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Abstract
Objective. Today, the brain–computer interface (BCI) community lacks a standard method to
evaluate an online BCI’s performance. Even the most commonly used metric, the information
transfer rate (ITR), is often reported differently, even incorrectly, in many papers, which is not
conducive to BCI research. This paper aims to point out many of the existing problems and
give some suggestions and methods to overcome these problems. Approach. First, the
preconditions inherent in ITR calculation based on Wolpaw’s definition are summarized and
several incorrect ITR calculations, which go against the preconditions, are indicated. Then, the
issues affecting ITR estimation during the test of online BCI systems are discussed in detail.
Finally, a task-oriented online BCI test platform was proposed, which may help BCI
evaluations in real-world applications. Main results. The guidelines for ITR calculation in
online BCIs testing are proposed. The platform executed in the Beijing BCI Competition 2010
shows that it can be used as a common way to compare the online performances (including the
ITR) of existing BCI paradigms. Significance: The proposed guidelines and task-oriented test
platform may reduce the uncertainty and artifacts of online BCI performance evaluation; they
provide a relatively objective way to compare different BCI’s performances in real-world BCI
applications, which is a forward step toward developing standards for BCI performance
evaluation.

(Some figures may appear in colour only in the online journal)

1. Introduction

A variety of metrics have been proposed to evaluate the
performance of brain–computer interface (BCI) systems, such
as classification accuracy, Cohen’s Kappa, sensitivity and
specificity, positive and negative predictive value, information
transfer rate (ITR), the efficiency and the utility (Billinger
et al 2013, McFarland and Krusienski 2012, Schlögl et al 2007,
Bianchi et al 2007, Quitadamo et al 2012, Dal Seno et al 2010).
The ITR has been the most commonly applied metric to assess
the overall performance of BCIs (McFarland and Krusienski

2012). The most popular method for ITR calculation in BCI
research was defined by Wolpaw et al in 1998, which is a
simplified computational model based on Shannon channel
theory under several assumptions (Wolpaw et al 1998 and
2002, Shannon and Weaver 1964, Pierce 1980, Allison
2010):

B = log2 N + P log2 P + (1 − P) log2[(1 − P)/(N − 1)]

(1)

where B is the ITR in bit rate (bits/symbol), N is the number of
possible choices and P is the probability that the desired choice
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Figure 1. The model of BCI information transfer. Each of the symbols can be encoded to a pattern of brain signals, which are the BCI inputs
and will be decoded by BCI. M is the total number of symbols. p (wi) (i = 1, 2, . . . M) is the probability of ith symbol to be selected.
xi (i = 1, 2, . . . N) is the ith input. In general, M is equal to N. But, if the system has extra input (e.g. idle state), N will be larger than M.
yi (i = 1, 2, . . . N) is the ith output of BCI. p

(
y j/xi

)
is the probability that the ith input is recognized as jth input. When i is equal to j, the

output is correct. p (yi/xi) is the classification accuracy.

will be selected, also called target identification accuracy or
classifier accuracy.

Generally, Bt in bits/min is used to indicate the BCI ITR

Bt = B ∗ (60/T ) (2)

where T (seconds/symbol) is the time needed to convey each
symbol.

Sometimes the ITR is calculated based on offline analysis
(Meinicke et al 2002). However, even if the ITR is correctly
calculated based on offline data, it may have little bearing
on online performance in field settings (McFarland et al
2003). Instability over time, noise sources and distraction
from feedback or real world events may impair performance in
online operation. Thus, the gold standard for evaluating BCIs is
the effectiveness in real-time, closed-loop online performance
(McFarland and Krusienski 2012). This paper focuses on the
problems of ITR estimation in online BCIs.

The following problems with online BCIs’ ITR estimation
still exist:

(1) Equation (1) is valid under several strict assumptions.
Unfortunately, those required preconditions are sometime
ignored in literature, which leads to incorrect ITR
estimation.

(2) During online tests, some factors (e.g. the small number
of test trials and the time that users need to shift between
targets) have an effect on estimating parameters P and T ,
and hence on estimating the ITR. These details have not
been adequately addressed in many articles that estimate
the ITR in online BCIs (see, for example, comments
in Sellers and Donchin (2006) and Allison and Neuper
(2010)).

(3) A general test platform for online BCI performance
evaluation (including ITR estimation) is lacking. The
platform should be effective for the online implementation
of different BCI paradigms.

