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Abstract. Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications 
still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless 
electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and 
wireless online BCI. Its practicality and implications in routine BCI are demonstrated through the realization and 
testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal 
processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that 
the performance of the proposed cell-phone based platform was comparable, in terms of information transfer rate 
(ITR), with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our 
knowledge, this study is the first to demonstrate a truly portable, cost-effective, and miniature cell-phone based 
platform for online BCIs. 

1. Introduction 
 

Brain-computer interface (BCI) systems acquire electroencephalography (EEG) signals from the human brain 
and translate them into digital commands which can be recognized and processed on a computer or computers 
using advanced algorithms [1]. It can also provide a new interface for the users who have motor disabilities to 
control assistive devices such as wheelchairs.  

Although EEG-based BCIs have already been studied for several decades, moving a BCI system from a 
laboratory demonstration to real-life applications still poses severe challenges to the BCI community [2]. To 
design a practical BCI system, the following issues need to be addressed [3-6]: (1) ease of use, (2) robustness of 
system performance, and (3) low-cost hardware and software. In real-life applications, BCI systems should not 
use bulky, expensive, wired EEG acquisition device and signal processing platforms [7]. Using these devices will 
not only cause discomfort and inconvenience for the users, but also affect their ability to perform routine tasks in 
real life. Recently, with advances in the biomedical sciences and electronic technologies, the development of a 
mobile and online BCI has been put on the agenda [8]. 

Several studies have demonstrated the use of portable devices for BCIs [7, 9]. Lin et al. [7] proposed a portable 
BCI system that can acquire and analyze EEG signals with a custom DSP module for real-time cognitive-state 
monitoring. Shyu et al. [9] proposed a system to combine an EEG acquisition circuit with an FPGA-based 
real-time signal processer. Recently, with the advances in integrated circuit technology, cell phones combined 
with DSP [10] and built-in Bluetooth function have become very popular in the consumer market. Compared with 
the PC-based or customized platforms, the ubiquity, mobility, and processing power of cell phones make them a 
potentially vital tool in creating on-line and portable BCIs that need real-time data transmission, signal processing, 
and feedback presentation in real-world environments.  

Although the EEG-based BCI technology using PCs and the Bluetooth transmission of bio-signals have been 
well established in previous studies, the feasibility of a portable cell-phone based BCI, which supports biomedical 
signal acquisition and on-line signal processing, has never been explored. This portable system emphasizes 
usability "on-the-go", and the freedom that cell-phones enable. If a cell-phone based BCI proves to be feasible, 
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many current BCI demonstrations (e.g. gaming, text messaging, etc.) can be realized on cell phones in practice 
and numerous new applications might emerge. This study integrates a portable, wireless, low-cost EEG system 
and a cell-phone based signal processing platform into a truly wearable online BCI. The system consists of a 
four-channel bio-signal acquisition/amplification module, a wireless transmission module, and a 
Bluetooth-enabled cell phone. The goals of this study are to demonstrate the practicality of the proposed system 
by specifically answering the following questions: (1) is the quality of the EEG data collected by the custom 
wireless data acquisition device adequate for the routine BCI use? (2) is it feasible to implement time- and/or 
frequency-domain signal-processing algorithms (e.g., EEG power spectrum estimation and EEG spatial filtering 
approaches) on a regular cell phone in real time? 

To address these technical issues, a steady-state visual evoked potential (SSVEP) - based BCI, which has 
recognized advantages of ease of use, little user training and high information transfer rate (ITR) was employed as 
a test paradigm. SSVEP is the electrical response of the brain to the flickering visual stimulus at a repetition rate 
higher than 6 Hz [11], which is characterized by an increase in amplitude at the stimulus frequency. We adopted 
the widely used frequency-coding approach to build an online BCI [2, 4, 12-15] on a cell phone. In SSVEP BCI, 
the attended frequency-coded targets of the user are recognized through detecting the dominant frequency of the 
SSVEP. To this end, several signal-processing methods have been proposed and demonstrated [16]. Among them, 
power spectrum density (PSD) estimation (e.g., Fast Fourier Transform (FFT)) is most widely used in online 
SSVEP BCIs [4, 12, 16]. Recently, a Canonical Correlation Analysis (CCA) method was proposed and 
implemented in an online multi-channel SSVEP BCI, achieving an ITR of 58 bits/min [17]. To explore the 
plausibility of an on-line cell-phone based BCI platform, this study implemented and tested both single-channel 
FFT and multi-channel CCA methods for processing SSVEPs induced by attended targets. 
 
