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The brain-computer interface (BCI) is a direct (nonmuscular) communication chan-
nel between the brain and the external world that makes possible the use of neural
prostheses and human augmentation. BCI interprets brain signals, such as neural
spikes and cortical and scalp EEGs in an online fashion. In this chapter, BCIs based
on two types of oscillatory EEG, the steady-state visual evoked potential from the
visual cortex and the sensorimotor rhythm from the sensorimotor cortex, are intro-
duced. Details of their physiological bases, principles of operation, and implemen-
tation approaches are provided as well.

For both of the BCI systems, the BCI code is embedded in an oscillatory signal,
either as its amplitude or its frequency. With the merits of robust signal transmis-
sion and easy signal processing, the oscillatory EEG-based BCI shows a promising
perspective for real applications as can be seen in the example systems described in
this chapter. Some challenging issues in real BCI application, such as subject vari-
ability in EEG signals, coadaptation in BCI operation, system calibration, effective
coding and decoding schemes, robust signal processing, and feature extraction, are
also discussed.

8.1 Introduction to the qEEG-Based Brain-Computer Interface

8.1.1 Quantitative EEG as a Noninvasive Link Between Brain and Computer

In the past 15 years, many research groups have explored the possibility of estab-
lishing a direct (nonmuscular) communication channel between the brain and the
external world, by interpreting brain signals, such as neural spikes and cortical and
scalp EEGs, in an online fashion [1–3]. This communication channel is now widely
known as the brain–computer interface. BCI research originally was aimed at being
the next generation of neural prostheses, to help people with disabilities, especially
locked-in patients, interact with their environment. Besides potential application in
clinics, BCI has been adopted as a new way of human–computer interaction as well,
which can provide healthy people with an augmentative means of operating a com-
puter when it is inconvenient for some reason to use the hands, or for computer
gaming.

193



Basically, our brain functions—from sensation to motor control to memory and
decision making—originate from microvolt-level electrical pulses, the firing (action
potential) of hundreds of billions of neurons. If all or part of the neuron firings could
be captured, theoretically we would be able to interpret ongoing brain activity. With
the help of microelectrode arrays and computational power advancements, this kind
of system has been implemented. With tens of years of exploration of motor cortex
function on primates, several neurophysiology groups have been able to teach a
monkey to control a computer cursor and robotic arms by using its neuron activities
[4–7]. More recently, human patients have been coupled with this kind of BCI and
have been able to use direct brain control to guide external devices [8]. At this level,
the BCI system is dealing with the neural activity at the resolution of a single neuron,
that is, at the micrometer scale. This high resolution gives neuron-based BCI a
remarkable information transfer rate, which ensures real-time control of the motion
trajectory of a computer cursor or a robotic arm.

Because of the invasiveness and the technical difficulty of maintaining a
long-term stable recording of neuron activity, the intracranial BCI has a long way to
go before it is widely accepted by paralyzed patients. This obstacle holds true for the
cortical EEG-based BCI [9], which places grid and/or strip electrodes under the
dura, recording local field potentials from a large population of neurons.

The electrical activity from populations of neurons not only spreads inside the
dura and skull, but also propagates to the surface of the scalp, which makes it possi-
ble to conduct noninvasive recording and interpreting of neural electrical signals
and, hence, possibly a noninvasive BCI [2]. However, because of volume conduc-
tion, the EEG signal captured on the scalp is a blurred version of local field poten-
tials inside the dura. In addition, the muscle activity, eye movement, and other
recording artifacts contaminate the signal more, which make it impossible to con-
duct a direct interpretation of such signals. As discussed in other chapters of this
book, numerous efforts have been made to improve the SNR of qEEG signals. Here,
in the context of BCI, the challenge of interpreting noisy qEEG signals is even
harder, because a BCI system requires real-time online processing [10].

8.1.2 Components of a qEEG-Based BCI System

As shown in Figure 8.1, a qEEG-based BCI system usually consists of three essential
components: (1) intent “encoding” by the human brain, (2) control command
“decoding” by a computer algorithm, and (3) real-time feedback of control results.
The decoding component is the kernel part of a BCI system, linking the brain and
external devices. It usually consists of three steps in the process: EEG acquisition,
EEG signal processing, and pattern classification.