This paper aims to solve the above problems. In this paper,
first the preconditions of using equation (1) for ITR calculation
are summarized and the types of BCIs that cannot use equation
(1) for ITR calculation directly are discussed. Second, a
number of factors that can affect parameter estimation during
online tests are analyzed, leading to a proposed guideline for
online parameter (P and T ) estimation. Ultimately, based on

these issues, a task-oriented BCI test platform was developed
and used in the Beijing BCI Competition 2010. This platform
can compare different parameters (including the ITR) of
different BCIs in online operation.

2. ITR calculation using Wolpaw’s definition

2.1. Preconditions

The model of BCI information transfer is illustrated in figure 1.
A number of papers have discussed BCI ITR calculation

based on equation (1) (Wolpaw et al 1998, 2002, Kronegg et al
2003, 2005, Fatourechi et al 2006). The preconditions of using
equation (1) are summarized as follows.

(1) BCI systems are memory-less and stable discrete
transmission channels.

(2) All the output commands are equally likely to be selected
(p (wi) = 1/N).

(3) The classification accuracy is the same for all the target
symbols (p(yi|xi) = p(y j|x j)).

(4) The classification error is equally distributed
among all the remaining symbols (p(y j|xi) j �=i =
(1 − p(yi|xi))/(N − 1)).

Actually, precondition (1) is the basic one and
precondition (2) suggests that BCI systems do not consider
an idle state (N = M), because the probability of selecting
an idle state is not the same as selecting other symbols. In
addition, to ensure that the ITR increases monotonously with
P, the classifier accuracy P should be above the chance level.
Normally, most BCIs meet these conditions in practice.

The important preconditions listed above should not
be ignored before calculating the ITR using Wolpaw’s
definition. In the following section, the problems involving
ITR calculation using Wolpaw’s definition in different types
of online BCI systems were discussed in detail.

2.2. Problems involving ITR calculation using Wolpaw’s
definition in online BCI systems

2.2.1. Synchronous BCI. In synchronous BCI systems, the
timing of the BCI operation is determined by the system. The
BCI provides cues that instruct the user when to choose a target
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character, when to perform mental tasks to send a message or
command and perhaps when to rest or perform other actions
(Birbaumer et al 1999, Wolpaw et al 2002, Pfurtscheller and
Neuper 2001, Boostani et al 2007, Bin et al 2011). Some
synchronous BCIs may nonetheless allow different numbers of
selections per minute, such as when variable numbers of trials
are averaged together to identify target characters (Jin et al
2011). According to the preconditions above, synchronous
BCIs can use equation (1) for ITR calculation.

However, in ITR calculation for online synchronous BCIs,
some uncertainty affects the estimation of parameters in
equation (1) (e.g. the number of test trials affects the estimation
of P, and the target shifting time affects the estimation of T).
In section 3, we will discuss the issues that affect parameter
estimation in online synchronous BCIs and propose some
guidelines.

2.2.2. Asynchronous BCI. Many BCIs operate in
asynchronous (or self-paced) mode (Townsend et al 2004,
Birch et al 2002, Fatourechi et al 2008, Millán and Mouriño
2003, Scherer et al 2007, Mason and Birch 2000, Roberts
and Penny 2000, Tsui et al 2009, Krauledat et al 2004). In
this mode, users can choose to control BCIs whenever they
want. The timing of system operation, including the number
of selections per minute, may vary dramatically depending on
the user. Also, in an asynchronous BCI, users may choose not
to send any messages or commands (an idle state) for long
periods. Any message or command sent during such periods
reflects a false positive. Hence, the probability of selecting
the idle state may be very different from the probability
of selecting specific commands. Therefore, asynchronous
BCIs do not meet the preconditions of equation (1) (against
precondition (2)).

Theoretically, the ITR for asynchronous BCIs can be
calculated using general equations of the mutual information
(Townsend et al 2004, Birch et al 2002, Fatourechi et al 2008,
Millán and Mouriño 2003, Scherer et al 2007, Mason and Birch
2000, Roberts and Penny 2000, Tsui et al 2009, Krauledat
et al 2004). However, in practice, it is difficult to know the
prior probability and the information transfer matrix exactly.
Asynchronous BCIs often report performance without using
an ITR at all. For example, authors might report the time
required to complete a sequence of actions, such as navigating
through a virtual environment (Scherer et al 2008). Ideally,
measures of asynchronous BCI performance should include
a non-control state to evaluate how well a BCI system can
“sleep” when users do not want to use it (Ortner et al 2011).
Indeed, recent surveys of severely disabled BCI users have
confirmed that an effective “standby” or “sleep” mode is very
important (Huggins et al 2011, Blain-Moraes et al 2012).

