four subjects, we found a consistent hemispheric asymmetry over the parietal cor-
tex during the delay period (0-700ms, 0-100ms used as baseline) in which motor 
planning can be presumed to have continued until cued movement onset (after 
700ms). The projected PPC ICs produced a significant contralateral negativity and 
ipsilateral positivity with respect to intended movement direction. Scalp maps of left, 
right, and center classes for one subject were shown in Fig.3. For the “left” and 
“right” classes, their maps showed significant ipsilateral positivity. For instance, the 
left hemisphere has much higher amplitude than the right hemisphere when planning 
left movements. For the “center” condition, the map has a symmetric distribution on 
both sides and the amplitudes are much lower compared to “left” and “right” condi-
tions. To further investigate the time course of this hemispheric asymmetry, differ-
ence wave was calculated by subtracting the contralateral activity from the ipsilateral 
activity with respect to movement direction. Two electrodes with highest weights in  
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Fig. 3. Scalp maps and ERP waveforms of the summed, back-projected parietal ICs for one 
subject in the three different direction conditions (left, center, and right) at 320ms after the 
direction cue. Note that the color scales of the scalp maps differ. The ERP waveforms were 
from two lateral parietal electrodes with strongest PPC projections. 

 
Fig. 4. Ipsilateral minus contralateral difference waves averaged over the “left” and “right” 
trials. Two peaks centered at 200ms and 320ms were the most significant hemispheric asymme-
tries appearing during planning of directional movements. 

the two parietal IC maps were selected to represent the left and right hemispheres. In 
the difference wave averaged across the “left” and “right” trials, the hemispheric 
asymmetry was characterized by two contralateral negativities peaking 200ms and 
320ms after the direction cue respectively, with mean amplitudes of 1.9µV and 3.8µV 
across subjects (see Fig.4). 

Feature Extraction and Classification 
As a first evaluation of the potential use of EEG activity in PPC for driving a  
BCI system, binary classification of “left” versus “right” trials was performed using 



 Predicting Intended Movement Direction Using EEG 443 

standard machine learning techniques that have been successfully employed in current 
BCI research [16-18]. Because this study focused on EEG modulation in the parietal 
cortex, only the parietal IC components were used for feature extraction, although 
other cortical ICs might contribute separate information for classification of intended 
direction (e.g., somatomotor components). Although subjects were instructed not to 
make any response during the movement planning period, covert eye and muscle 
movements might have occurred, giving additional EEG signals informative for  
classifying movement direction contained in ICs accounting for eye or scalp muscle 
activities. Here we constrained the classification performance to reflect only the  
directional EEG information generated in parietal cortex. Subject-specific time- and 
frequency-domain parameters were derived for classification. A sliding window was 
used to optimize the latency and frequency windows giving best classification  
performance. Because we found that the low-frequency activity contributed to the 
classification for all subjects, for simplicity a low-pass filter was used to extract  
the frequency components. The selected time/frequency parameters were listed in 
Table.1. Not unexpectedly, optimized time windows are consistent with the time 
course character of the difference wave shown in Fig.4. 

After low-pass filtering, normalized amplitudes in the selected time window, nor-
malized at each time point to have a range of [-1 1] across trials, were employed as 
features. Feature vectors from both parietal components were concatenated and then 
input to a support vector machine (SVM) classifier using an RBF kernel. The SVM 
algorithm was performed using the LIBSVM toolbox [19]. 10x10-fold cross valida-
tion was run to estimate classification performance. 

3   Results 

We used classification accuracy to evaluate classification performance. An average 
accuracy of 80.25±2.22% was obtained for single-trial classification across the four 
subjects. The classification results are listed in Table 1. Considering that this para-
digm is based on single-trial classification, the accuracy is comparable to most current 
BCI systems, e.g., the P300-based and motor imagery-based BCIs. Moreover, subject 
variety (reflected in the standard deviation across the four subjects of only 2.22%) 
does not appear to be as large as in other BCI system reports, suggesting that this 
method might be usable for more subjects than the other BCI systems. Testing this 
impression would doubtless require more subjects. These results suggest that more 
refined measures of movement intention-related EEG activity arising in the PPC (and 
elsewhere in cortex) might be used to build a robust and noninvasive BCI system. 

Table 1. Time-frequency parameters and classificatioin performance for all subjects 

Subject Time Window (ms) Frequency Window (Hz) Accuracy (%) 
S1 180-500 0-25 79.9±0.45 
S2 150-480 0-25 81.9±0.94 
S3 180-450 0-20 77.2±0.86 
S4 210-510 0-35 81.9±0.81 

Mean   80.25±2.22 
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4   Conclusion and Discussions 

In this EEG study, we designed a movement delay paradigm to investigate brain  
activities in the human PPC during planning of intended movements. The results 
indicated that EEG signals generated in the PPC are altered during movement plan-
ning, and their hemispheric asymmetries carry information about intended movement 
direction. By analyzing multi-channel ERPs at the single-trial level, we obtained sta-
ble classification of “go left” and “go right” planning trials for all subjects. The result-
ing classification accuracy of 80.25% makes this paradigm promising for BCI design. 

Classification performance might be improved by considering the following  
factors. First, during motor planning, the PPC also encodes effector information, pro-
ducing effector-specific brain activity patterns [20]. In the current data analysis, three 
tasks with different kinds of effectors (hand, eye, and both) were not distinguished, 
and may introduce variance linked to the different effectors used. Therefore, classify-
ing trials involving the same effector might be more efficient. Else, a multi-factorial 
classification scheme might be used that included information as to the intended ef-
fector. Finally, the same data might be able to predict both the intended effector and 
movement direction. Second, for feature extraction a simple sliding window was used 
to select the latency window and frequency band used. To find more informative 
parameters, time-frequency decomposition methods might be applied allowing  
additional selection of optimal time-frequency measures. Third, additional features 
derived from EEG power modulation may be complementary to current features ob-
tained from the time-domain waveforms. For example, [21] showed that the direction 
of visuospatial attention could be predicted by measuring alpha band power over the 
two posterior brain hemispheres.  

Several potential applications of this paradigm may be expected. It could be di-
rectly used to implement a BCI based simply on decoding movement direction. Else, 
it could be integrated into current BCI systems to realize more robust or multi-
dimensional control. For example, combining this paradigm with a motor imagery-
based BCI (using EEG changes linked to imagining movements of left hand and right 
hand), might double the number of selective commands (from 2 to 4). Else, motor 
imagery of left and right hand movements might be linked to different directions (e.g., 
by imagining the left hand pointing to the left, or the right hand pointing to the right). 
In this case, by introducing additional parietal EEG components to mu/beta compo-
nents from sensorimotor areas, classification performance can be significantly in-
creased, although in this case the system would remain a two-class mode. 

Before implementing a practical online BCI system based on intended movement 
direction, several issues still need further investigation. First, changes in attention and 
intention both contribute to direction-related EEG modulation. To learn more details 
about the relationship between these two factors, standard spatial attention experi-
ments might be used to identify purely intention-related features. Else, some combina-
tion of subject attention and intention might give more efficient direction-specific 
brain patterns for a BCI communication or control system. In a practical system, 
movement planning without subsequent motor activity might be associated with lower 
BCI performance. The participants in this study were healthy volunteers; a direct test 
of the system concept on patients with motor disabilities will therefore be necessary 
before proposing applications for subjects with motor disabilities. 
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