8.1.2.1 BCI Input: Intent “Encoding” by Human Brain

In the neuron-based BCI system, the expression of subject’s voluntary intent is
straightforward. If the subject wants the computer cursor to move following a
desired trajectory, he or she just needs to think about it as controlling his or her own
hand [8]. In an EEG-based BCI system, however, there is not enough information
contained in noisy EEGs for such explicit decoding and control. Typically, the con-
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trol command, such as moving a cursor up or down, is assigned a specific mental
state beforehand. The subject needs to perform the corresponding mental task to
“encode” the desired control command, either through attention shift or by volun-
tary regulation of his EEG [2]. Currently, several types of EEG signals exist—such
as sensorimotor rhythm (SMR; also known as μ/β rhythm) [11–13], steady-state
visual evoked potential (SSVEP) [14, 15], slow cortical potential (SCP) [16, 17], and
P300 [18, 19]—that can be used as neural media in the qEEG-based BCI system.
Among these EEG signals, SMR and SCP can be modulated by the user’s voluntary
intent after training, whereas the SSVEP and P300 can be modulated by the user’s
attention shift. In fact, the design of the EEG-based BCI paradigm is largely about
how to train or instruct the BCI user to express (“encode”) his or her voluntary
intent efficiently [20]. The more efficient the user’s brain encodes voluntary intent,
the stronger the target EEG signal we may have for further decoding.

8.1.2.2 BCI Core: Control Command “Decoding” with a BCI Algorithm

Feeding the BCI system with a clear input is the function of a biological intelligent
system—the brain, whereas translating input EEG signals into output control com-
mands is the purpose of an artificial intelligent system—the BCI algorithm. Besides
a high-quality EEG recording, appropriate signal processing (SP) and robust pattern
classification are two major parts of a successful BCI system. Because scalp EEGs
are weak and noisy, and the target EEG components are even weaker in a BCI con-
text, various SP methods have been employed to improve the SNR and to extract
meaningful features for classification in BCI [10].

Basically, these methods can be categorized into three domains: time, fre-
quency, and space. In the time domain, for example, ensemble averaging is a widely
used temporal processing technique to enhance the SNR of target EEG components,
as in P300-based BCI. In the frequency domain, Fourier transform and wavelet
analyses are very effective to find target frequency components, as in SMR and
SSVEP-based BCI. In the space domain, spatial filter techniques such as common
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spatial pattern (CSP) [21] and independent component analysis (ICA) methods [22]
have been proved to be very successful in forming a more informative virtual EEG
channel by combining multiple real EEG channels, as has been done for SMR-based
BCI.

For most of the cases, the output of the signal processing is a set of features that
can be used for further pattern classification. The task of pattern classification of a
BCI system is to find a suitable classifier and to optimize it for classifying the EEG
data into predefined brain states, that is, a logical value of class label. The process
usually consists of two phases: offline training phase and online operating phase.
The parameters of the classifier are trained offline with given training samples with
class labels and then tested in the online BCI operating session. Various classifiers
have been exploited in BCI research [23], among which the Fisher discriminant anal-
ysis and SVM classifiers bear the merit of robustness and better generalization abil-
ity. When considering pattern classification methods, keep in mind that the brain is
an adaptive and dynamic system during interaction with computer programs. Basi-
cally, a linear classifier with low complexity is more likely to have good generaliza-
tion ability and be more stable than nonlinear ones, such as a multilayer neural
network.

8.1.2.3 BCI Output: Real-Time Feedback of Control Results

As shown in Figure 8.1, two links are used to interface the brain and external
devices. The BCI core as described earlier comprised of a set of amplifier and com-
puter equipment with the proper program installed can be considered as a “hard
link.” Meanwhile, the feedback of control results is perceived by one of the BCI
user’s sensory pathway, such as the visual, auditory, or tactile pathway, which
serves as a “soft link” to help the user adjust the brain activity for facilitating the BCI
operation.

As discussed before, the BCI user needs to produce specific brain activity to drive
the BCI system. The feedback tells the user how to modify their brain’s encoding in
order to improve the output, as happens during a natural movement control through
the normal muscular pathway. It is the feedback that closes the loop of the BCI,
resulting in a stable control system. Many experimental data have shown that, with-
out feedback, BCI performance and robustness are much lower than in the feedback
case [12, 24]. From this perspective, the performance of a BCI system is not only
determined by the quality of the BCI translation algorithm, but also greatly affected
by the BCI user’s skill of modulating his or her brain activity. Thus, a proper design
for the presentation of feedback could be a crucial point that can make a difference
in terms of BCI performance.

