Detection of Steady-state Visual-evoked Potentialdihg Differential
Canonical Correlation Analysis

Chun-Shu Wei, Yuan-Pin LitMember, IEEE, Yijun Wang,Member, IEEE, Yu-Te Wang Student
Member, |EEE, and Tzyy-Ping Jundenior Member, IEEE

Abstract—Steady-state visual evoked potential (SSVEP) is an Spectra of EEG signals often have a 1/f power-lastvidution

electroencephalogram (EEG) activity elicited by pedpdic visual
flickers. Frequency-coded SSVEP has been commonlyl@ted
for functioning brain-computer interfaces (BCIs). Up to date,
canonical correlation analysis (CCA), a multivariae statistical
method, is considered to be state-of-the-art to ratstly detect
SSVEPs. However, the spectra of EEG signals ofterave a 1/f
power-law distribution across frequencies, which iherently
confines the CCA efficiency in discriminating betwen
high-frequency SSVEPs and low-frequency backgroundeEG
activities. This study proposes a new SSVEP deteati method,
differential canonical correlation analysis (dCCA), by
incorporating CCA with a notch-filtering procedure, to alleviate
the frequency-dependent bias. The proposed dCCA appach
significantly outperformed the standard CCA approad by
around 6% in classifying SSVEPs at five frequencie§9-13Hz).
This study could promote the development of high-péormance
SSVEP-based BCI systems.

I. INTRODUCTION

Steady-state visual evoked potential (SSVEP) iregic
electroencephalogram (EEG) activity elicited byliekéring
stimulus. For the last decade, SSVEP has beensintn
adopted in brain-computer interfaces (BCls) to ¢eidhe
human brain with computers or external devices][16r
example, Wang et al. [1] recently demonstrateddhsibility

across frequencies, leading to degraded magnitudiégher
frequencies. The attenuated EEG activity can fagmitly
hinder the detection of SSVEPs in relatively higggtiencies.
To solve this frequency bias, Tanaka et al. [7]ently
proposed to incorporate CCA with linear discrimivat
analysis (LDA), which is a widely used pattern-rgaition
method, to improve the detection of SSVEPs in high
frequency range. Nevertheless, the training protessved

in the recognition strategy could hinder the piadily of
SSVEP-based BCls in real-life applications.

This study addresses the problem of SSVEP detéityabi
across different frequencies caused by the powesfgectral
bias. An extension of the conventional CCA method,
differential CCA (dCCA), is proposed for improvirtpe
detectability of SSVEPs in relatively high frequisc
Compared to the machine learning-based method, the
proposed training-free method could be more geizechbind
practical for online BCI applications.

Il. MATERIALS AND METHODS

A. Experiment Settings
The visual stimulus was delivered on a 21" CRT nwoni

of using a mobile SSVEP-based BCI platform to make with a 120Hz refresh rate. A 5x5 gsguare in the center of
phone call. The performance of such a practical Bdhe screen flickered at the frequencies ranged fédtn to

application substantially depends on the detedtabdf
SSVEPs. Accordingly, how to rapidly and accuratidgode
the frequency-tagged SSVEPs plays an importantinolee

13Hz with an interval of 1Hz. The flickering freqey was
approximated according to the approach proposétldmyg in
2010 [8]. The system was programmed by Microsofiudl
C++ using the Microsoft DirectX 9.0 framework angkoated

SSVEP-based BCls. /
_ _ _ ~on Windows XP platform.
Canonical correlation analysis (CCA) has been widel

adopted in SSVEP-based BCls to obtain robust SSVEP During the experiment, subjects sat still in fraftthe
detectability [3, 4]. Lin et al. [5] specificallgported that the monitor with a fixed distance of 35cm. This expegithused a
canonical correlation value, i.e. the correlatioatween fixed chin rest to hold a subject's head to avoihd
SSVEP and the stimulating signal, tended to deerems Movements. The subjects were instructed to gazéheat
flickering frequency increased. Wang et al. [6]aepd that frequency-coded visual flickers presented at theitop in
the signal-to-noise ratio (SNR) of SSVEP israndom order. The experiment included four sessidfech
frequency-dependent and prone to degrade alongdisge Session consisted of five 30s-long blocks corredpanto

frequencies [6]. These might be attributed to twt that the five frequencies (9-13Hz). A ~15-s rest was intvied with
stimulating blocks for preventing visual fatigue. A
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minute(s)-long break was also provided between two
consecutive sessions.

