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1. Introduction
brain computer interface (BCI) 
translates human intentions into 
control signals to 

establish a direct commu-
nication channel between 
the human brain and 
external devices. Because 
a BCI does not depend 
on the brain’s normal out-
put pathways of peripheral 
nerves and muscles, it can 
provide a new communi-
cation channel to people 
with severe motor disabilities [1–3].

Electroencephalograms (EEGs) 
recorded from the surface of the 
scalp are widely used in current BCIs 
for their non-invasive nature and 
easy applications. Among EEG based 
BCIs, systems based on visual evoked 
potentia l s  (VEPs) have received 
widespread attention in recent de -
cades [4–27].

VEPs are caused by sensory stimu-
lation of a subject’s visual field, and re-
flect visual information processing 
mechanisms in the brain. Stimulation 
of the central visual field evokes larger 
VEPs than peripheral stimulation. A 
VEP based BCI is a tool that can iden-
tify a target on which a user is visually 
fixated via analysis of concurrently re-
corded EEG. Fig. 1. shows the system 
diagram of a VEP based BCI. In a VEP 
based BCI, each target is coded by a 
unique stimulus sequence which in 
turn evokes a unique VEP pattern. A 

fixation target can thus be identified 
by analyzing the characteristics of the 
VEP. To ensure reliable identification, 

VEPs derived from dif-
ferent stimulus sequenc-
es should be orthogonal 
or near orthogonal to 
each other in some 
t r an s f o r m doma in . 
Stimulus sequence de-
sign is an essential prob-
lem for a VEP based 
BCI. Depending on the 
specific stimulus se-

quence modulation approach used, 
current VEP based BCIs can be orga-
nized into three categories: time mod-
ulated VEP (t-VEP) BCIs [4-6], 
frequency modulated VEP (f-VEP) 
BCIs [11–27], and pseudorandom code 
modulated VEP (c-VEP) BCIs [7–10]. 

Due to the different modulation 
approaches and target identification 
methods employed, performance differs 
between systems. In this paper, a com-
parison study of the three systems is 
presented. We will first compare the 
designs of these systems, and then 
describe in detail our recent work on 
two online BCI systems using f-VEPs 
and c-VEPs.

2. System Design 

2.1 t-VEP based BCI
In a t-VEP BCI, the flash sequences of 
different targets are mutually indepen-
dent. This may be achieved by requiring 
that flash sequences for different targets 
are strictly non-overlapping [4], or by 
randomizing the duration of ON and 
OFF states of each target’s flash se-
quence [5]. The briefly flashed stimuli 
elicit flash visual evoked potentials 
(FVEP) which have short latencies and 
durations. Fig. 2 shows a typical t-VEP 
stimulation sequence, and the wave-
form of a typical FVEP.

 In a t-VEP BCI, a synchronous sig-
nal must be given to the EEG amplifier 
for marking the flash onset of each tar-
get. FVEPs are time-locked and phase-
locked to visual stimulus onset. Thus, 
since the flash sequences for all targets 
are mutually independent, averaging 
over several short epochs segmented 
according to flash onset of a fixation tar-
get will enhance FVEPs corresponding 
to that target while suppressing contri-
butions of FVEPs elicited by peripheral 
non-fixation targets. Since foveal FVEPs 
are larger than peripheral FVEPs, the 
target producing the largest averaged 
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FIGURE 1 System diagram of a VEP based BCI.
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peak-to-valley FVEP amplitude can be 
identified as the fixation target.

Accurate target identification in a 
t-VEP BCI requires averaging over 
many epochs. Furthermore, to prevent 
overlap of two consecutive FVEPs, 
t-VEP BCIs usually have low stimulus 
rates (,4 Hz). Thus t-VEP BCIs have a 
lower information transfer rate (ITR) 
(,30 bits/min). ITR is a performance 
measure for BCI systems [1]. 

2.2 f-VEP Based BCI
In an f-VEP based BCI, each target is 
flashed at a different frequency generat-
ing a periodic sequence of evoked 
responses with the same fundamental 
frequency as that of the flickered stimu-
lus as well as its harmonics. Fig. 3 shows 
a stimulation sequence of an f-VEP 
BCI, and the power spectrum of the 
evoked response. 