8.1.3 Oscillatory EEG as a Robust BCI Signal

Evoked potentials, early visual/auditory evoked potentials like P100 or late poten-
tials like P300, are low-frequency components, typically in the range of tens of
microvolts in amplitude. As a transient brain response, an evoked potential is usu-
ally phase locked to the onset of an external stimulus or event [25], although oscilla-
tory EEG, such as SSVEP or SMR, has a relatively higher frequency and larger
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amplitude of several hundreds of microvolts. As a steady-state response, oscillatory
EEG is usually time locked to the onset of an external stimulus or internal event,
without strict phase locking [25].

Some transient evoked potential-based BCIs, such as the P300 speller [18, 19],
show promising performance for real application with locked-in patients [26].
However, from the perspective of signal acquisition and processing, the oscillatory
EEG-based BCI has several advantages over the ERP-based BCI: (1) The oscillatory
EEG has a larger amplitude and needs no dc amplification, which greatly reduce the
requirement of the EEG amplifier; (2) the oscillatory EEG is much less sensitive to
low-frequency noise caused by eye movement and electrode impedance change,
comparing with ERP; (3) the oscillatory EEG is a sustained response and requires
merely coarse timing, which allows for the flexibility of asynchronous control,
whereas for ERP-based BCI, stimulus synchrony is crucial for EEG recording and
analysis; and (4) with amplitude and phase information easily obtained by robust
signal processing methods, such as the FFT and Hilbert transform, there are more
flexible ways of analyzing oscillatory EEGs than ERPs in a single trial fashion.

For these reasons, the oscillatory EEG-based BCI will be the focus of the follow-
ing two sections of this chapter. Two major oscillatory EEG-based BCIs, SSVEP and
SMR-based BCI, are introduced, along with details of their physiological mecha-
nism, system configuration, alternative approaches, and related issues.

8.2 SSVEP-Based BCI

8.2.1 Physiological Background and BCI Paradigm

Visual evoked potentials (VEPs) reflect the visual information processing along the
visual pathway and primary visual cortex. VEPs corresponding to low stimulus
rates or rapidly repetitive stimulations are categorized as transient VEPs (TVEPs)
and steady-state VEPs (SSVEPs), respectively [27]. Ideally, a TVEP is a true tran-
sient response to a visual stimulus that does not depend on any previous trial. If the
visual stimulation is repeated with intervals shorter than the duration of a TVEP,
the response evoked by each stimulus will overlap each other, and thus an SSVEP is
generated. The SSVEP is a response to a visual stimulus modulated at a frequency
higher than 6 Hz [25]. SSVEPs can be recorded from the scalp over the visual cortex,
with maximum amplitude at the occipital region (around EEG electrode Oz).

Among brain signals recorded from the scalp, VEPs may be the first kind used as
a BCI control. After Vidal’s pilot VEP-based BCI system in the 1970s [28] and
Sutter’s VEP-based word processing program with a speed of 10 to 12 words/min-
ute in 1992 [29], Middendorf et al. [15] and Gao et al. [30] independently reported
the method for using SSVEPs to determine gaze direction.

Two physiological mechanisms underlie SSVEP-based BCI. The first one is the
photic driving response [25], which is characterized by an increase in amplitude at
the stimulus frequency, resulting in significant fundamental and second harmonics.
Therefore, it is possible to detect the stimulus frequency based on measurement of
SSVEPw. The second one is the central magnification effect [25]. Large areas of the
visual cortex are allocated to processing the center of our field of vision, and thus
the amplitude of the SSVEP increases enormously as the stimulus is moved closer to
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the central visual field. For these two reasons, different SSVEP patterns can be pro-
duced by gazing at one of a number of frequency-coded stimuli. This is the basic
principle of an SSVEP-based BCI.

As shown in Figure 8.2, in a typical SSVEP-based BCI setup, 12 virtual keyboard
buttons appear on a screen and flash at different frequency, while the user gazes at a
button labeled with the desired number/letter. The system determines the frequency
of the SSVEP over visual cortex by means of spectral analysis and looks up the pre-
defined table to decide which number/letter the user wants to select. In the example
paradigm shown in Figure 8.2, when the BCI user directs his attention or gaze at the
digit button “1” flashing at 13 Hz, a 13-Hz rhythmic component will appear in the
EEG signal recorded over the occipital area of scalp, and can be detected by proper
spectral analysis. Thus, the predefined command “1” will be executed. Although
other flashing buttons may cause interference, because of the central magnification
effect, 13-Hz components are very likely to dominate the power spectrum, com-
pared with the flashing frequencies of other buttons. In this paradigm, the rhythmic
SSVEP is modulated by the BCI user’s gaze direction (attention) and the conveyed
information is encoded in the frequency contents of occipital EEG.