2.2.3. Special types of BCIs. One of the assumptions in
Wolpaw’s ITR calculation is that the BCI systems are memory-
less and stable discrete transmission channels. However, this is
not always the case. In some memory BCI system, the output
at any time is not just related to the input at that time, but also to
prior inputs and outputs (e.g. Volosyak 2011). BCIs might also
provide different selections based on prior selections, such as

only presenting letters that can legally follow preceding letters
in that language (Wills and Mackay 2006). The statistical
properties of the transfer channels in these BCIs may change
over time. All these types of BCIs (hereafter referred to as
non-stable BCI) may achieve high performance, however it
is not valid to use equation (1) for ITR calculation without
appropriate modification (as they violate precondition (1)).

3. Guidelines for parameter estimation in online
synchronous BCIs

In online synchronous BCIs’ ITR calculation, the critical
issue is to determine three parameters: the target identification
accuracy (P), the time needed to output a symbol (T) and the
total number of optional symbols (N). Normally, N is obvious
in a system. The estimation of P requires an online test. T
may be fixed, such as in classical P300 BCIs (e.g., Farwell and
Donchin 1988), or may require testing, such as if the system
continues monitoring the user’s brain activity until reaching an
adequate accuracy threshold (Gao et al 2003, Jin et al 2011).

ITR calculation is based on each selection that conveys
meaning, such as a letter, symbol or wheelchair movement
command. Figure 2 presents the general process of online BCI
testing.

After online testing, the classification accuracy P can be
estimated using the following formula

P = x

n
(3)

where n is the total number of test trials and x is the number
of correct trials.

The estimated time T to output one symbol can be found
by calculating the average time for each output symbol, as
illustrated in equation (4).

T = t

n
(4)

However, during online tests, some uncertainty affects the
estimation of these parameters (e.g. the number of test trials
affects the estimation of P and the target shifting time affects
the estimation of T).

In what follows, the issues affecting the estimation of the
parameters and the principles of dealing with the issues will
be discussed in detail.

3.1. Error analysis

3.1.1. The relationship between the error of the ITR and the
error of P. The relationship between the ITR error �Bt

and the error of classification accuracy �P is illustrated in
equation (5)

�Bt = 60

T
· log2

P(N − 1)

1 − P
· �P (5)

As P, N and 1/T increase, the error of the ITR (�Bt ) will
become more and more sensitive to the error of �P. This
means that the same error of P (e.g. �P = +0.05) will have
a greater impact on the ITR error as P, N and especially 1/T
increase (see figure 3).
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Figure 2. BCI ITR online communication components. t is the total time to send a complete message or command sequence and T is the
period to output each symbol. t1 is the pre-cue time, which is the time period from the end of the previous trial to the on-set of a new cue.
During t1, subjects need to prepare for target identification and shift between target symbols. Typically, the brain activity during t1, is
ignored. t2 is the time for BCI operation including brain signal analysis and command output.

Figure 3. Error of the ITR across different P when the error of P
is +0.05.

3.1.2. The relationship between the error of the ITR and the
error of T. The relationship between the IT R error �Bt and
the error of T (�T in equation (6)) is illustrated in equation (6)

�Bt = −60

T 2
· B · �T (6)

As B and 1/T increase, the error of the ITR(�Bt ) will become
more and more sensitive to �T . This means that the same error
of T (e.g. �T = +0.5) will have a greater impact on the error
of the ITR as B and 1/T (especially when 1/T is above 1/5)
increase (see figure 4).

Based on the analysis above, we have the following
suggestion:

Suggestion 1. When reporting the ITR, N, P and T should
be explicitly identified. As P, N and 1/T increase, the estimated
accuracy of P and T should merit more attention to ensure
accurate calculation.

Actually, during online tests, the number of test trials will
affect the estimated accuracy of P and the time for switching
between two target symbols will affect the estimation of T.
Henceforth, these issues will be discussed.

Figure 4. Error of the ITR across different T when the error of T
is +0.5.

3.2. P

3.2.1. The number of test trials. To effectively estimate
chance performance, the number of input symbols must be
adequate (Müller-Putz et al 2008); without enough input
symbols, ITR estimation is not valid ( Billinger et al 2013).

