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Abstract
Recently, electroencephalogram-based brain–computer interfaces (BCIs) have attracted much
attention in the fields of neural engineering and rehabilitation due to their noninvasiveness.
However, the low communication speed of current BCI systems greatly limits their practical
application. In this paper, we present a high-speed BCI based on code modulation of visual
evoked potentials (c-VEP). Thirty-two target stimuli were modulated by a time-shifted binary
pseudorandom sequence. A multichannel identification method based on canonical correlation
analysis (CCA) was used for target identification. The online system achieved an average
information transfer rate (ITR) of 108 ± 12 bits min−1 on five subjects with a maximum ITR
of 123 bits min−1 for a single subject.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Brain–computer interface (BCI) systems establish a direct
communication channel between the human brain and
the external environment by translating human intentions
into control signals [1], thereby providing a new
communication channel to people with severe motor
disabilities. Recently, electroencephalogram (EEG)-based
brain–computer interfaces have attracted much attention in
the study of neural engineering and rehabilitation due to
their noninvasiveness. However, the communication speed
limits the practical applications of the current EEG-based BCI
systems. The information transfer rate (ITR), given in bits per
minute, was commonly used to evaluate the communication
speed of a BCI [2]. Current BCIs have ITRs of 5–60 bits
min−1, which cannot fully meet the requirements of many
applications [3].

Recently, BCIs based on visual evoked potentials (VEP)
have received increasing attention due to their advantages of
little user training, ease of use and high ITR [4]. In our
recent study, we proposed a new prototype system based on
code modulation VEPs (c-VEP), where binary pseudorandom
codes were used to modulate different visual stimuli [5].

1 Author to whom any correspondence should be addressed.

Compared to other types of VEP-based BCIs, the c-VEP BCI
has many advantages including increased number of targets
(16 targets) and higher ITR (92.8 ± 14.1 bits min−1) [5].
Despite the success of this first implementation, the system
has many areas for improvement. In this paper, we provide a
detailed description of how to build a c-VEP BCI system and
propose a multichannel detection approach for improving the
identification accuracy. Test results for a 32-target online
system demonstrate the feasibility and practicality of the
proposed system.

2. Method

2.1. System configuration

The system consists of an EEG amplifier and a personal
computer (PC) with a CRT monitor. The online analysis
program and the stimulus presentation program are operated
on the PC. Figure 1 depicts the basic structure of the system.
The c-VEP BCI system requires a trigger channel in the
EEG amplifier, which synchronizes the EEG data and the
stimulus. A Synamps2 EEG system (NeuroScan Inc.), which
has a parallel port for trigger synchronization, was used in our
system.
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Figure 1. The block diagram of the c-VEP BCI.

Visual stimuli were presented on a CRT monitor with
a 60 Hz refresh rate. For precise timing control of stimulus
presentation, DirectX technology (Microsoft Inc.) was utilized
in the stimulus program. A stimulus alternated between
two states: ‘light’ and ‘dark’, so a binary sequence can be
used as a modulation sequence. ‘Light’ and ‘dark’ were
represented as ‘1’ and ‘0’ in the binary sequence respectively.
For instance, the stimulus modulated by a periodic sequence
‘100010001000 . . . ’ represents a 15 Hz flickering, when the
refresh rate of the monitor is 60 Hz.

As shown in figure 2(a), 32 targets were arranged as a
4 × 8 matrix surrounded by 28 complementary non-target
stimuli. Each target was periodically modulated by a 63-
bit binary m-sequence. Figure 2(b) presents the modulation
sequences of all targets in one stimulus period. Except for a
two-frame time lag between two consecutive targets, the used
modulation sequences in one period were the same m-sequence
for all targets. The arrangement of targets and complementary
non-targets, as well as the design of modulation sequence
conformed to the principle of equivalent neighbors, will be
discussed in section 4.1.