B. Data Acquisition and Pre-processing

Twelve healthy male subjects with normal
corrected-to-normal vision participated in this dstu All
participants were asked to read and sign an infdroomsent
form approved by the UCSD Human Research Protection

or



Program before the experiment. The data from twiests
were excluded from further analysis due to poanaiguality.

EEG data were recorded using Ag/AgCI electrodea of

BioSemi ActiveTwo EEG system (Biosemi, Inc.) witB&

flickering frequencies, which could largely elimiaathe
impact of the power-law bias in EEG spectrum on EBV
detectability.

First, 4-channelN-s SSVEP signals from each subject

channels. A 3-D digitizer system (Polhemus, Incasw underwent filtering using IIR notch filters withbandwidth of

adopted to digitize the electrode locations. Adladlodes were
referred to the nasion. EEG signals were recort@Dd8Hz
and down-sampled to 256 Hz for further analysis.

For each subject, six 4s-long segments with minimu

artifacts were extracted manually from each 30eskl The

segments corresponding to the same stimulus fregue

across four sessions were concatenated into al®tgs-
segment. Four occipital channels (F26, F28, F24, [&81)
located around the mid-occipital location (Oz) weedected
for SSVEP analysis, since SSVEPs measured overighal
cortex have the highest SNR [9]. Next, the 4-chhB6es data
segment was separated in turn iNts epochsN=1, 2, and 4
second (s)) for comparison.

C. CCA-based SSVEP frequency recognition

1M, Hz centered at the stimulation frequencies, whise
was a scale determining the sharpness of the Hittiehin
frequency response. Prior to notch filtering, biasel
subtraction was applied to each channel of EEG data
Mmove the baseline drift and voltage offset edtchaby
100-point moving average. To reduce the transiesponse
'bf the notch filter, we empirically duplicated thes epoch
four times and appended them into a M-8 epoch. A notch
filter with zero-phase shift was then applied te #ppended
epoch. The segment withinN23N] was extracted for CCA
calculation. This process repeated five times et dickering
frequency to derive five notch-filtered epoch¥;)( One
constraint of the duplicate-padding method is thease
continuity between the duplicates, i.e. the numiudr
stimulating periods in each duplicate has to béntager so
that SSVEPs in the appended duplicates have cantinu

Lin et al. [4] first introduced CCA to detect the frequencyphase throughout the whole epoch.

of SSVEPs, which outperformed power spectral dgnsit

(PSD)-based method. CCA theoretically aims to fiad
maximal correlation coefficient between two multiede
time series. That is, CCA identifies the SSVEP tiatcy by
finding the maximal correlatiop; between multi-channel
EEG signals and predefined sinusoidal referenceatsg
associated with each flickering frequency.

This study defined the canonical correlation betwtwe
filtered dataseX; and the reference signélasp(X;,Ys) orp.
The ratiop ¢ /py, i.€., differential canonical correlation, reflect
the change of canonical correlation between theerét
dataset (turn-off) and the unfiltered dataset fmh For
simplicity, the ratiop; /p; was named off-on-ratio (OOR)
hereinafter. If OOR is small, there is a drop imasical

The conventional CCA-based frequency detectionb&an correlation as the power flhas been dramatically attenuated.

expressed as follows:

A

f, =argmax p, =argmax p(X,Y;)
f f

sin(274t)
Loseﬂt)}

whereX is the 4-channel SSVEP signal a¥jds the reference
signal corresponding to frequentcy

f

D. Differential Canonical Correlation Analysis

The efficiency of the conventional CCA in the d¢imat of
high-frequency SSVEP would presumably be confingthb
power-law distribution of EEG spectra. It is notising to
see that the canonical correlation tends to degesdéhe
flickering frequency increases, which was reportada
previous study [5]. To alleviate the interferenceni the
spontaneous background EEG activities, this studggses a

In this way, OOR can be used as a new indicatogdognize
the frequency of SSVEP:

A

f, =argmin OOR, = argmin Pt
f f

Ps

Fig. 1 compares the effectiveness of using CCAGDGA
to identify a 1-s SSVEP epoch at 13Hz. This epodas w
misclassified as 10 Hz when applying the convemati@@CA
method (maxfs)). In contrast, the proposed dCCA method
(min(OOR)) correctly identified the target frequgrad 13Hz.
That is, the drop of canonical correlation betwggrand p;
was larger at 13Hz.