Accurate estimation of the classification accuracy (P)
relies on a large number of test trials. However, it is impossible
to input infinite samples. How many test trials are adequate?
Answering this question requires assessing the relationship
between the number of test trials and the estimated accuracy
of classification accuracy (P).

This problem can be abstracted into an estimation of a
parameter in a binomial distribution. Consider the Binomial
distribution as follows:

x ∼ B(n, P) (n � 1, 0 < P < 1) (7)

where x is the number of correct trials during tests, n is the total
number of test trials and P is the real classification accuracy.
Hence, x

n represents the estimated classification accuracy.
From the confidence interval point of view, when

estimating classification accuracy P, in order to ensure that
the width of the confidence interval at the 1-α level is no more
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Table 1. n0 across different L and x
n .

L

x
n 0.2 0.1 0.02

0.5 93 381 9601
0.6 89 366 9217
0.7 78 320 8065
0.8 60 245 6145
0.9 37 141 3461

than L, the minimum number (n0) of input symbols is as shown
in equation (8) (appendix A).

n0 = z2
α/2

L2
∗

[[[
2 · x

n
·
(

1 − x

n

)]
− L2

]

+
√[[

2 · x

n
·
(

1 − x

n

)]
− L2

]2

+ L2 · (1 − L2)

]
(8)

where x
n represents the estimated classification accuracy.

If α = 0.05, the confidence level is 0.95. For different L
and x

n , the corresponding n0 is as listed in table 1.
Based on the analysis above, a suggestion is given as

follows.
Suggestion 2. To ensure an accurate estimation of classifier

accuracy, enough test trials are needed. Hence, when the
ITR is reported, the number of test trials should also be
reported.

Fortunately, when P is above 0.5, the required number (n0)
of the test trials decreases monotonously with P (appendix B).
However, to ensure an accurate estimation of P, the required
number (n0) still needs to be considered.

3.2.2. Error correction. According to the preconditions of
using equations (1) and (3), the error symbols during the input
process should not be corrected.

Similarly, a proper estimate of the ITR should not
incorporate software tools that can increase effective
throughput, such as error correction, word completion or goal-
directed behavior (Allison et al 2007, Cincotti et al 2008,
Allison 2010, Jin et al 2011). Any such tools should be
described in adequate detail. If desired, the additional ITR
estimate methods or other metrics could be generated that do
account for such tools (Ferrez and Millán 2005, Bianchi et al
2007, Quitadamo et al 2012, Dal Seno et al 2010).

Suggestion 3. Authors should include an ITR estimation
that does not include error correction or other methods to
increase effective throughput. If a system does employ error
correction, authors should adequately describe the methods
and results and, if desired, include a modified ITR as well.

3.2.3. The occurrence probability of input symbols.
According to precondition (2), during an online test, the
occurrence probabilities of the input symbols should be the
same (p (wi) = 1/N). Therefore, to ensure that each input
symbol is equally likely to be selected, BCIs should better be
tested with randomly generated symbols from all N symbols.
If the optional symbols do not share the same probability of

being selected, a modified formula should be developed to
calculate the ITR.

Suggestion 4. To ensure that each input symbol is equally
likely to be selected, BCIs should ideally be tested with
randomly generated symbols from all N symbols.

3.3. T

The timing of a BCI operation is determined by the system
in synchronous BCIs. However, as shown in figure 3, a pre-
cue time (t1) is always needed so that subjects can prepare for
target identification and shift between targets. In practice, t1
could be thought of as either a part of a BCI operation or not.
The inclusion of t1 can substantially influence T, especially
when t2 is short (e.g. t2 < 5 s); estimating the ITR becomes
quite different between these two cases (see figure 4). The ITR
calculation with t1 reflects the comprehensive performance of
the BCI, including the subject’s effectiveness for the system,
while the ITR calculation without t1 reflects a hypothetical
BCI performance. Some articles estimate the ITR both with
and without t1 (Townsend et al 2010, Jin et al 2011).

Suggestion 5. When reporting ITRs, authors should
explain all of the factors in the ITR calculation, such as whether
t1 is included. Reporting different values of ITR is acceptable
if this principle is maintained, which would allow readers to
compare ITRs more effectively across different groups and
calculation methods.

3.4. N

According to Wolpaw’s definition, N is the number of users’
possible selections, which is the same as the number of possible
outputs in synchronous BCIs. In order to meet the requirement
of precondition (1), N should remain constant during BCI
operation.