2.2. Target identification

The circular-shift relationship between responses of different
targets is the basis for target identification. Figure 3 illustrates
the circular-shift process of target T0 and target T1. At the
beginning of each stimulus period of target T0, a synchronous
signal was sent to the EEG amplifier. A VEP template for

(a) (b)

Figure 2. (a) The target arrangement of the c-VEP-based BCI. The 32 targets distributed as a 4 × 8 array (the gray area in the center of the
screen) surrounded by 28 complementary flickers (white background). The digit on a target indicated the index of the target. A
complementary non-target was synchronized with the target that had the same digit. (b) The modulation sequences of 32 targets in one
stimulation cycle. All targets were activated simultaneously, and the stimulation cycle was repeated constantly. There was a two-frame time
lag between two consecutive targets.
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Figure 3. An illustration of the circular-shift process. (a) Trigger
signal indicates the beginning of each stimulus period of T0.
(b) The modulation sequence of target T0. (c) The evoked response
of target T0. (d) The modulation sequence of target T1, which has a
τs lag of (b). (e) The evoked response of target T1 which can be
thought as τs lag of (c). (f) The template of target T1 can be
obtained by shifting the template of target T0 circularly.

target T0 can be obtained by averaging the EEG data from
multiple stimulus cycles. The length of the template was
Ts = 63/60 = 1.05s, which equals the length of a stimulus
cycle. Once the template for T0 was obtained, templates for
other targets can be easily obtained by shifting the template
for T0 circularly. In our system, the time lag between two
consecutive targets was τs = 2/60 = 0.033s. Hereafter, the
target for the calculation of the first template is referred to as
the reference target, and its template as the reference template.
In practice, any target can be selected as the reference
target.
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Figure 4. An example of target identification. The data to be
identified was recorded during gazing at target T21 and the red star
indicated the identification result.

After obtaining templates for all targets, a template
matching method can be used for target identification. Figure 4
shows the framework of the template matching process. The
steps of the target identification process are as follows.

(1) In the training stage, the user is required to fixate on the
reference target. In our experiment, the reference target
is target T20. EEG data within N stimulus cycles are
collected as xn(t), n = 1, 2,...,N .

(2) A reference template Mr(t) is obtained by averaging over
k cycles. In our experiment, the reference template is the
template for T20, i.e. M20(t):

M20(t) = 1

N

N∑

n=1

xn(t). (1)

(3) The templates of all targets are obtained by shifting the
reference template:

Mk(t) = M20(t − (τk − τ20)) k = 0, 1, 2 . . . , 31 (2)

where τk − τ20 indicates the time lag between target k and
the reference target T20.

(4) For a segment of EEG data x(t), the correlation coefficient
ρk between x(t) and the template Mk(t) is calculated as

ρk = 〈Mk(t), x(t)〉√〈Mk(t),Mk(t)〉〈x(t), x(t)〉 (3)

where 〈x, y〉 indicates the product of x and y.
(5) The fixation target is identified by selecting the target that

maximizes the correlation coefficient.

Target identification was performed using an online
analysis program developed using Microsoft VC++. A
synchronous trigger signal indicating stimulus onset initiates
accumulation of EEG data in a buffer. Data are
accumulated throughout the stimulus period, followed by
target identification. The identification result is then sent
to the stimulus presentation program through TCP/IP and
visual feedback is provided by highlighting the identified
target. Feedback presentation and shifting of gaze to the next
target occurs throughout the subsequent stimulus period. Data
collected in this period is discarded.

2.3. Multichannel processing

In our previous study [5], an exhaustive method was used for
selecting the optimal bipolar channel [5]. The Oz channel,
which had the highest VEP amplitude, was fixed as signal
channel, and the bipolar reference channel, which maximized
training accuracy, was selected from the remaining channels.

A multichannel method can improve the identification
accuracy of VEP BCIs [6, 7]. Canonical correlation analysis
(CCA) is a multichannel data processing approach that has
been successfully used in the SSVEP BCI [6]. Here, we
proposed a similar method for the c-VEP BCI.

In the training stage, the user is required to fixate on the
reference target, and multichannel EEG data within k stimulus
cycles are collected as X. Averaging the segments of data from
the k stimulus cycles, the multichannel evoked response R can
be obtained.