With careful optimization of the system, an average information transfer rate
(ITR) of more than 40 bits per second can be achieved [30, 31], which is relatively
higher than most other BCI paradigms [2]. Besides a high information transfer rate,
the recognized advantages of SSVEP-based BCI include easy system configuration,
little user training, and robustness of system performance. This is the reason why it
has received remarkably increased attention in BCI research [14, 15, 28–35].
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Although various studies have been done to implement and evaluate
SSVEP-based BCI demonstration systems in laboratories, the challenge facing the
development of a practical BCI system for real-life application is still worth empha-
sizing. In the following section, a practical SSVEP-based BCI system implemented in
our BCI group is introduced.

8.2.2 A Practical BCI System Based on SSVEP

8.2.2.1 System Configuration

Our BCI system is composed of a visual stimulation and feedback unit (VSFU), an
EEG data acquisition unit (EDAU), and a personal computer (Figure 8.3). In the
VSFU, compact LED modules flickering at predefined frequency bands were
employed as visual stimulators. For a typical setting, 12 LEDs in a 4-by-3 array
formed an external number pad with numbers 0 through 9 and Backspace and Enter
keys [Figure 8.3(b)]. When the user focused his/her visual attention on the flickering
LED labeled with the number that he/she wanted to input, the EDAU and the soft-
ware running on a PC identified the number by analyzing the EEG signal recorded
from the user’s head surface. By this means, the computer user was able to input
numbers (0 through 9) and other characters with proper design of the input method.
In the mode of mouse cursor control, four of the keys were assigned the UP,
DOWN, LEFT, and RIGHT movements of the cursor. Real-time feedback of input
characters was provided by means of a visual display and voice prompts.

Aiming at a PC peripheral device with standard interface, the hardware of a BCI
system was designed and implemented as a compact box containing both an EEG
data acquisition unit and a visual stimulation and feedback unit. Two USB ports are
used for real-time data streaming from the EDAU and online control of the VSFU,
respectively. In the EDAU, a pair of bipolar Ag/AgCl electrodes was placed over the
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user’s occipital region on the scalp, typically on two sites around Oz in the 10-20
EEG electrode system. A tennis headband was modified to harness the electrodes on
the head surface.

The EEG signal was amplified by a customized amplifier and digitized at a sam-
pling rate of 256 Hz. After a 50-Hz notch filtering to remove the power line interfer-
ence, the digital EEG data were streamed to PC memory buffer through a USB port.
For the precision of frequency control, the periodical flickering of each LED was
controlled by a separate lighting module, which downloads the frequency setting
from the PC through the USB port. In one of the demonstrations, our BCI system
was used for dialing a phone number. In that case, a local telephone line was con-
nected to the RJ11 port of an internal modem on the PC.

8.2.2.2 BCI Software and Algorithm

The main software running on the PC consists of key parts of the EEG translation
algorithm, including signal enhancing, feature extraction, and pattern classification.
The following algorithms were implemented in C/C++ and compiled into a
stand-alone program. The real-time EEG data streaming was achieved by using a
customized dynamic link library.

In the paradigm of SSVEP, the target LED evokes a peak in the amplitude spec-
trum at its flickering frequency. After a band filtering of 4 to 35 Hz, the FFT was
applied on the ongoing EEG data segments to obtain the running power spectrum. If
a peak value was detected over the frequency band of 4 to 35 Hz, the frequency cor-
responding to the peak was selected as the candidate of target frequency. To avoid a
high false-positive rate, a crucial step was taken to ensure that the amplitude of a
given candidate’s frequency was higher than the mean power of the whole band.
Herein, the ratio between the peak power and the mean power was defined as

Q P Ppeak mean= (8.1)

Basically, if the power ratio Q was higher than the predefined threshold T, then
the peak power was considered to be significant. For each individual, the threshold
T was estimated beforehand in the parameter customization phase. The optimal
selection of the threshold balanced the speed and accuracy of the BCI system.
Detailed explanation of this power spectrum threshold method can be found in pre-
vious studies [30, 31].