Power spectral analysis is most widely 
used for target identification of the 
f-VEP based BCI. For a segment of 
EEG data x obtained from a k-target 
f-VEP BCI with flicker frequencies 
f1, f2 cfk respectively, target identifica-
tion may be implemented through fol-
lowing steps:
1) Calculate the power spectrum P 1 f 2  

of the EEG signal x using a Fast 
Fourier Transform (FFT) or other 
spectral analysis technique.

2) Calculate the signal-to-noise ratio 
(SNR) Sk of each stimulus frequency 
fk. Here, SNR is defined in terms of 
the ratio of P 1 fk 2 to the mean value 
of the adjacent frequency points.

3) Identify the fixation target by select-
ing the target, K, corresponding to 
the maximum Sk.
Because the flicker frequency of 

f-VEP BCI usually are higher than 6Hz, 
the evoked responses from consecutive 
flashes of the target overlap with each 
other, generating a periodic sequence of 
VEPs—a steady-state visual evoked 
potential (SSVEP)—which is frequency-
locked to the flickering target. As such, 
f-VEP BCIs are often referred to as 
SSVEP BCIs. In past decades, the 
robustness of f-VEP BCI systems has 
been demonstrated convincingly in 
many laboratory and clinical tests 

[11–27]. Advantages of an f-VEP BCI 
include simple system configuration, lit-
tle or no user training, and a high ITR 
(30–60 bits/min).

2.3 c-VEP Based BCI
In a c-VEP BCI, pseudorandom 
sequences are used. The m-sequence is 
the most widely used pseudorandom 
sequence [28]. A binary m-sequence is 
generated using maximal linear feed-
back shift registers which have many 
properties that make them valuable tools 
in linear and nonlinear systems analysis. 
An m-sequence has an autocorrelation 
function which is very close approxima-
tion to a unit impulse function, and it is 
nearly orthogonal to its time lag 
sequence. Thus an m-sequence and its 
time lag sequence can be used for a 
c-VEP BCI. Fig. 4 shows stimulation 
sequences of a c-VEP BCI as well as the 
time course, spectrum, and autocorrela-
tion function of the evoked response. 

As with t-VEP systems, a synchro-
nous signal is necessary in the c-VEP 
based BCI system. At the beginning of 
each stimulation cycle, a synchronous 
signal providing a trigger for target 
identification should be given to the 
EEG amplifier. 

A template matching method is gen-
erally used for target identification. To 
obtain the template, a training stage must 
be implemented. The steps of target 
identification are as follows:
1) In the training stage, the user is 

instructed to fixate on one of k tar-
gets, with the fixation target denot-
ed by k0. During N  stimulation 
cycles, EEG data Xn, n 5 1, 2 ...N  is 
collected.

2) A template T 1 t 2  is obtained by aver-
aging over N  cycles. 

3) The templates of all targets are 
obtained by shifting T 1 t 2 :
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FIGURE 2 (a) The stimulus sequences of targets of a t-VEP based BCI. Target flashes 
are  mutually independent. (b) The evoked response to a single stimulus.
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FIGURE 3 (a) The stimulus sequences for targets of an f-VEP based BCI. Targets flash at 
 different frequencies. (b) The power spectrum of the evoked response derived from a target 
flickering at 10 Hz.
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 where tk 2 tk0
 indicates the time lag 

between target k and target k0.
4) For a segment of EEG data x, the 

correlation coefficient rk between x 
and the template Tk is calculated as:

  rk 5
Tkx

T

"1TkTk
T 2 1xxT 2

.

5) Identify the fixation target by select-
ing the target, K, which maximizes 
the correlation coefficient rk.
The most representative c-VEP 

based BCI system was developed by 
Sutter [7, 8]. Sutter‘s system reached a 
very high communication rate of 10 to 
12 words/minute (.100 bits/min). 
However, during the past decades, there 
have been few other studies on c-VEP 
and the performance of the proposed 
system was not satisfying. For example, 
Momose designed a c-VEP BCI system 
with four targets [9, 10]. It took five 
seconds for the system to identify a tar-
get (,20 bits/min).

