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Abstract— Steady-state visual evoked potential (SSVEP)-
based brain-computer interfaces (BCIs) have potential to re-
alize a direct communication between the human brain and
the outside environment in real-life situations. Recently, we
proposed a stimulation approximation approach to increase
the number of visual stimuli that can be realized on a com-
puter monitor. In addition to the fundamental and harmonic
frequencies, the refresh rate-based stimulation approachalso
elicits SSVEPs at other frequencies that are termed interference
frequencies, which are derived from the interaction between the
stimulation frequency and the refresh rate. This study aimsto
investigate properties of the interference frequency components,
and propose to integrate the interference frequency components
to enhance frequency detection of SSVEPs. The results suggest
that the proposed approach could substantially improve the
frequency detection accuracy of SSVEPs.

I. INTRODUCTION

Steady-state visual evoked potential (SSVEP) is the elec-
trical response of brain elicited by repetitive visual stim-
ulation. It has been widely used in electroencephalogram
(EEG)-based brain-computer interfaces (BCIs) due to its
advantages of little user training, ease of use, and high
information transfer rate (ITR) [1]–[5]. In an SSVEP-based
BCI, users are asked to fixate on one of multiple visual
stimuli flickering at different frequencies, and the target
visual stimulus, which a user is gazing at, can be recognized
as the command of an interface through analyzing the
SSVEPs. In this way, an SSVEP-based BCI can directly
translate intentional brain activities to the commands tagged
by stimulus frequencies to control an output device.

Visual stimulus design plays an important role in an
SSVEP-based BCI [3]. Visual stimuli can be presented
using flashing light-emitting diodes (LEDs) or flickers on
a computer screen such as cathode ray tube (CRT) monitor
or liquid crystal display (LCD) monitor [6]. Compared with
the LED based stimulator, the stimulation parameters such as
the amount, color, pattern, size, and position of visual stimuli
can be configured more flexibly when using a computer
monitor. However, the number of frequencies that can be
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presented is always limited by the refresh rate because the
number of frames in a stimulus period has to be a constant
in the conventional frame based stimulus design. In this
case, some applications, which require a large number of
commands, cannot be implemented. Generally, the increase
of the number of commands can lead to an increase of the
ITR [3]. Therefore, it is of great importance to find a solution
to render flickering stimuli with a high frequency resolution
on a computer monitor.

Recently, Wanget al. proposed a method to realize visual
stimulus presentation on a computer monitor for eliciting
SSVEPs with a high frequency resolution by approximating
a flickering rate [7]. They obtained an averaged ITR of
75.4 bits/min in an online SSVEP-based BCI test. The
efficacy of the approach was also proved by other online
BCI experiments [8]. In addition, a recent study performed a
quantitative comparison between the SSVEPs elicited by the
approximation approach and the constant-period approach
[9]. In general, the SSVEPs have the same frequency com-
ponents as the fundamental and harmonics of the stimu-
lating frequency. However, when using the approximation
approach, the SSVEPs also have components at additional
frequencies that are termed interference frequencies (i.e.,
indicating the interference between the stimulating frequency
and the refresh rate in this study). For example, a 10Hz
stimulus signal under a 75Hz refresh rate includes not
only the fundamental component at 10Hz, the second and
third harmonics at 20Hz and 30Hz, but also components
at additional frequencies such as 5Hz, 15Hz, and 25Hz
(See Fig. 1). Therefore, the interference frequencies could
provide additional information for frequency detection ofthe
SSVEPs. To our knowledge, currently, no study has inves-
tigated the characteristics of the SSVEPs at the interference
frequencies, and they were totally ignored in previous BCI
studies [7]–[9]. This study aims to analyze the amplitude
spectrum and scalp distribution of SSVEPs at the interference
frequencies, and develop a new strategy to integrate these
frequency components to enhance frequency detection of
SSVEPs elicited by monitor refresh rate.

II. M ETHODS

A. Visual Stimuli

In the conventional constant-period approach, the number
of frames in a period is a constant. For instance, a 10Hz
visual stimulus under a 60Hz refresh rate can be realized by
the reversing stimulus pattern between black and white every
three frames. However, a flickering frequency by which the



Fig. 1. Time series flickering signals at 10Hz presented on a computer screen with (A) 75Hz and (C) 120Hz refresh rate, (B) the amplitude spectra of
flickering signals, and (D) the amplitude spectra of elicited SSVEPs for a sample subject. The asterisks indicate the interference frequencies.

refresh rate is not dividable (i.e., 11Hz) cannot be realized in
this way. The approximation approach proposed in [7] can
realize such flickering frequency by using a varying number
of frames in a period. For example, 11Hz can be realized
by mixing two types of periods with five or six frames in a
period as ‘1110001110011100011000111...’, where ‘1’ and
‘0’ represents a ‘black’ and ‘white’ frame respectively. Based
on this approach, the stimulus sequencec(f, i) corresponding
to frequencyf can be generated by the following equation:

c(f, i) = square[2πf
i

RefreshRate
] (1)

where i indicates the frame index. In this way, a stimulus
sequence at any frequency up to half of the refresh rate can
be generated. Fig. 1(B) illustrates the amplitude spectra of
the stimulus signals at 10Hz generated by the approximation
approach and the constant-period approach under 75Hz and
120Hz refresh rates, respectively.