2. Method  
 
2.1. System Hardware Diagram 

 
A typical VEP-based BCI using frequency coding consists of three parts: a visual stimulator, an EEG recording 

device and a signal-processing unit [16]. Figure 1 depicts the basic scheme of the proposed mobile and wireless 
BCI system. This study adapts a mobile and wireless EEG headband from [8] as the EEG recording device and a 
Bluetooth-enabled cell phone as a signal-processing platform.  

 
Figure 1. The diagram of the proposed system. 

 
The visual stimulator comprises a 21-inch CRT monitor (140Hz refresh rate, 800x600 screen resolution) with a 

4 x 3 stimulus matrix constituting a virtual telephone keypad which includes digits 0-9, BACKSPACE and ENTER. 



The stimulus frequencies ranged from 9Hz to 11.75Hz with an interval of 0.25Hz between two consecutive digits. 
In general, this cannot be implemented with a fixed rate of black/white flickering pattern due to a limited refresh 
rate of a LCD screen. Wang et al [18] recently developed a new method that approximates target frequencies of 
SSVEP BCI with variable black/white reversing intervals. For example, presenting a 11Hz target stimulus on a 
screen refreshed at 60-Hz can be realized with 11-cycle black/white alternating patterns lasting [3 3 3 2 3 3 3 2 3 3 
2 3 3 3 2 3 3 3 2 3 3 2] frames in a second. Based on this approach, any stimulus frequency up to half of the refresh 
rate of the screen can be realized. The stimulus program was developed in Microsoft Visual C++ using the 
Microsoft DirectX 9.0 framework. 

The EEG acquisition unit is a 4-channel, wearable bio-signal acquisition unit [5]. EEG signals were amplified 
(8,000x) by instrumentation amplifiers, Band-pass filtered (0.01-50 Hz), and digitized by analog-to-digital 
converters (ADC) with a 12-bit resolution. To reduce the number of wires for high-density recordings, the power, 
clocks and measured signals were daisy-chained from one node to another with bit-serial outputs. That is, adjacent 
nodes (electrodes) are connected together to (1) share the power, reference voltage, and ADC clocks and (2) daisy 
chain the digital outputs. Next, TI MSP430 was used as a controller to digitize EEG signals using ADC via serial 
peripheral interface with a sampling rate of 128Hz. The digitized EEG signals were then transmitted to a data 
receiver such as a cell phone via a Bluetooth module. In this study, Bluetooth module BM0203 was used. The 
whole circuit was integrated into a light-weight headband. 

 
2.2. System Software Design 

 
The signal-processing unit was realized using a Nokia N97 (Nokia Inc.) cell phone. A J2ME program developed 

in Borland JBuilder2005 and Wireless Development Kit 2.2 were installed to perform online procedures including 
(1) displaying EEG signals in time-domain, frequency-domain and CCA-domain on the LCD screen of the cell 
phone, (2) band-pass filtering, (3) estimating the dominant frequencies of the VEP using FFT or CCA, (4) 
delivering auditory feedback to the user and (5) dialing a phone call. The resolution of the 3.5-in touch screen of 
the phone is 640 x 360 pixels.  