Figure 2 shows the averaged valuepof, and p /p;
(OOR) for all trials across all subjects along diént
flickering frequencies. The results show that tl@anical

RESULTS

new SSVEP detection method, named differential ccgorrelation peak,i.e. maxp), tended to monotonically

(dCCA), to quantify the amount of canonical cortiela
purely elicited by target flickers. The basic idedhat if the
acquired SSVEP signals are specifically filteredabyotch
filter at the target frequency, the canonical datien value
calculated by CCA is supposed to drop significariilyat is, a
largest drop of canonical correlation caused by rib&ch
filtering appears at the target frequency. Accagtiinthe

proposed dCCA method aims to assess the diffetent

decrease as flickering frequency increased (showg. 2(a),
black line). In addition, as 13-Hz flickering wasepenting,
the 13-Hz peak among neighboring frequencies wasago
distinguishable as the peaks induced by other Ide&ering
frequencies. The; profile (gray line), derived by individually
notch-filtering each frequency, exhibited a suléscending
slope toward higher frequency, which seemed tadbatical
Ig different stimuli. The above results lead to ¢ja@ between

canonical correlation values associated with eathhe # @ndpsprofiles capable of reflecting the onset frequefitye

OOR based on the ratio pfandp; accordingly presented a



higher accuracy as the epoch length increasedcédadily,
p OOR dCCA consistently provided better performance tRA

0.5 05 across all conditions.
0.4 0.4
03./l~._._. 03 IV. DISCUSSIONS ANDCONCLUSIONS
The conventional CCA-based SSVEP detection method i

0.2 0.2 based on the assumption that the visual flickerekev
0.1 o1 oscillations that have higher canonical correlatwith the
' ' reference sinusoidal signal at the stimulating desgy.

However, this might not robustly hold across difer

9 10 11 12 13 9 10 11 12 13 frequencies due to the power-law attenuation of BSV
Reference Pattem Frequency (Hz)  magnitude along stimulating frequency. The candnica

Fig. 1. The canonical correlatiop, (eft) and OOR (right) between an correlation valug between SSVEPs and the reference signals

SSVEP epoch and different reference signals. Tiheikiting frequency  decreased as flickering frequency increasefl Fig. 2(a)),
of_thls epoch is ]:3Hz._The frequency was mlsremas 10Hz_ when which was in line with previous work [5] The highe
fusmg maxg), Wh”le min(OOR) was able to recognize the stirtiata frequencies (11-13 Hz) with low peakwerethus intensively
requency correctly. mis-classified as lower frequencies (9 and 10 ld4) Table
giitinct cave associated with the stimulating fierpies in Fig ::lzjl.p:anbIgor(])z‘raii:pEESinpg;romzese(?isgrci:rgﬁaﬁiﬁg:og . V?SSV@EWF?S
(b)- _ _ higher frequency range.{. Fig. 2(b), Table Ill and Table V),
Table | summarizes the detection accuracy of 1ME$S  and thus provided statistically significantly impea
epochs using the CCA and dCCA approaches. Thetsesiderformance than the conventional CCA-based methdd
show that dCCA returned better detectability thaDAGn  Fig. 3). Unlike previous work based on machinedésy
nine out of ten subjects. Across all subjects,d8€A-based methods [7], the proposed dCCA method only usésipls,
detectability was significantly higher than thatusing CCA  training-free signal processing procedure (i.et¢indiltering),
(67.85% vs. 61.52%9<0.01, Wilcoxon paired sign-rank test).and thus can promote the feasibility and practigatif
Tables Il and Il further summarize the confusioatrix of  real-life applications of SSVEP BCls.
ESViP ﬂetectlrc])ndperfcr)]rmesqst\)/yECI;Cﬁ\ and dbC-FA’ I’?SV)HMI The reason of using notch filtering was based an th
or both methods, the etectability alongetar X RO ; .
frequency exhibited an explicit descending trentteuency ?ssumptmn tha}gellmmatmglg the %EG signal at .th:ig:;'ing
nreased (oo th dagonlclemeni ofhe caai,  1S0UE"c) ol ause o rge rop i crricabton
S expected, rovided significantly improve L
detectaFlr))iIity in higher frezuency rangg (11 HZ):IM%;F) 12 although the notch-filtering facilitates the deteot of
Hz: +14.90%; 13 Hz: +21.88%). However, it also ealis S_SVEPS in high frequency range, transient respoheetch
worse detectability at lower frequencies. As showiable filters ‘_’Vcﬁu'd r?ffect the iﬁectlzl\llzegess OLdCC_j;ﬁ mgogit_ent,
IV, there was a noticeable drop at 9 Hz (-10.94%) a ESPecially when using iton epochs with a lon.