In addition, some BCIs (such as menu-based BCIs or
multiple-step decision BCIs) face one decision: whether N
is determined as the number of possible selections in each
decision-making step or as the total number of users’ possible
selections (the total number of possible outputs by BCIs).

We posit that BCIs can be thought of as a black box. From
the whole system angle, for such BCIs, N can be determined
as the number of users’ total possible selections instead of the
number of possible selections in each decision-making step,
as long as they meet the requirement of the preconditions of
equation (1). This view is consistent with our comment at the
beginning of section 3 and supported by others (McFarland
and Krusienski 2012): N should be based on the number of
end selections, or meaningful outputs, rather than the stages
necessary to get there.

Suggestion 6. N should remain constant throughout the
whole test.

3.5. Subjects

BCI performance (including the ITR) varies across subjects.
However, in some papers the ITR was based on an elite subset
of subjects who performed well (Gao et al 2003, Billinger et al
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2013), which obviously could not reflect the BCI performance
across a large population.

To objectively reflect BCI performance across different
subjects, the following suggestion is given.

Suggestion 7. Results should be presented from each
subject tested, including individual ITRs and statistical results.
If any data were rejected from further analyses, the amount of
data and the reason(s) for rejection should be described. If
results are presented from subject(s) who were exceptional,
this fact should be noted.

4. A platform for online BCIs performance testing

4.1. Necessity of a test platform

It is well believed that the ultimate test of any BCI is how it
performs in actual online operation (McFarland and Krusienski
2012). As we discussed above, there are many issues affecting
the ITR estimation of online BCIs. Different papers report
different ways to calculate it. A general platform which
is effective for the online implementation of different BCI
paradigms may help to reduce the uncertainty and artifacts
and provide a relatively objective way to compare different
BCIs’ online performances. In addition, imposing different
tasks which simulate the applications in everyday life should
be valuable for evaluating real-world BCI applications. Based
on the above considerations, we developed a task-oriented test
platform which is intended for the public to benefit the BCI
community.

4.2. Overview of the test platform

This platform was successfully implemented during the
Beijing BCI Competition 2010 hosted by our lab in
Tsinghua University (Supported by the National Nature
Science foundation of China). Thirty-five teams from 17
universities participated in this competition. This was an
online competition of different BCI systems with the proposed
general test platform.

To evaluate the performance of online BCIs in real
applications, this BCI test platform was designed to be task-
oriented. In the competition, the three tasks included: (i)
switching control; (ii) character input (typing); and (iii) virtual
automobile control. All three tasks were chosen to simulate
the real-world BCI applications. The tasks (i) and (iii) will be
briefly introduced hereinafter. Task (ii), which is convenient
for ITR evaluation, will be discussed in subsection 4.3.

The switching control task is designed in a home
environment, as shown in figure 5. There are six switches
related to different appliances (TV, DVD, lamp, curtain, door
and air conditioner labeled from ‘1’ to ‘6’). The system accepts
six commands from ‘1’ to ‘6’ for the corresponding switch
control. The individual switch will change the ON/OFF state
once the system receives the corresponding commands. The
participants have to turn on all the devices. The winner is the
participant who takes the least time to complete the task.

The virtual automobile control task is designed to test
the device control abilities with BCIs. Participants are asked
to control the virtual automobile by adjusting its speed and

Figure 5. The switching control task. In the home environment,
there are 6 switches related to different appliances (TV, DVD, lamp,
curtain, door and air conditioner labeled from ‘1’ to ‘6’). The
participants are asked to turn on all the devices.

Figure 6. The virtual automobile control task. Participants are asked
to control the virtual automobile by adjusting its speed and direction
to pass the stations from ‘1’ to ‘6’, sequentially assigned by the test
platform, within 5 min.

direction to pass the stations from ‘1’ to ‘6’ sequentially.
Figure 6 shows an example of the route (the sequential
destinations). When the automobile passes a destination with a
proper speed, the participant gets 50 points. The task is limited
to 5 min. If the participants finish the test within 5 min, they
earn one point for each remaining second. The winner is the
one who gets the highest score.

The software for this general platform can be
downloaded for free from the website: http://166.111.
152.146/bci/Default.aspx.