Due to the nonlinearity that occurs during information transfer in the visual sys-
tem, strong harmonics are often found in the SSVEPs. Muller-Putz et al. investigated
the impact of using SSVEP harmonics on the classification result of a four-class
SSVEP-based BCI [32]. In their study, the accuracy obtained with combined har-
monics (up to the third harmonic) was significantly higher than that obtained with
only the first harmonic. In our experience, for some subjects, the intensity of the sec-
ond harmonic may sometimes be even stronger than that of the fundamental compo-
nent. Thus, analysis of the frequency band should cover at least the second
harmonic, and the frequency feature has to be taken as the weighted sum of their
powers, namely,

( ) ( ) ( ) ( )P i P i P i i Nf f= + − =α α1 21 1, ,� (8.2)
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where N is the number of targets and, Pf1(i) and Pf2(i) are, respectively, the spectrum
peak values of fundamental and second harmonics of ith frequency (i.e., ith target)
and α is the optimized weighting factor that varies between subjects. Its empirical
value may be taken as

( ) ( ) ( )( )α = +
=
∑1

1 1 2
1N

P i P i P if f f
i

N

(8.3)

8.2.2.3 Parameter Customization

To address the issue of individual diversity and to improve the subject applicability,
a procedure of parameter customization was conducted before BCI operation. Our
previous study suggests that the crucial system parameters include EEG electrode
location, the visual stimulus frequency band, and the threshold (T) for target fre-
quency determination [31]. To maintain the simplicity of operation and efficiency
of parameter selection, a standard procedure was designed to help the system cus-
tomization. It consists of the steps discussed next.

Step 1: Frequency Scan
Twenty-seven frequencies in the range of 6 to 19 Hz (0.5-Hz spacing) were ran-
domly divided into three groups and the 9 frequencies in each group were randomly
assigned to numbers 1 through 9 on the above-mentioned LED number pad. Then
the frequency scan was conducted by presenting the numbers 1 through 9 on the
digitron display one by one and each for 7 seconds. During this time period, the user
was asked to gaze at the LED number pad corresponding to the presented number.
This kind of scan was repeated for three sessions containing all 27 frequencies.
There was a 2-second resting period between each number and a 1-minute resting
period between groups. It took about 8 minutes for a complete frequency scan. The
7-second SSVEP response during each frequency stimulus was saved for the follow-
ing offline analysis. In the procedure of frequency scanning, the bipolar EEG elec-
trodes were placed at Oz (center of the occipital region) and one of its surrounding
sites (3 cm apart on the left or right side). According to our previous study [31, 36],
this electrode configuration was the typical one for most users.

Step 2: Simulation of Online Operation
The saved EEG segments were analyzed using the FFT to find the optimal frequency
band with relatively high Q values. The suitable value of the threshold T and the
weight coefficients were estimated in a simulation of online BCI operation, in
which the saved EEG data were fed into the algorithm in a stream.

Step 3: Electrode Placement Optimization
Only one bipolar lead was chosen as an input in our system. For some of the sub-
jects, when the first two steps did not provide reasonable performance, an advanced
electrode placement optimization method was employed to find the optimal bipolar
electrodes. The best electrode pair for bipolar recording with the highest SNR was
selected by mapping the EEG signal and noise amplitude over all possible elec-
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trodes. Generally, the electrode giving the strongest SSVEP, which is generally
located in the occipital region, is selected as the signal channel.

The location of the reference channel is searched under the following consider-
ations: The amplitude of this channel’s SSVEP should be lower and its position
should lie in the vicinity of the signal channel such that the noise component is simi-
lar to that in the signal channel. A high SNR can then be gained when the potentials
of the two electrodes are subtracted. Figure 8.4 shows an example of a significant
enhancement of the SSVEP SNR derived from the lead selection method.

Most of the spontaneous background activities are eliminated after the subtrac-
tion; the SSVEP component, however, is retained. Details of this method can be
found in previous studies [31, 36]. According to our observations, although the
selection varies across subjects, it is relatively stable for each subject over time. This
finding makes the electrode selection method feasible for practical BCI application.
For a new subject, the multichannel mapping only needs to be done once to optimize
the lead position.

In tests of the system based on frequency features (dialing a telephone number),
with optimized system parameters for five participants, an average ITR of 46.68
bits/min was achieved.

8.2.3 Alternative Approaches and Related Issues

8.2.3.1 SSVEP Feature: Amplitude Versus Phase

In the SSVEP BCI system based on frequency coding, the flickering frequencies of
the targets are not the same. To ensure sufficiently high classification accuracy, a
sufficient interval should be kept between two different frequencies such that the
number of targets is restricted. If phase information embedded in SSVEPs is added,
the number of flickering targets may be increased and a higher ITR should be
expected. An SSVEP BCI based on phase coherent detection was proposed [37], in
which two stimuli with the same frequency but different phases were discriminated
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successfully in their demonstration. Inspired by this work, we tried to further the
work by designing a BCI system with stimulating signals of six different phases
under the same frequency. Initial testing indicates the feasibility of this method.