The signal component S of the original EEG data can be
obtained by replicating the evoked response R k times:

S = [R R · · · R]. (4)

In this case, the CCA method can be employed to optimize
the system. This involves finding linear transformations Wx

and Ws which maximize the correlation between projected X
and S [6]:

Max
Wx,Ws

WT
x XST Ws√

WT
x XXT Wx · WT

s SST Ws

. (5)

In practice, we use Wx as spatial filter coefficients for online
data processing. In our system, nine electrodes over the
occipital region (O1, Oz, O2, P3, Pz, P4, PO7, POz, and
PO8) were selected.

2.4. Experiment and data

Two systems with 16 targets and 32 targets were tested
separately. Five healthy adults with normal or corrected-to-
normal vision participated in the experiment after giving their
informed consent. They were randomly selected from subjects
with experiences in BCI experiments. For each system, the
experiment was divided into a training stage and a testing
stage. In the training stage, subjects were required to fixate on
the reference target for about 200 stimulus periods. Data from
the training stage was used for offline analysis to calculate the
spatial filter weights and the reference template for online use.
In the testing stage, each subject was asked to input a sequence
of 64 characters. The online accuracy and corresponding
ITR were used for evaluating the system performance. In
the calculation of ITR, the time cost of each selection is 2.1s
(including two stimulus periods, one for data acquisition and
one for target identification, feedback presentation and gaze
shifting).

A dataset involving 12 subjects from our previous study
was used for testing the performance of the multichannel
method [5]. The EEG signals were measured from 47 channels
located over parietal-occipital cortex in the training stage of
the 16-target c-VEP BCI.
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Figure 5. Illustrations of the principle of equivalent neighbors. (a) The blue boxes marked the two targets (T9 and T30) and the boxes of the
red dash line indicated the eight neighbors of the two targets. (b) The time lags between the neighbors and the target (the symbol ‘+’
indicates ‘ahead’, the symbol ‘−’ indicates ‘behind’). For example the left neighbor of T9 was T8 which has a time lag of τs ahead of T9.
So the time lag of the left neighbor is +τs .

Table 1. Comparison between two identification methods.

Accuracy of Accuracy of
Subject bipolar method multichannel method

S1 0.91 0.99
S2 0.98 0.99
S3 0.98 0.98
S4 0.98 0.97
S5 0.92 0.95
S6 0.98 0.97
S7 0.99 0.98
S8 0.79 1.00
S9 0.95 0.96
S10 0.96 0.99
S11 0.93 0.98
S12 0.98 1.00
Mean 0.95 ± 0.05 0.98 ± 0.02

3. Results

Table 1 compares the training accuracy of the optimal
bipolar method and the multichannel method for each subject.
The average training accuracy of the multichannel method
is significantly higher than the optimal bipolar method
at the 10% significance level (mean: 95% versus 98%,
p = 0.06).

Table 2 lists the test results of the two c-VEP BCI systems.
Although the online accuracy of the 32-target system is lower
than the 16-target system (85 ± 5%, versus 92 ± 3% p = 0.04),
the ITR of the 32-target system outperforms the 16-target
system (108 ± 12.0 bits min−1 versus 96 ± 6.3 bits min−1,

p = 0.08). For a single subject, a maximum ITR of
123 bits min−1 was achieved in the 32-target system.

4. Discussion

4.1. Principle of equivalent neighbors

In a c-VEP BCI, the arrangement of targets satisfies a principle
of equivalent neighbors. Figure 5 illustrates the principle. As
shown in figure 5 (a), a central target has eight neighboring
targets (e.g., T9). With the inclusion of complementary non-
targets, a peripheral target also has eight neighbors consisting
of some targets and some complementary non-targets (e.g.,
T30). For each target, all neighbors keep fixed time lag
relationships (figure 5 (b)). For example, the stimulus
sequence of the left neighbor always has a time lag of τs

ahead of the target sequence; the stimulus sequence of the
bottom neighbor always has a time lag of 8τs behind of the
target sequence, and so on.