4.3. The typing task in the test platform

In the character input (typing) task, a long enough random
sequence of target symbols, chosen from a vocabulary of
total 40 different kinds of symbols (26 letters, 10 digits and 4
punctuation marks), were presented to the subjects, as shown
in figure 7. Subjects were asked to input symbols sequentially.
Hence, this was a classic copy-spelling task (Farwell and
Donchin 1988, Birbaumer et al 1999, Bin et al 2011, Jin
et al 2011). The test time duration was six minutes. Subjects
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Figure 7. The task (ii): character input. The top row contained a long enough random sequence of target symbols. The symbols in the
second row were the input symbols (based on the BCI classifier results). If the input symbol matched the target symbol, the subject earned
one point. Otherwise, the subject lost one point.

Table 2. Test results of the typing task in BCI Competition 2010.

Team Amplifier Type Paradigm P (%) T (sec/sym) Score ITR (bits/min)

1 Neurosan-40 synchronous P300 98.61 5 70 61.7
2 BrainProducts synchronous P300 95.92 7.34 45 39.7
3 Biosemi synchronous Motion 82 7.2 32 30.8
4 Neurosan-40 synchronous P300 85.71 8.57 30 27.8
5 TsinghuaMiPower synchronous SSVEP 80.49 8.78 25 24.5
6 TsinghuaMiPower synchronous SSVEP 87.88 10.9 25 23.8
7 G-Tec synchronous SSVEP 55.32 7.66 5 15.4
8 SYMTOP synchronous P300 56.67 12 4 10.2

could use any type of BCI to complete the task. Actually, the
competition encouraged a variety of different approaches (such
as P300 or SSVEP), feature selection methods, classification
techniques, etc. The subject’s BCI system sent the code
reflecting the chosen symbol to the server of a test platform
through TCP/IP.

A number of metrics can be used to evaluate the
performance of online BCIs, including P, T, ITR, scores (e.g.
subjects were awarded one point if the symbol selected by the
BCI matched the target symbol and lost one point if they did
not match) and so on.

This test platform has considered the details in online
parameters estimation discussed above. In summary, it has the
following advantages:

(1) After a 6 min test, the number of test trials is determined,
so the confidence level of P can be calculated. For fast
BCIs, the test time is long enough to ensure that the task
involves a relatively large number of trials, which allows
a relatively accurate estimate of P and the ITR.

(2) The time t1 for switching between two target symbols is
explicitly included in T.

(3) The target symbols are randomly generated so that
p (wi) = 1/N is valid.

(4) No correction is allowed during the online test, which is
critical for a proper estimation of classification accuracy.

(5) It is a task-oriented test platform supporting tests for
different online BCI paradigms. For synchronous BCIs,
the ITR can be calculated using equation (1). For other
online BCIs (such as asynchronous BCI) whose ITR
cannot be calculated using equation (1), the scores they
get in the task can be seen as a way to evaluate their
performance from a practical perspective. Further, it can
be proved that the scores positively correlate with the
speed and classification accuracy of BCIs, and hence with
the ITR (appendix C).

In the Beijing BCI Competition 2010, eight teams
from different institutions participated in the typing task

competition. Subjects tried the typing task with various types
of BCI approaches, including different P300, SSVEP and
motion-VEP BCIs. The results are illustrated in table 2.

The platform is flexible in several aspects. The parameters
of the platform can be adjusted to test the performance of BCIs
according to a variety of metrics. First, by adjusting the length
of the test time, we can test the online performance of BCIs
across time. Second, the number of optional input symbols can
be adjusted according to the demands of different tasks. In the
competition, from a practical perspective, N is set at 40 for all
the BCIs in the character input task, so BCIs have to adopt
measures to complete the task. However, in this situation, the
BCIs may not achieve their best performance. Hence, strictly
speaking, to evaluate the best performance (or the ITR) of
BCIs, it is better that N should be adjusted according to each
BCI’s demand. Third, according to different tasks, the ratio
of the awarded points (when the input is correct) and the
lost points (when the input is wrong) can also be adjusted
to evaluate the performance of BCIs in special situations. For
example, if errors are very problematic, the number of points
lost for each error could be increased.

