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Abstract— Steady-state visual evoked potential (SSVEP)-

based brain-computer interfaces (BCIs) have potential to e-
alize a direct communication between the human brain and
the outside environment in real-life situations. Recently we
proposed a stimulation approximation approach to increase
the number of visual stimuli that can be realized on a com-
puter monitor. In addition to the fundamental and harmonic
frequencies, the refresh rate-based stimulation approactalso
elicits SSVEPs at other frequencies that are termed interfience
frequencies, which are derived from the interaction betwes the
stimulation frequency and the refresh rate. This study aimsto
investigate properties of the interference frequency compnents,
and propose to integrate the interference frequency compants
to enhance frequency detection of SSVEPs. The results sugge
that the proposed approach could substantially improve the
frequency detection accuracy of SSVEPs.

. INTRODUCTION

presented is always limited by the refresh rate because the
number of frames in a stimulus period has to be a constant
in the conventional frame based stimulus design. In this
case, some applications, which require a large number of
commands, cannot be implemented. Generally, the increase
of the number of commands can lead to an increase of the
ITR [3]. Therefore, it is of great importance to find a solatio

to render flickering stimuli with a high frequency resolutio

on a computer monitor.

Recently, Wanget al. proposed a method to realize visual
stimulus presentation on a computer monitor for eliciting
SSVEPs with a high frequency resolution by approximating
a flickering rate [7]. They obtained an averaged ITR of
75.4 bits/min in an online SSVEP-based BCI test. The
efficacy of the approach was also proved by other online

Steady-state visual evoked potential (SSVEP) is the eleBC! €xperiments [8]. In addition, a recent study performed a

trical response of brain elicited by repetitive visual sti

m duantitative comparison between the SSVEPs elicited by the

ulation. It has been widely used in electroencephalograffPProximation approach and the constant-period approach

(EEG)-based brain-computer interfaces (BCIls) due to i
advantages of little user training, ease of use, and hi
information transfer rate (ITR) [1]-[5]. In an SSVEP-base
BCI, users are asked to fixate on one of multiple visudtP
stimuli flickering at different frequencies, and the target
visual stimulus, which a user is gazing at, can be recogniz

491 In general, the SSVEPs have the same frequency com-
fpnents as the fundamental and harmonics of the stimu-

ating frequency. However, when using the approximation
proach, the SSVEPs also have components at additional
frequencies that are termed interference frequencies (i.e

dndicating the interference between the stimulating festpy

as the command of an interface through analyzing th@d the refresh rate in this study). For example, a 10Hz
SSVEPs. In this way, an SSVEP-based BCI can directl?rt'mUIus signal under a 75Hz refresh rate includes not

translate intentional brain activities to the commandg)éag
by stimulus frequencies to control an output device.

only the fundamental component at 10Hz, the second and
third harmonics at 20Hz and 30Hz, but also components

Visual stimulus design plays an important role in arft additional frequencies such as 5Hz, 15Hz, and 25Hz

SSVEP-based BCI [3]. Visual stimuli can be presente&see_ Fig. 1). Therefore, the interference frequenciesdcoul
using flashing light-emitting diodes (LEDs) or flickers onProvide additional information for frequency detectiortioé

a computer screen such as cathode ray tube (CRT) monite
or liquid crystal display (LCD) monitor [6]. Compared with
the LED based stimulator, the stimulation parameters sach

the amount, color, pattern, size, and position of visuahsli

SVEPs. To our knowledge, currently, no study has inves-
tigated the characteristics of the SSVEPs at the interéeren

frequencies, and they were totally ignored in previous BCI
studies [7]-[9]. This study aims to analyze the amplitude

can be configured more flexibly when using a compute?pewum and scalp distribution of SSVEPs at the interfaren

monitor. However, the number of frequencies that can b
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frequencies, and develop a new strategy to integrate these
frequency components to enhance frequency detection of
SSVEPs elicited by monitor refresh rate.

Il. METHODS
A. Visual Simuli

In the conventional constant-period approach, the number
of frames in a period is a constant. For instance, a 10Hz
visual stimulus under a 60Hz refresh rate can be realized by
the reversing stimulus pattern between black and whiteyever
three frames. However, a flickering frequency by which the
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Fig. 1. Time series flickering signals at 10Hz presented ooraputer screen with (A) 75Hz and (C) 120Hz refresh rate, (i) amplitude spectra of
flickering signals, and (D) the amplitude spectra of el&i®SVEPs for a sample subject. The asterisks indicate thefenénce frequencies.