marginal decrease at 10 Hz (-0.94%). To solve this problem, this study alternatively litgted the
short epochs four times and concatenated themaitbmger

Fig. 3 presents the CCA- and dCCA-based classificat epoch. However, to keep the phase continuity infittered
results with different epoch lengths. Both methotitained
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Fig. 2. (a) A comparison betwegrandp.; given different stimulating frequencies (9-13 Mabh 1s epoch length. Solid black line: the averagecross
subjects; Dash gray line: the averpagaccross subjects. Errorbars indicate the stardtariation. (b) The average OOR accross subjectssiimulating
frequency was presented at the top of each column.
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TABLE I. THE ACCURACY OFSSVEPDETECTIONUSING CCA AND 90 ]
DCCA
Subi Accuracy (%) 8 |
ubject CCA - maxp) dCCA - min(OOR) ~ 80 ]
S1 61.46 73.54 S |
S2 55.00 57.50 g
S3 42.71 58.54 5 70 1
S4 58.75 67.29 S
S5 85.63 86.46 < 65 1
S7 51.25 59.58 60 ,
S8 62.29 69.17 el L CCA
S9 72.50 72.08 . .
s11 84.79 9125 6 p<0.01‘ sign rank‘ test ‘ dCCA
S12 40.83 43.13 1 2 4
Mean 61.52 67.85 Epoch Length (S)
SD 14.77 13.49
Epoch Length = 1s Fig. 3. The performance of SSVEP frequency recagnivy using two
strategies given epoch length = 1, 2, and 4 secdtrdsr bars indicate
standard error.
TABLE II. CONFUSIONMATRIX USING CCA
(%) Estimated detectability of SSVEPs in relatively high frequis A
OHz 1oHz  11Hz = 12Hz  13Hz = 5iural next step is to assess the feasibilitypphydng dCCA
9Hz  88.54 4.90 3.13 2.19 1.25 . .
10Hz 1135 8260 4.06 167 031 1O detect.the SSVEPS_ in the frequency range h|‘g’ra:=rr the
Target 11Hz 15.83 2438 5490  3.75 115  human visual perception level (e.g., >30 Hz), Wwheould

12Hz  20.83  19.48  10.83  47.40 1.46 considerably relieve the visual fatigue in opemtin
13Hz 21.88 2802 1031 563 3417 SSVEP-based BCI systems.

Total Accuracy: 61.52%; Epoch Length = 1s

TABLE III. CONFUSIONMATRIX USING DCCA
- 1
(%) Estimated (1
9Hz 10Hz 11Hz 12Hz 13Hz
9Hz 77.60 6.88 6.04 5.31 4.17 2]
10Hz 6.98 81.67 6.04 3.23 2.08
Target 11Hz 9.38 16.88 61.67 7.29 4.79
12Hz 9.90 14.06 9.90 62.29 3.85
13Hz 8.54 18.23 9.69 7.50 56.04 [3]
Total Accuracy: 67.85; Epoch Length = 1s
TABLE IV. DIFFERENCE INCONFUSIONMATRIX BETWEENUSING 4
(1)CCAAND (2) DCCA (4]
Estimated
2) - (1) (%
2)- (1) (%) 9Hz 10Hz 11Hz 12Hz 13Hz [5]
9Hz -10.94 1.98 2.92 3.13 2.92
10Hz -4.38 -0.94 1.98 1.56 1.77
Target 11Hz -6.46 -7.50 6.77 3.54 3.65

12Hz -10.94 -5.42 -0.94 14.90 2.40
13Hz -13.33 -9.79 -0.63 1.88 21.88

Epoch Length = 1s [6]

signal, this approach is subjected to the conditlmat the
number of periods per epoch is an integer. Asultrese were
unable to implement the dCCA method with 0.5-s égoc [7]

Currently, most of the SSVEP-based BCI systemstadop
flickers with relatively low frequencies to eli@SVEPs. This
can be attributed to the fact that low-frequencyvEBs
usually have better SNR and detectability (e.ge, #fpha [8]
frequency band). However, the perceivable visuekdrs at
low frequencies would inevitably cause more vidatiue at (9]
the same time. The proposed dCCA method posselsses t
characteristics of alleviating the impact from pawver-law
attenuation of SSVEP SNR and is able to therelnease the
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