5. Discussion

5.1. Theoretical calculation of the ITR

As discussed above, asynchronous BCIs and non-stable BCIs
cannot use equation (1) for ITR calculation directly. Among
them, the ITR for asynchronous BCIs can be calculated using
general equations based on mutual information (Nykopp 2001,
Kronegg et al 2005, Fatourechi et al 2006). However, in
practice, it is difficult to know the prior probability (p (wi)

and the element of the information transfer matrix p(y j/xi)

exactly.
For non-stable BCIs, the property of the transfer channel

may be more complex. Hence, ITR calculation will be more
difficult in practice.
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Actually, as we discussed in section 2, equation (1) is
based on some preconditions. However, some preconditions
(e.g. preconditions (3) and (4)) cannot be strictly accorded
to the fact. Hence, whatever the parameter’s estimation
accuracy a is, the calculated BCI ITR using equation (1) is
an approximation of the truth.

5.2. Comprehensive evaluation of BCI

Accuracy versus ITR: some users may prefer a system that
is highly accurate over one that maximizes the ITR (Wolpaw
et al 2002; Billinger et al 2013). Therefore, an ‘improvement’
to the system that allows more selections and a higher overall
ITR at the expense of reduced accuracy may annoy the user.
On the other hand, if new BCI systems feature improved tools
for error correction, people might not mind a lower accuracy
because many errors are corrected later. In most BCI systems,
it is relatively easy for trained experts to modify one or more
of the parameters that influence the ITR. Ideally, however, BCI
systems should be flexible to allow the user and any caretakers
to easily modify relevant parameters without expert help.

The efficiency and the utility: in 2007 and 2010, two new
metrics were proposed, the efficiency (Bianchi et al 2007,
Quitadamo et al 2012) and the utility (Dal Seno et al 2010)
that emphasize the contribution of the control interface (Mason
and Birch 2003) and the final application of the system. These
task-oriented metrics are suitable for evaluating the overall
performance of a BCI system with error correction strategies
and identify optimal parameters as well as operating settings.

Hence, the ITR is only one of many factors relevant to BCI
evaluation. There are dozens of factors that could influence a
decision about which BCI system is better overall (Allison
2010). These factors may vary substantially across different
users, BCIs and situations. Any comprehensive evaluation of
BCIs should assess many other aspects such as cost, the need
for outside support, invasiveness, training time, ease of use,
comfort, etc.

However, the BCI community seriously lacks a common
way for defining the performance of BCI systems and, even
within the same metric, different papers report different
ways to calculate it. To overcome this problem, first a
common language for communication is needed. A clear set
of definitions that define each entity of a BCI may be very
helpful in this regard (Mason and Birch 2003). Second, an
open data set (such as the BCI competition data set) is needed,
which can be extremely useful in comparing different models
and different feature selection methods as offline evaluations
(McFarland and Krusienski 2012). Third, a general online test
platform for online BCIs performance evaluation is needed,
which would be very helpful to reduce the uncertainty and
artifacts; this would provide a common and relatively objective
way to compare BCI performance across different real-world
applications.

5.3. Practical value of the platform

As discussed in 5.1 and 5.2, two problems exist: (i) a theoretical
calculation of the ITR without error is almost impossible in

practice; and (ii) a comprehensive evaluation of BCIs involves
a lot of factors and lacks standardizations.

The test platform we developed aims to help solve the
above two problems. First, besides the ITR, the task-oriented
test platform emphasizes the practical value of BCIs, which
is consisted with other papers’ views (Bianchi et al 2007,
Quitadamo et al 2012, Dal Seno et al 2010). It allows
an evaluation of different online BCIs from the practical
perspective, which is especially useful for BCIs where the ITR
cannot be calculated using equation (1). Second, the platform
is flexible in several aspects. The parameters of the platform
can be further adjusted to test BCI performance according
to a variety of metrics, which is helpful for a comprehensive
evaluation of a BCI. In addition, this test platform can be used
as a research platform to study the problems in online BCIs
during practical application (e.g. the trend of online BCIs’
performance and the change of the user’s brain state across
time can be studied by adjusting the length of the test time).

Certainly, the current platform may need further
improvement. We encourage the researchers in the BCI
community to use this platform and would appreciate any
suggestions to improve the platform.

6. Conclusion

In summary, this paper addresses the issues critical to
objectively understanding the ITR and describes objective
methods for its estimation in online BCIs. Many issues affect
ITR calculation, which are often disregarded, and many groups
use different methods. Hence, when calculating the ITR, we
urge authors to make a thorough and informative estimation,
further they should describe all the conditions under which
the ITR is calculated. Authors may wish to provide different
measures of the ITR to facilitate comparisons across studies
and groups. In addition, by introducing a task-oriented test
platform that is effective for the online implementation of
different BCI paradigms, this paper provided a relatively
objective way to compare different BCIs’ online performance
to reduce the uncertainty and artifacts and emphasized the
importance of evaluating performance (including the ITR) of
online BCIs from the practical perspective.