3. Performance Comparison

3.1 Experiment Design 
and Analysis
Because of the lower performance of 
the t-VEP based BCI, relative to 
f-VEP and c-VEP systems, we will 
focus on a detailed comparison of the 
latter two systems. Two online systems 
based on f-VEP and c-VEP were 
implemented and tested on the same 
group of subjects under the same 
experimental environment. 

In both BCI systems, a CRT display, 
with a screen refresh rate of 60 Hz and 
screen resolution of 1024 3 768 pixels, 
was used for stimulus presentation. A 
parallel port was used to synchronize 
EEG data acquisition with stimulus.

There were six targets in the f-VEP 
based BCI system, with flickering fre-
quencies of 15 Hz, 12 Hz, 10 Hz, 8.6 
Hz, 7.5 Hz and 6 Hz, respectively, corre-
sponding to 4, 5, 6, 7, 8, 10 frames in 
single frequency cycle. 

In the c-VEP based BCI system, 
stimulation targets were composed of 
16 rectangular blocks displayed as a 
4 3 4 matr ix on the monitor as 
shown in Fig. 5. A binary m-sequence 
with 63 elements was used as the 
modulation signal. The lags t 1k 2  of 
different targets were decided by the 
following equation:

t 1k 2 5 4 3 k   k 5 0, 1 . . .15. 

Twelve healthy right-handed adults 
(three females, nine males) with normal 
or corrected to normal vision served as 
paid volunteer subjects after giving 
informed consent. EEG was sampled at 
1000 Hz from 47 scalp electrodes 
mounted in an elastic cap using Syn-
Amps2 (NeuroScan). 

The experiment was divided into a 
training stage and a testing stage. In the 
training stage, subjects were required to 
fixate on each of the targets sequentially 
for the f-VEP BCI, and fixate on the 
target “10” for the c-VEP BCI. Data 
from the training stage was used for 
offline analysis, including channel selec-
tion and to obtain the template for the 
c-VEP BCI.

Because of the large var iation 
between subjects in the spatial distribu-
tion of VEP responses, channel selection 
is widely used in VEP based BCIs. In 
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FIGURE 4 The stimulus sequences and evoked response of a c-VEP based BCI. (a) The 
sequences of targets in one stimulation cycle. Each sequence is from a binary m-sequence. 
There is a four-frame lag between two consecutive sequences. All targets were activated 
simultaneously, and the stimulation cycle was repeated constantly. (b) A waveform of the 
evoked response. (c) The power spectrum of the evoked response. (d) The auto-correlation 
of the evoked response.

FIGURE 5 The target arrangement of the 
c-VEP based BCI. The sixteen targets distrib-
ute as a 4 3 4 array surrounded by a border 
to eliminate the effect of the array boundary. 
When the border fields are stimulated 
according to the wrap-around principle, all 
targets have equivalent neighbors. Thus the 
responses obtained when the subject fixates 
on different targets are practically identical.
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this study, an exhaustive method was 
adopted for channel selection. In prac-
tice, the channel with the highest VEP 
amplitude can be considered the signal 
channel. To reduce time complexity of 
the exhaustive search, in both the f-VEP 
and c-VEP systems, electrode Oz was 
chosen as the signal channel and the 
bipolar reference channel which maxi-
mized training accuracy was selected as 
the optimal reference channel.

 In the testing stage, an online BCI 
application was implemented. The refer-
ence channel and template obtained 
from the training stage was used for 
online testing. Each subject was asked to 
input two strings of commands with 32 
characters for both BCI systems. The 
online accuracy and corresponding ITR 
was used for evaluating the online sys-
tem performance.

3.2 Results 
The average training accuracy was 
88 ; 6% and 95 ; 6% for the f-VEP 
and c-VEP system respectively. The 
online accuracy of the c-VEP system 
was higher than the f-VEP system (91% 
vs. 85%). The ITR was 39.7 ; 7.8 bits/
min for the f-VEP BCI and 92.8 ; 14.1  
bits/min for the c-VEP BCI. 

4. Discussion
In this paper, a detailed introduction of 
the three VEP based BCI systems is pre-
sented. The similarities and differences 
between these systems are as follows.