For a phase-encoded SSVEP BCI, flickering targets on a computer screen at the
same frequency with strictly constant phase difference are required. We use the rela-
tively stable computer screen refreshing signal (60 Hz) as a basic clock, and six sta-
ble 10-Hz signals are obtained by frequency division as shown in Figure 8.5. They
are used for the stimulating signal of the flickering spots on the screen to control the
flashing moment of the spots. The flashing moments [shadow areas along the time
axis in Figure 8.5(a)] of the spots are interlaced by one refreshing period of the
screen (1/60 second). In other words, because the process repeats itself every six
times, the phase difference of the flashing is strictly kept at 60 degrees (taking the
flashing cycle of all the targets as 360 degrees). Six targets flickering at the same fre-
quency with different phases are thus obtained.

During the experiment, the subject was asked to gaze at the six targets respec-
tively. The spectrum value at the characteristic frequency (f0=10 Hz) was calculated
simply by the following formula:

( ) ( ) ( )[ ]y f
N

x n j f f ns
n

N

0 0
1

1
2= −

=
∑ exp π (8.4)

where fs is the sampling frequency (1,000 Hz) and data length N is determined by
the length of the time window. The complex spectrum value at 10 Hz can be dis-
played on a plane of complex value as shown in Figure 8.5(b). With a data length of
1 second, six phase clusters are clearly shown. The SSVEP and visual stimulus signal
are stably phase locked, sharing the same phase difference of 60 degrees between
targets. This makes it possible to set up several visual targets flickering under the
same frequency but with different phases so as to increase the number of targets
for choice. As an example, we used the system described to implement an
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EEG-operated TV controller, demonstrating the practicability of phase coding in
SSVEP- based BCI systems.

8.2.3.2 Coding Approach: Frequency Domain Versus Temporal Domain

According to the VEP signals used for information coding, VEP-based BCIs fall into
two categories: transient VEPs and SSVEPs. The first category uses TVEPs to detect
gaze direction. Spatial distributions of TVEPs elicited by a stimulus located in differ-
ent visual fields were used by Vidal in the 1970s to identify visual fixation [28].
According to the approach for information coding, the SSVEP-based BCIs can be
further divided into time-coded and frequency-coded subgroups. Hereafter, we refer
to them as tSSVEP and fSSVEP, respectively. The BCI system described in Section
8.2.2 employs the fSSVEP approach. Instead of using a periodic flashing with fixed
time interval between flashes, in Sutter’s VEP-based BCI system, the occurrence time
of visual flashes was not periodic (although it has a short interval as required by
SSVEPs). The varying temporal patterns of these flashing sequences make it possible
to discriminate among targets, thereby falling into the category of tSSVEP.

So far, both frequency decoding and temporal decoding strategies have been
employed in VEP-based BCI research. Feature extraction of the TVEP is based on
waveform detection in the temporal domain [38, 39]. Similarly, a template matching
approach by cross-correlation analysis was used to detect the tSSVEP in the BRI sys-
tem [29]. For a frequency-coded design, the amplitude of the fSSVEP from multiple
flashing targets is modulated by gaze or spatial attention, and detected by using
power spectral density estimation. Note that analysis of the TVEP and tSSVEP
methods needs accurate time triggers from the stimulator, which can be omitted in
frequency amplitude-based detection of the SSVEP.

8.2.3.3 Muscular Dependence: Dependent Versus Independent BCI

According to the necessity of employing the brain’s normal output pathways to gen-
erate brain activity, BCIs are divided into two classes: dependent and independent
[2, 40]. The VEP system based on gaze detection falls into the dependent class. The
generation of the desired VEP depends on gaze direction controlled by the motor
activity of extraocular muscles. Therefore, this BCI is inapplicable for people with
severe neuromuscular disabilities who may lack reliable extraocular muscle control.

Totally different from amplitude modulation by gaze control, recent studies on
visual attention also reveal that the VEP is modulated by spatial attention and fea-
ture-based attention independent of neuromuscular function [41, 42]. These find-
ings make it possible to implement an independent BCI based on attentional
modulation of VEP amplitude. Only a few independent SSVEP-based BCIs have
been reported, in which the amplitude of SSVEPs elicited by two flashing stimuli
were covertly modulated by the subject’s visual attention, without shifting gaze [34,
40, 43]. Compared with the dependent type, this attention-based BCI needs more
subject training, attention, and concentration. The amplitude of SSVEP elicited by
attention shifting is much lower than that elicited by gaze shifting, which poses a
challenge when pursuing a high information transfer rate [34, 40].
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8.2.3.4 Stimulator: CRT Versus LED

In an SSVEP-based BCI, the visual stimulator serves as a visual response modulator
and a virtual control panel, thus it is a crucial aspect of system design. The visual
stimulator commonly consists of flickering targets in the form of color alternating
or checkerboard reversing. Usually, the CRT/LCD monitor or flashtube/LED is
used for stimulus display. A computer monitor is convenient for target alignment
and feedback presentation by programming. But for a frequency-coded system, the
number of targets is limited due to the refresh rate of the monitor and poor timing
accuracy of the computer operating system. Therefore, an LED stimulator is prefer-
able for a multiple-target system. The flickering frequency of each LED can be con-
trolled independently by a programmable logic device. Using such a stimulator, a
48-target BCI was reported in [30].