When the program is launched, the connection to the EEG acquisition unit would be automatically established 
in just a few seconds. The EEG raw data are transferred, plotted and updated every second on the screen. Since the 
sampling rate is 128 Hz, the screen displays about 4-second of data at any given time. Users can choose the format 
of the display between time-domain and frequency-domain. Under the frequency-domain display mode, the power 
spectral densities of 4-channel EEG will be plotted on the screen and updated every second. An auditory and visual 
feedback would be presented to the user once the dominant frequency of the SSVEP is detected by the program. 
For example, when number 1 is detected by the system, the digit “1” would be shown at the bottom of the screen 
and “ONE” would be said at the same time. 

Software operation and user interface include several functions. First, the program initiates a connection to the 
EEG acquisition unit. Second, four-channels of raw EEG data are band-pass filtered at 8-20 Hz, and then plotted 
on the screen every second. Third, the display can be switched to the power spectrum display or time-domain 
display by pressing a button at any time. Fig. 1 includes a screen shot of the cell phone, which plots the EEG 
power across frequency bins of interest. Fourth, an FFT or CCA mode can be selected. In the FFT mode, a 
512-point FFT is applied to the EEG data using a 4-second moving window advancing at 1-second steps for each 
channel. In the CCA mode, it uses all four channels of the EEG with a 2-second moving window advancing at 
1-second steps continuously. The maximum window length is 8 second. Detailed procedures and parameters of 
the CCA method can be found in [17]. To improve the reliability, a target is detected only when the same 
dominant frequency is detected in two consecutive windows (at time k, and k+1 seconds, k≥4 in the FFT mode, 
and ≥2 in the CCA mode). The subjects were instructed to shift their gaze to the next target once they heard the 
auditory feedback. 

 
2.3. BCI Experiment Design 

 
Ten volunteers with normal or corrected to normal vision participated in this experiment. All participants were 

asked to read and sign an informed consent form before participating in the study. The experiments were 
conducted in a typical office room without any electromagnetic shielding. Subjects were seated in a comfortable 



chair at a distance of about 60 cm to the screen. Four electrodes on the EEG headband were placed 2 cm apart, 
surrounding a midline occipital (Oz) site, all referred to a forehead midline electrode (the sensor array is shown in 
Fig. 1). 

FFT and CCA based approaches were tested separately. All subjects participated in the experiments during 
which the cell phone used FFT to detect frequencies of SSVEPs, and four subjects were selected to do a 
comparison study between using FFT and CCA for SSVEP detection. At the beginning of experiment, each 
subject was asked to gaze at some specific digits to confirm the wireless connection between the EEG headband 
and the cell phone. In the FFT mode, the channel with the highest signal-to-noise ratio, which is based on the 
power spectra of the EEG data, was selected for online target (digit) detection. Four of 10 subjects who have 
better performance (i.e. higher ITR in the FFT mode) were selected to further test the CCA-based SSVEP BCI. 
The test session began after a couple of short practice sessions. The task was to input a 10-digit phone number: 
123 456 7890, followed by an ENTER key to dial the number. Incorrect key detection could be erased by 
attending to the “BACKSPACE” key. In the CCA mode, the same task was repeated six times, leading to 11x6 
selections for each subject. The EEG in the CCA experiments were saved with feedback codes for an offline 
comparison study between FFT and CCA. The percentage accuracy and ITR [1] were used to evaluate the BCI 
performance. 

 
3. Results 

 
Tables 1 and 2 show results of SSVEP BCI using FFT and CCA, respectively. In the FFT mode, all subjects 

completed the phone-dialing task with an average accuracy of 95.9±7.4%, and an average time of 88.9 seconds. 
Seven of 10 subjects successfully inputted 11 targets without any errors. The average ITR was 28.47±7.8 bits/min, 
which was comparable to other VEP BCIs implemented on a high-end personal computer [4]. Table 2 shows the 
results of SSVEP BCI using online CCA on the cell phone. CCA achieved an averaged ITR of 45.82±2.49 
bits/min, which is higher than that of the FFT-based online BCI of the four participants (34.22 bits/min). 
Applying FFT to the EEG data recorded during the experiments using the online CCA resulted in an averaged 
putative ITR of 24.46 bits/min, using the channel with the highest accuracy for each subject (cf. right columns of 
Table 2).  