A previous study indicated that stimuli outside the foveal
visual field can also contribute to VEP [9]. Therefore, the
c-VEP combines evoked responses to the target as well as its
neighbors. According to the principle of equivalent neighbors,
c-VEPs corresponding to different targets are equivalent
except for the time shift. Thus, unlike SSVEP BCIs, no gap is
required between stimuli, allowing us to place a larger number
of targets within a given area.

Table 2. Performance of the c-VEP BCIs.

System of 16 targets System of 32 targets

Subject Training accuracy Online accuracy ITR (bits min−1) Training accuracy Online accuracy ITR (bits min−1)

S13 0.99 0.88 87 0.95 0.86 109
S14 0.95 0.92 97 0.97 0.92 123
S15 0.95 0.91 93 0.90 0.80 96
S16 0.99 0.95 104 0.88 0.80 96
S17 0.97 0.94 98 0.95 0.89 116
Mean 0.97 ± 0.02 0.92 ± 0.03 96 ± 6.3 0.93 ± 0.04 0.85 ± 0.05 108 ± 12.0

4



J. Neural Eng. 8 (2011) 025015 G Bin et al

4.2. Information transform rate

In 1984, Sutter first reported the design of a c-VEP BCI with
64 targets [8]. A later publication applied this system to a
single patient with implanted electrodes and reported a spelling
speed of 10 to 12 words/min. [9]. However, performance was
not evaluated for non-invasive EEG. Moreover, because the
system needed a specially designed hardware platform, which
included a display generator, a processor and an amplifier
module, the application of the system was limited. In our
previous study, the c-VEP BCI system with 16 targets achieved
a mean ITR of 92.8 ± 14.1 bits min−1 [5]. In this study,
the ITR of the c-VEP BCI was further improved to 108.0 ±
12.0 bits min−1 due to the employment of more targets and
the multichannel identification method. To our knowledge,
the proposed system represents the fastest EEG-based BCI
reported to date.

As shown in table 2, the average ITR of the 32-target
system is significantly higher than the 16-target system
(108 bits min−1 versus 96 bits min−1). For subjects s13, s14
and s17, the increment is around 20 bits min−1. However,
there is no obvious difference for the other two subjects
between the two systems (93 bits min−1 versus 96 bits min−1

and 104 bits min−1 versus 96 bits min−1 for s15 and s16
respectively). The online accuracy of the two subjects dropped
significantly when using more targets (91% and 95% in the
16-target system versus 80% in the 32-target system). The
decrease of the accuracy may be caused by a non-sharp
autocorrelation function of the template. The time lag between
two consecutive targets for the 32-target system and the 16-
target system is 2 frames (33.3 ms) and 4 frames (66.7 ms)
respectively. Thus, when the autocorrelation function of the
template is not sharp enough, the target may be more easily
misidentified for shorter time lags.

4.3. Further improvement

The screen refresh rate influences the system performance.
On one hand, a decrease of the refresh rate will increase the
length of a stimulus cycle, leading to a reduction of ITR. On
the other hand, an increase of the refresh rate can intensify the
nonlinearity between the stimulus sequence and the evoked
potential [8]. Therefore, optimizing the screen refresh rate
may improve system performance.

The selection of the stimulus sequence is another direction
for future work. In the c-VEP BCI system, a visual evoked
response with a sharp autocorrelation function is expected.
In previous studies [5, 8, 9], m-sequences were generally
utilized for their good auto-correlation properties. The
system performance might be improved when using other
sequences with good autocorrelation properties (e.g. almost
perfect sequences [10]). In fact, a sequence with a sharp
autocorrelation function cannot ensure the same sharpness
of the autocorrelation function of the evoked potential since

the visual system is not a linear system. Thus, by further
elucidating the encoding/decoding mechanisms of the visual
pathway, it may be possible to find an optimal sequence that
would further improve performance of the c-VEP BCI system.

5. Conclusion

In this paper, the basic principle and implementation
of a high-speed c-VEP BCI system are described in
detail. The proposed c-VEP BCI shows a high ITR of
108 ± 12.0 bits min−1, exceeding the previous record of EEG-
based BCIs [3]. We believe that our progress will accelerate
the development of BCI products that meaningfully contribute
to helping the severely disabled.
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