The number of stimulation targets can be up to 64, leading to various system
performances. Generally, the system with more targets can achieve a higher infor-
mation transfer rate. For example, in tests of a 13-target system, the subjects had an
average information transfer rate of 43 bits/min [31]. However, due to the fact that
a stimulator with more targets is also more exhausting for users, the number of tar-
gets should be considered by evaluating the trade-off between system performance
and user comfort.

8.2.3.5 Optimization of Electrode Layout: Bipolar Versus Multielectrode

As we know, using a small number of electrodes can reduce the cost of hardware
while improving the convenience of system operation. The Oz, O1, and O2 elec-
trode positions of the international 10-20 system are widely used in SSVEP-based
BCI. As shown in Section 8.2.2.3, in our system, we use a subject-specific electrode
placement method to achieve a high SNR for the SSVEPs, especially for the subjects
with strong background brain activities over the area of the visual cortex [31, 36].

In the near future, more convenient electrode designs, for example, the dry elec-
trode [44], will be highly desirable as replacements for the currently used wet elec-
trode. Under this circumstance, it is acceptable to use more electrodes to acquire
more sufficient data to fulfill detection of SSVEP signals with multichannel data
analysis approaches, for example, spatial filtering techniques described in [45] and
the canonical correlation analysis method presented in [46]. An additional advan-
tage of multiple-channel recording is that no calibration for electrode selection is
needed.

8.3 Sensorimotor Rhythm-Based BCI

8.3.1 Physiological Background and BCI Paradigm

In scalp EEGs, the occipital alpha rhythm (8 to 13 Hz) is a prominent feature espe-
cially when the subject is in the resting wakeful state. This kind of spontaneous
alpha rhythm is usually called “idling” activity. Besides visual alpha rhythm, a dis-
tinct alpha-band rhythm, in some circumstance with a beta-band accompaniment
(around 20 Hz), can be measured over the sensorimotor cortex, which is called
sensorimotor rhythm (SMR) [47, 48]. The mu and beta rhythms are commonly con-
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sidered as EEG indicators of motor cortex and adjacent somatosensory cortex func-
tions [49]. When the subject is performing a limb movement, thinking about a limb
movement, or receiving a tactile/electrical stimulation on a limb, a prominent atten-
uation of ongoing mu rhythm can be observed over the rolandic area on the
contralateral hemisphere [47, 48].

Following Pfurtscheller’s classical work in the 1970s [50], this SMR attenuation
is usually termed event-related desynchronization (ERD), whereas the increases in
SMR amplitude are termed event-related synchronization (ERS). Moreover, the spa-
tial distribution of ERD/ERS is closely related to the body map on the sensorimotor
cortex. For example, the left hand and right hand produce the most prominent
ERD/ERS pattern in the corresponding hand area in the contralateral sensorimotor
cortex (Figure 8.6).

Thinking about, or imagining, a limb movement generates SMR patterns that
are similar to those generated during real movement. These real/imagined move-
ment patterns make up the physiological basis for SMR-based BCI (in some of the
literature, this is also termed motor imagery-based BCI, or mu rhythm-based BCI)
[13, 47, 48, 51].

In recent years, BCI systems based on classifying single-trial EEGs during motor
imagery have developed rapidly. Most of the current SMR-based BCIs are based on
characteristic ERD/ERS spatial distributions corresponding to different motor
imagery states, such as left-hand, right-hand, or foot movement imagination. The
first motor imagery-based BCI was developed by Pfurtscheller et al. and was based
on the detection of EEG power changes caused by ERD/ERS of mu and beta rhythms
during imagination of left- and right-hand movements [47]. As shown in Figure 8.6,
for example, imagination of left-hand movement causes a localized decrease of
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mu-band power around electrode C4 (over the corresponding cortex area of the left
hand). Accordingly, right-hand imagery causes a similar mu-band power decrease
on electrode C3. This makes it possible for a classifier to discriminate the states of
left- or right-hand motor imagery just by using spatial distribution of mu-band
power.