First, the stimulus modulation 
approach is different for the three systems. 
In a t-VEP BCI, stimuli corresponding 
to different targets appear at different 
times. In an f-VEP BCI, each target is 
flashed at a unique frequency. In a 
c-VEP BCI, near-orthogonal pseudo-
random codes are used for modulating 
targets. These three coding methods are 
similar to the three multiple access 
methods widely used in mobile com-
munication: Time Division Multiple 
Access (TDMA), Frequency Division 
Multiple Access (FDMA), and Code 
Division Multiple Access (CDMA), 
respectively [28]. 

Second, while a training stage is nec-
essary for c-VEP BCIs, it is not a funda-

mental requirement for f-VEP BCIs and 
t-VEP BCIs. While our f-VEP imple-
mentation utilized training data for chan-
nel selection, in multi-channel f-VEP 
BCI systems, channel selection and 
parameter optimization can be ignored 
[23, 24]. In contrast, in c-VEP BCIs, the 
temporal profile of the evoked response 
may differ substantially between users 
and is thus unknown for a new subject; a 
training stage is necessary to obtain the 
template of the evoked response.

Third, an f-VEP BCI has a simpler 
system configuration relative to t-VEP 
and c-VEP BCIs. Both c-VEP and 
t-VEP BCIs, require a stimulus onset 
trigger signal to be synchronized with 
the EEG data acquisition, increasing 
the complexity of hardware and soft-
ware design.

Fourth, the identification accuracy of 
a c-VEP BCI is higher than an f-VEP 
BCI. A principal reason for the higher 
identification accuracy of the c-VEP 
BCI is that the stimulus sequences, and 
thus the neuronal responses evoked by 
each target, are equivalent except for the 
time shift. However in an f-VEP BCI, 
the amplitudes and topographies of 
evoked responses from targets flickered at 
different frequencies may differ substan-
tially [14]. The disequilibrium of targets 
brings difficulty to target identification. 
Additionally, the wide-band evoked 
response of the c-VEP BCI may con-
tribute to its superior accuracy. As shown 
in Fig. 4 (c), the neuronal response 
evoked by a c-VEP BCI has a broadband 
spectrum distributed over 5–25 Hz. In 
contrast, an f-VEP BCI generates a nar-
row-band response, with sharp peaks at 
the target flicker frequency and harmon-
ics. Natural EEG activity includes many 
such narrow-band signals such as theta, 
alpha and beta rhythms, which may 
interfere with the f-VEP narrow-band 
response. However, this background 
“noise” is less likely to interfere with the 
wide-band c-VEP response.

The three BCI systems exhibit dif-
ferent characteristics, and they can be 
chosen for different applications. An 
f-VEP BCI is most suitable for appli-
cations requiring fewer options, such 
as wheelchair control, while a c-VEP 

BCI is more suitable for applications 
requir ing more options, such as a 
speller application. All three systems, 
as described above, require the user to 
shift gaze to select targets. Thus they 
are unsuitable for users who cannot 
shift gaze, such as fully “locked-in” 
patients with late-stage ALS. However, 
for the majority of potential BCI users 
who still have eye movement control, 
VEP based BCI systems can provide a 
fast and accurate communication 
pathway. Recently, independent VEP 
based BCIs have been realized based 
on visual attention [25–27]. These sys-
tems provide evidence that a VEP 
based BCI may also be used without 
requir ing gaze-shifting, render ing 
them suitable for use by fully locked-
in patients. 

5. Conclusion 
We described the three stimulus mod-
ulation approaches used in current 
VEP based BCIs: time modulation 
( t-VEP), f requency modulat ion 
(f-VEP), and pseudorandom code 
modulation (c-VEP). We then carried 
out a detailed comparison of system 
performance between an f-VEP BCI 
and a c-VEP BCI. The results show 
that an f-VEP BCI has the advantage 
of little or no training and simple sys-
tem configuration, while the c-VEP 
based BCI has a higher communica-
tion speed.

The stimulus modulation design is 
the crux of VEP based BCI systems. In 
future work, other stimulus modulation 
techniques, such as various multiple 
access methods used in communication 
systems, may be used to improve BCI 
performance.
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