refresh rate is not dividable (i.e., 11Hz) cannot be redline using Ag/AgCl electrodes from 256 locations distributeeiov
this way. The approximation approach proposed in [7] cathe entire head using a BioSemi ActiveTwo EEG system
realize such flickering frequency by using a varying numbgiBiosemi, Inc.). Electrode locations were measured with
of frames in a period. For example, 11Hz can be realizeal 3-D digitizer system (Polhemus, Inc.). All signals were
by mixing two types of periods with five or six frames in aamplified and digitized at a sampling rate of 2048Hz. All
period as ‘1110001110011100011000111..., where ‘1" andlectrodes were referred to the CMS electrode close to Cz.
‘0’ represents a ‘black’ and ‘white’ frame respectively.dea

on this approach, the stimulus sequengg i) corresponding C. EEG Processing

to frequencyf can be generated by the following equation: The 256-channel EEG data were first down-sampled to
i 256Hz. For each 30s-long trial, six 4s-long EEG epochs were

m] (1)  extracted according to evt_ant triggers generated by the stim
ulus program. For each stimulus frequency, the epochs from

where: indicates the frame index. In this way, a stimulusy)| sessions were put together to form a dataset comprising
sequence at any frequency up to half of the refresh rate cap epochs.

be generated. Fig. 1(B) illustrates the amplitude spedtra o Thjs study first investigated the amplitude of SSVEPs
the stimulus signals at 10Hz generated by the approximati@@cylated by fast Fourier transform (FFT) and its scalp
approach and the constant-period approach under 75Hz &fidiribution. The scalp topography maps based on multichan
120Hz refresh rates, respectively. nel SSVEP amplitudes are illustrated using the TOPOPLOT
L function in EEGLAB toolbox [10]. This study also per-
B. EEG Aquisition formed offline classification of SSVEPs at all five frequescie

The visual stimulus was a 8 5 cm square rendered at ysing a canonical correlation analysis (CCA)-based method
the center of a 21-inch CRT monitor with 75Hz and 120HZyhich has been widely used in SSVEP-based BCls [11], [12].
refresh rates. The stimulus frequencies ranged from 9Hz toCA is a statistical way to measure the linear relationship
13Hz with an interval of 1Hz. Here, all the visual Stimulibetween two multidimensional Variab|eS, which may have
were generated by (1). The stimulus program was developggme underlying correlation. CCA has been widely used
in Microsoft Visual C++ using the Microsoft DirectX 9.0 jn an SSVEP-based BCI. Considering two multidimensional
framework and rendered on Windows XP platform. variable X, Y and their linear combinations = X7,

Ten healthy subjects with normal or corrected-to-normaind y = yTW,, CCA finds the weight vectorsy, and
vision participated in this experiment. Each subject wagy,, which maximize the correlation betweenand y by
seated in a comfortable chair in front of the monitor andolving the following problem:
asked to fixate on the visual stimulus presented at the center S
of the monitor for 30 seconds. The experiment consisted of, .. pla,y) = EW; XY™ X, _
four sessions, each including ten 30s-long trials for the fiv W=, W, \/E[WEXXTWI]E[W;fnyWy]
different stimulus frequencies. To avoid visual fatiguegre
was a several-second break between two consecutive tridlse maximum ofp with respect toWW, and W, is the
and a several-minute break between two sessions. The ordesximum canonical correlation. Projections oritg, and
of the frequencies was randomized. EEG data were recorddd, are called canonical variants. Het¥, refers to the set

e(f,i) = square2w f

)
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of 4s-long multi-channel EEG signals and refers to the
set of reference signals that have the same lengthi .a%o
avoid overfitting, sixteen electrodes over the occipitgioa
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were selected for CCA. The reference signkjswere set 15Hz 33Hz
P P
as e N
sin(27 ft) & ' ; ‘
cos(2m ft)
Yy = : @ . PN
sin(2m Ny, ft) 8 ] fw +
cos(2w N, ft) B
where f is the target frequency)N, is the number of 52 5""’;75'42 1
harmonics, andV is the number of sampling points. To g3 , ,
recognize the frequency of the SSVEPs, CCA calculateiz; L L 1
the canonical correlation between the multi-channel EEG éVMﬂA-ijv?w—-A—v¢~4~&cﬁﬁvé'kv—v~wﬁ-w--k~wﬂ~‘%
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signals and the reference signals at each stimulus freguenc Frequency (Hz)

The frequency of the reference signals with the maximal , .
|ati lected as the frequency of the SSVEPs Fig. 2. The amplitude spectrum and scalp topographies ofEFS\at (A)
corre a Ion was se ?C qu y *10Hz and (B) 12Hz under 75Hz and 120Hz refresh rates for suBje
In this study, the interference frequency components were
included in the reference signals to improve the frequency

identification accuracy:
25Hz,and 35Hz (see Fig.2(D)). Fig.2 compares the amplitude

sin(27 f1) spectra of elicited SSVEPs at the Oz electrode and scalp
cos(2m ft) topographies of EEG signals at the stimulus frequency (10Hz
: and 12Hz), second harmonics, and interference frequencies
sin(2w Ny, ft) between the two stimulation conditions. For the SSVEPs
cos(2w Ny, ft) elicited by the 10Hz stimulation, 10Hz and 20Hz indicate
vi=| " (4) i imulati
sin(2m f;, 1) the fundamental and second harmonics of the stimulating
cos(2m fi, t) frequency respectively, and 5Hz, 15Hz and 25Hz indicate
the interference frequencies. For the SSVEPSs elicited by th
: 12Hz stimulus, 12Hz and 24Hz indicate the fundamental
sin(27 fiy t) and second harmonics, and 9Hz, 15Hz and 33Hz indicate
L cos(2m fiyt) | the interference frequencies. The scalp topographies show