Table 1.  FFT-based online test results of SSVEP BCI in 10 subjects  

Subject Input length Time(sec.) Accuracy (%) ITR(bits/min) 

s1 11 72 100 32.86 
s2 11 72 100 32.86 
s3 19 164 78.9 14.67 
s4 11 73 100 32.4 
s5 17 131 82.4 17.6 
s6 11 67 100 35.31 
s7 11 72 100 32.86 
s8 13 93 92.3 20.41 
s9 11 79 100 29.95 
s10 11 66 100 35.85 

Mean 12.6 88.9 95.9 28.47 

Table 2. CCA-based test results (ITR) of SSVEP BCI in four subjects  

Putative ITR from off-line FFT  
Subject 

Online 
CCA 

Online 
FFT 

Offline 
FFT Ch1 Ch2 Ch3 Ch4 

s1 44.79 32.86 36.68 36.68 33.58 32.48 29.77 
s2 46.25 32.86 26.49 26.49 10.51 5.91 9.29 
s6 49.05 35.31 19.43 19.43 3.03 3.15 1.92 
s10 43.18 35.85 15.24 2.2 8.46 15.24 4.21 

Mean 45.82 34.22 24.46 21.2 13.9 14.2 11.3 



 
4. Discussions and Conclusions 
 

This study designed, developed and evaluated a portable, cost-effective, and miniature cell-phone based online 
BCI platform for communication in daily life. A mobile, lightweight, wireless and battery-powered EEG headband 
was used to acquire and transmit EEG data of unconstrained subjects in real-world environments. The acquired 
EEG data were received by a regular cell phone through Bluetooth. Advances in mobile phone technology have 
allowed phones to become a convenient platform for real-time processing of the EEG. The cell-phone based 
platform propels the mobility, convenience and usability of online BCIs.  

The practicality and implications of the proposed BCI platform were demonstrated through the high accuracy 
and ITR of an online SSVEP-based BCI. To explore the capacity of the cell-phone platform, two experiments were 
carried out using an online single-channel FFT and a multi-channel CCA algorithm. The mean ITR of the CCA 
mode was higher than that of the FFT approach (~45 bits/min vs. 34 bits/min) in the four participants. An off-line 
analysis, which applied FFT to the EEG data recorded during the online CCA-based BCI experiments, showed the 
target selection was less accurate using FFT than CCA, which in turn resulted in a lower ITR (Table 2). The 
decline in accuracy and ITR in offline FFT analysis could be attributed to a lack of sufficient data for FFT to obtain 
accurate results. In other words, FFT, in general, required more data (longer window) than CCA to accurately 
estimate the dominant frequencies in SSVEPs (6 seconds vs. 4 seconds). Further, the multi-channel CCA approach 
eliminated the need for manually selecting the ‘best’ channel prior to FFT analysis. 

Despite this successful demonstration of a cell-phone based BCI, there is room for improvement. Future 
directions include: (1) the use of dry EEG electrodes over the scalp locations covered with hairs to avoid skin 
preparation and the use of conductive gels; and (2) the use of higher-density EEG signals to enhance the 
performance of the BCI [17]. However, high-density EEG might increase the computational need in BCIs. With 
advances in cell phone technology, more powerful onboard processors can be expected in a foreseeable future, 
enabling the implementation of more sophisticated algorithms for online EEG processing. 

Notably, in the current study, the cell phone was programmed to assess wearer’s SSVEPs for making a phone 
call, but it can actually be programmed to realize other BCI applications. For example, the current system can be 
easily converted to realize a motor imagery based BCI through detecting EEG power perturbation of mu/beta 
rhythms over the sensorimotor areas. In essence, this study is just a demonstration of a cell-phone based platform 
technology that can enable and/or facilitate numerous BCI applications in real-world environments. 
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