More generally, we encourage our colleagues in the
BCI community to work together to agree on standards for
reporting BCI performance and other facets of BCIs. These
standards could include terms, definitions, guidelines, methods
and models to describe the BCI systems and comparison
metrics. Such standards could facilitate effective reporting and
a comparison across groups, which would help newcomers
in BCI research who may be confused by the myriad of
different reporting approaches across groups. Developing such
standards may require significant discussion and compromise,
perhaps mediated through a BCI Society and/or workshops
or other events (Allison 2011; Allison et al 2013; see future-
bnci.org).
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Appendix A. The relationship between the estimated
accuracy of P and the number of test trials

Consider the Binomial distribution as follows:

x ∼ B(n, P) (n � 1, 0 < P < 1)

where x is the number of correct trials during test, n is the total
number of test trials and P is the real classification accuracy
of BCIs. Hence, x

n represents the estimated classification
accuracy.

From the confidence interval point of view, If the width of
confidence interval of x

n at the level 1–α is W , it follows that

W =
√(

2 · n · x
n + z2

α/2

)2 − 4 · (n + z2
α/2

) · n · (
x
n

)2(
n + z2

α/2

)
To ensure that W is no more than L, i.e.

W =
√(

2 · n · x
n + z2

α/2

)2 − 4 · (
n + z2

α/2

) · n · (
x
n

)2(
n + z2

α/2

) � L

It follows that

n �
z2
α/2

L2
∗

[[[
2 · x

n
·
(

1 − x

n

)]
− L2

]

+
√[[

2 · x

n
·
(

1 − x

n

)]
− L2

]2

+ L2 · (1 − L2)

]
Let

n0 = z2
α/2

L2
∗

[[[
2 · x

n
·
(

1 − x

n

)]
− L2

]

+
√[[

2 · x

n
·
(

1 − x

n

)]
− L2

]2

+ L2 · (1 − L2)

]
So, we get n � n0, n0 ∈ Z, n ∈ Z. For example, e.g. when
α = 0.05, zα/2 = 1.96, L = 0.2, x

n = 0.8, then, n0 = 60

Appendix B. The relationship between n0 and P

From confidence interval point of view, let

t = x

n

y = z2
α/2

L2
∗ [[[2 · t · (1 − t)] − L2]

+
√

[[2 · t · (1 − t)] − L2]2 + L2 · (1 − L2)]

And

n0 = �y�
It follows that

∂y

∂t
= z2

α/2

L2
· (−4t + 2)

·
[

1 + [[2t(1 − t)] − L2]√
[[2t(1 − t)] − L2]2 + L2(1 − L2)

]

When

t ∈ (0.5, 1)

then
∂y

∂t
< 0

y and n0 decrease monotonously with t.
When

t ∈ (0, 0.5)

then
∂y

∂t
> 0

y and n0 increase monotonously with t.

Appendix C. The relationship between score and
BCI’s accuracy and speed

The score achieved by the team can be illustrated as follows:

s = x · m + y · n (m � 0, n � 0, x � 0, x > y)

where x is the points earned when the input is correct, while
y is the points earned when the input is wrong. m is the total
number of correct inputs during the whole test (6 min), while
n is the total number of wrong inputs. Finally, s is the score.

m plus n is the total number of inputs during the whole
test (6 min),which is positively correlated with the speed of
BCIs. And the accuracy can be illustrated as follows:

P = m

m + n
(0 � P � 1)

Then it follows that

s = (m + n) · [P · x + (1 − P) · y]

= (m + n) · [(x − y) · P + y]

As the sum of m and n is above zero, if x is greater than y, we
can ensure that s is positively correlated with the accuracy P.

If x is greater than y, and if y is above zero, we can ensure
that s is positively correlated with the sum of m and n, which
is positively correlated with the speed of BCIs.

If x is greater than y, and if y is not above zero, to ensure
that s is positively correlated with the speed of BCIs, it follows
that

P >
y

y − x
(x � 0, y < 0)

In our platform x is 1, while y is –1. So, when P is above 0.5
(all the teams met this requirement) we can ensure that s is
positively correlated with the speed of BCIs.
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2007 The self-paced Graz brain–computer interface: methods
and applications Comput. Intell. Neurosci. 2007 79826
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