B. EEG Aquisition

The visual stimulus was a 5× 5 cm square rendered at
the center of a 21-inch CRT monitor with 75Hz and 120Hz
refresh rates. The stimulus frequencies ranged from 9Hz to
13Hz with an interval of 1Hz. Here, all the visual stimuli
were generated by (1). The stimulus program was developed
in Microsoft Visual C++ using the Microsoft DirectX 9.0
framework and rendered on Windows XP platform.

Ten healthy subjects with normal or corrected-to-normal
vision participated in this experiment. Each subject was
seated in a comfortable chair in front of the monitor and
asked to fixate on the visual stimulus presented at the center
of the monitor for 30 seconds. The experiment consisted of
four sessions, each including ten 30s-long trials for the five
different stimulus frequencies. To avoid visual fatigue, there
was a several-second break between two consecutive trials
and a several-minute break between two sessions. The order
of the frequencies was randomized. EEG data were recorded

using Ag/AgCl electrodes from 256 locations distributed over
the entire head using a BioSemi ActiveTwo EEG system
(Biosemi, Inc.). Electrode locations were measured with
a 3-D digitizer system (Polhemus, Inc.). All signals were
amplified and digitized at a sampling rate of 2048Hz. All
electrodes were referred to the CMS electrode close to Cz.

C. EEG Processing

The 256-channel EEG data were first down-sampled to
256Hz. For each 30s-long trial, six 4s-long EEG epochs were
extracted according to event triggers generated by the stim-
ulus program. For each stimulus frequency, the epochs from
all sessions were put together to form a dataset comprising
24 epochs.

This study first investigated the amplitude of SSVEPs
calculated by fast Fourier transform (FFT) and its scalp
distribution. The scalp topography maps based on multichan-
nel SSVEP amplitudes are illustrated using the TOPOPLOT
function in EEGLAB toolbox [10]. This study also per-
formed offline classification of SSVEPs at all five frequencies
using a canonical correlation analysis (CCA)-based method,
which has been widely used in SSVEP-based BCIs [11], [12].
CCA is a statistical way to measure the linear relationship
between two multidimensional variables, which may have
some underlying correlation. CCA has been widely used
in an SSVEP-based BCI. Considering two multidimensional
variable X , Y and their linear combinationsx = XT Wx

and y = Y T Wy, CCA finds the weight vectors,Wx and
Wy, which maximize the correlation betweenx and y by
solving the following problem:

max
Wx,Wy

ρ(x, y) =
E[WT

x XY T Xy]
√

E[WT
x XXT Wx]E[WT

y Y Y T Wy ]
. (2)

The maximum ofρ with respect toWx and Wy is the
maximum canonical correlation. Projections ontoWx and
Wy are called canonical variants. Here,X refers to the set



TABLE I

INTERFERENCE FREQUENCIES FOR EACH STIMULUS

Stimulus Interference frequency (Hz)
frequency (Hz) 1st 2nd 3rd 4th
9 6 12 24 30
10 5 15 25 35
11 7 15 30 36
12 9 15 33 39
13 10 16 36 42

of 4s-long multi-channel EEG signals andY refers to the
set of reference signals that have the same length asX . To
avoid overfitting, sixteen electrodes over the occipital region
were selected for CCA. The reference signalsYf were set
as

Yf =
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(3)

where f is the target frequency,Nh is the number of
harmonics, andN is the number of sampling points. To
recognize the frequency of the SSVEPs, CCA calculates
the canonical correlation between the multi-channel EEG
signals and the reference signals at each stimulus frequency.
The frequency of the reference signals with the maximal
correlation was selected as the frequency of the SSVEPs.

In this study, the interference frequency components were
included in the reference signals to improve the frequency
identification accuracy:

Yf =
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(4)

where, fim
, m = 1, 2, ..., M is the m-th interference fre-

quency. The interference frequencies are defined as the
frequencies with high amplitude except for the stimulus
frequency and its harmonics in the stimulus signal. Table I
lists the interference frequencies for each stimulus frequency
(9 to 13Hz).