where, f; ,m = 1,2,...,M is the m-th interference fre- that the electrodes at the occipital area have the highest

quency. The interference frequencies are defined as tpeplitude at all harmonic and interference frequenciegund
frequencies with high amplitude except for the stimulughe 75Hz refresh rate. However, the SSVEPs only show
frequency and its harmonics in the stimulus signal. Table §trong activities at the fundamental and second harmonics
lists the interference frequencies for each stimulus feegy under the 120Hz refresh rate.
(9 to 13Hz). Table Il lists the offline classification accuracy for five
stimulus frequencies (under the 75Hz refresh rate) usiag th
Il. RESULTS conventional CCA-based method and the proposed method.
Fig.1(B) shows that the stimulus signal at 10Hz under thin this study, three methods including the CCA-based method
75Hz refresh rate has frequency components at interferenei@h the fundamental harmonic (Conventional 1), the CCA-
frequencies with much higher amplitude than that under theased method with the fundamental and second harmonics
120Hz refresh rate. Under the 75Hz refresh rate, the SSVERSonventional 2), and the proposed method (Proposed) were
includes not only the fundamental and second harmonicsed to estimate the classification accuracy. Here, Both
at 10hz and 20Hz, but also components at 5Hz, 15Hand M were set to 2 in the proposed method, and the



TABLE I

these studies. This study first pointed out that the interfee
TARGET IDENTIFICATION ACCURACY (%)

frequencies in SSVEPs should be considered in stimulus

Subject Conventional 1 _ Conventional 2 _Proposed design and data analysis. This study showed distinct spectr
s1 78.40 81.60 84.00 d ial ch istic of the SSVEP he i
<2 8268 83.46 88.18 and spatial characteristic of the > components at the in
s3 100.00 100.00 100.00 terference frequencies elicited by the visual stimuli gatesl

s4 66.67 70.54 82.17 by the approximation approach. This study also classified th
s5 96.80 97.60 97.60 SSVEP f ies f 9H 13Hz with . |
6 99.19 99.19 99.19 s at frequencies from 9Hz to z with an interval
s7 100.00 100.00 100.00 of 1Hz, and compared the classification performance among
s8 89.15 89.92 89.92 the conventional and proposed CCA-based methods. By con-
s9 84.80 88.80 93.60 ideri he interf f he CCA
s10 9435 9435 9355 sidering the interference frequency components, the -
Mear-STD ~ 89.2@+11.07 90.539.73 92.82:6.57 based classification method can substantially improve the

accuracy of frequency detection. Further investigations a
required to explore the relationship between the amplgude

: . ..of the stimulus signal and the SSVEPs at the interference
interference frequencies were selected so as to maximi r%quencies

the classification accuracy. The averaged accuracy of Con—.l_he approximation approach for generating SSVEP stim-

ventional 1 and Conventional 2 was 89.20% and 90.55%
respectively. The accuracy of the proposed method was
92.82%, which was significantly higher than the convention
methods (Conventional 1 vs. Proposgd0.03, Conventional
2 vs. Proposedp=0.048). There was significant difference,
between the two conventional methogs(.02).
Fig.3 shows the classification accuracy obtained usin
the conventional and proposed methods with different dafa
length T (from 1 to 4 seconds). For all conditions, the
proposed method obtained the highest classification acgura [1]
There was a significant difference between the accuracies of
the Proposed and Conventional 1 methodisX: p=0.003, 2
T=2: p=0.004,7=3: p=0.02, andl'=4: p=0.03), and the ac-
curacies of the Proposed and Conventional 2 methded (
p=0.01, T'=2: p=0.01, T'=3: p=0.03, andT=4: p=0.048). 3
These results indicate that, by considering the interfezen
frequencies in the frequency detection, the proposed rdetho
can significantly improve the frequency detection accuracy 4]

IV. DISCUSSIONS AND CONCLUSIONS

The efficacy of the stimulus presentation based on thél
approximation approach has been reported in previous stud-
ies [7]-[9]. However, the interference frequency compdsen [6]
in SSVEPs have not been investigated and were ignored in
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Fig. 3. The amplitude spectrum and scalp topographies oft5S& 10Hz
for subject 4.

ulus is essential to implement a practical BCI system that
requires a large number of user selections such as an 8-
Eilarget cursor system, a 12-target phone dialing systemaand
30-target spelling system. Our future work will focus on the
implementation of a multi-command, real-time, and poeabl
BCI system using the proposed method that considers the
RAterference frequency components in SSVEPs.
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