III. R ESULTS

Fig.1(B) shows that the stimulus signal at 10Hz under the
75Hz refresh rate has frequency components at interference
frequencies with much higher amplitude than that under the
120Hz refresh rate. Under the 75Hz refresh rate, the SSVEPs
includes not only the fundamental and second harmonics
at 10hz and 20Hz, but also components at 5Hz, 15Hz,

Fig. 2. The amplitude spectrum and scalp topographies of SSVEPs at (A)
10Hz and (B) 12Hz under 75Hz and 120Hz refresh rates for subject 2.

25Hz,and 35Hz (see Fig.2(D)). Fig.2 compares the amplitude
spectra of elicited SSVEPs at the Oz electrode and scalp
topographies of EEG signals at the stimulus frequency (10Hz
and 12Hz), second harmonics, and interference frequencies
between the two stimulation conditions. For the SSVEPs
elicited by the 10Hz stimulation, 10Hz and 20Hz indicate
the fundamental and second harmonics of the stimulating
frequency respectively, and 5Hz, 15Hz and 25Hz indicate
the interference frequencies. For the SSVEPs elicited by the
12Hz stimulus, 12Hz and 24Hz indicate the fundamental
and second harmonics, and 9Hz, 15Hz and 33Hz indicate
the interference frequencies. The scalp topographies show
that the electrodes at the occipital area have the highest
amplitude at all harmonic and interference frequencies under
the 75Hz refresh rate. However, the SSVEPs only show
strong activities at the fundamental and second harmonics
under the 120Hz refresh rate.

Table II lists the offline classification accuracy for five
stimulus frequencies (under the 75Hz refresh rate) using the
conventional CCA-based method and the proposed method.
In this study, three methods including the CCA-based method
with the fundamental harmonic (Conventional 1), the CCA-
based method with the fundamental and second harmonics
(Conventional 2), and the proposed method (Proposed) were
used to estimate the classification accuracy. Here, bothNh

and M were set to 2 in the proposed method, and the



TABLE II

TARGET IDENTIFICATION ACCURACY (%)

Subject Conventional 1 Conventional 2 Proposed
s1 78.40 81.60 84.00
s2 82.68 83.46 88.18
s3 100.00 100.00 100.00
s4 66.67 70.54 82.17
s5 96.80 97.60 97.60
s6 99.19 99.19 99.19
s7 100.00 100.00 100.00
s8 89.15 89.92 89.92
s9 84.80 88.80 93.60
s10 94.35 94.35 93.55
Mean±STD 89.20±11.07 90.55±9.73 92.82±6.57

interference frequencies were selected so as to maximize
the classification accuracy. The averaged accuracy of Con-
ventional 1 and Conventional 2 was 89.20% and 90.55%,
respectively. The accuracy of the proposed method was
92.82%, which was significantly higher than the conventional
methods (Conventional 1 vs. Proposed:p=0.03, Conventional
2 vs. Proposed:p=0.048). There was significant difference
between the two conventional methods (p=0.02).

Fig.3 shows the classification accuracy obtained using
the conventional and proposed methods with different data
length T (from 1 to 4 seconds). For all conditions, the
proposed method obtained the highest classification accuracy.
There was a significant difference between the accuracies of
the Proposed and Conventional 1 methods (T=1: p=0.003,
T=2: p=0.004,T=3: p=0.02, andT=4: p=0.03), and the ac-
curacies of the Proposed and Conventional 2 methods (T=1:
p=0.01, T=2: p=0.01, T=3: p=0.03, andT=4: p=0.048).
These results indicate that, by considering the interference
frequencies in the frequency detection, the proposed method
can significantly improve the frequency detection accuracy.

IV. D ISCUSSIONS AND CONCLUSIONS

The efficacy of the stimulus presentation based on the
approximation approach has been reported in previous stud-
ies [7]–[9]. However, the interference frequency components
in SSVEPs have not been investigated and were ignored in
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Fig. 3. The amplitude spectrum and scalp topographies of SSVEP at 10Hz
for subject 4.

these studies. This study first pointed out that the interference
frequencies in SSVEPs should be considered in stimulus
design and data analysis. This study showed distinct spectral
and spatial characteristic of the SSVEP components at the in-
terference frequencies elicited by the visual stimuli generated
by the approximation approach. This study also classified the
SSVEPs at frequencies from 9Hz to 13Hz with an interval
of 1Hz, and compared the classification performance among
the conventional and proposed CCA-based methods. By con-
sidering the interference frequency components, the CCA-
based classification method can substantially improve the
accuracy of frequency detection. Further investigations are
required to explore the relationship between the amplitudes
of the stimulus signal and the SSVEPs at the interference
frequencies.

The approximation approach for generating SSVEP stim-
ulus is essential to implement a practical BCI system that
requires a large number of user selections such as an 8-
target cursor system, a 12-target phone dialing system, anda
30-target spelling system. Our future work will focus on the
implementation of a multi-command, real-time, and portable
BCI system using the proposed method that considers the
interference frequency components in SSVEPs.
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