Another SMR-based BCI approach proposed by Wolpaw et al. was to train the
users to regulate the amplitude of mu and/or beta rhythms to realize two-dimen-
sional control of cursor movement [12]. Two linear equations were used to trans-
form the sum and the difference of EEG power over left and right motor areas into
vertical and horizontal movement of screen cursors.

8.3.2 Spatial Filter for SMR Feature Enhancing

In SMR-based BCI, localized spatial distribution of SMR is a crucial feature other
than its temporal power change. Because EEG has very poor spatial resolution due
to volume conduction, constructing virtual EEG channels using a weighted combi-
nation of original EEG recordings is a commonly used technique to get a clear local
EEG activity, or “source activity” [21, 52]. The general idea of spatial filtering can
be denoted by the following equation:

Y F X= ⋅ (8.5)

where X is the original EEG data matrix, containing recordings from each electrode
in its rows; and F is a square transformation matrix to project the original recordings
to virtual channels in the new data matrix Y. Each row in Y, as a virtual channel, is a
weighted combination of all (or part of) the original recordings. The filtered data
matrix Y is supposed to be better than X, for extraction of task-related features.

So far, for SMR signal enhancement, two categories of spatial filters have been
explored. One category is based on EEG electrode placement, such as common
average reference (CAR) and Laplacian methods [53]. CAR virtual channels are
obtained by subtracting the average signal across all EEG electrodes from each orig-
inal channel, as shown in the following formula of weighted combination:
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where n is the number of electrodes and Vi
ER is the original EEG recording. Simi-

larly, the Laplacian channels are constructed by removing contributions of neigh-
boring electrodes from the central electrode as follows:
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where Si is a subset of neighboring electrodes of the ith electrode and dij denotes the
geometric distance between electrode i and electrode j. If Si consists of the near-

8.3 Sensorimotor Rhythm-Based BCI 207



est-neighbor electrodes, the method is called small Laplacian. If the elements in Si are
the next-nearest-neighbor electrodes, which have a larger distance to the central
electrode, it is called large Laplacian. Both CAR and Laplacian methods serve as a
spatial highpass filter, which enhances the local activity beneath the current elec-
trodes. A comparison between these spatial filter shows that both the CAR and large
Laplacian methods provide a better extraction of mu rhythm in SMR-based BCI [2,
53] than the small Laplacian method. This implies that although the SMR activity is
a local one, it has a fairly broad spread.

The other category is the data-driven subject-specific spatial filter, which
includes PCA, ICA, and common spatial pattern (CSP). Among these three filters,
the PCA and ICA spatial filters are obtained through unsupervised learning, under
certain statistic assumptions. Although they have been employed in some
EEG-based BCI studies [22], manual intervention of the component selection is
always a problem. Up to now, the CSP method is considered to be the most effective
spatial filtering technique for enhancing SMR activity, and it has been successfully
applied in many BCI studies [21, 52, 54].

Similar to the spatial filtering function described in (8.5), the main idea of CSP is
to use a linear transform to project the multichannel EEG data into low-dimensional
spatial subspace with a projection matrix, each row of which consists of the weights
corresponding to each channel. This transformation can maximize the variance of
two-class signal matrices. The EEG signals under two tasks A and B can be modeled
as the combination of task-related components specific to each task and nontask
components common to both tasks. In the case of discrimination of left- and
right-hand imagery through EEGs, the aim of the CSP method is to design two spa-
tial filters (FL and FR), which led to the estimations of task-related source activities
(YL and YR) corresponding to left hand and right hand, respectively. Then, spatial
filtering is performed to eliminate the common components and extract the
task-related components. The YL and YR terms are estimated by YL = FL·X and YR =
FR·X, where X is the data matrix of preprocessed multichannel EEGs.

The calculation of the spatial filter matrix FL and FR is based on the simulta-
neous diagonalization of the covariance matrices of both classes. The EEG data of
each trial is first bandpass filtered in the desired mu or beta band and then used to
form matrix XL and XR of size N * M, where N is the number of EEG channels and
M is the data samples for each channel. The normalized spatial covariance can be
calculated as
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Then RL and RR are averaged across all trials, respectively, for left and right imagery
cases, to get more robust estimates of the spatial covariance R L and R R . The com-

posite spatial covariance R, as the sum of R L and R R , can be diagonalized by singu-

lar value decomposition (SVD):

R R R U U= + =L R 0 0Σ T (8.9)
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where U0 is the eigenvector matrix, and is a diagonal matrix with corresponding
eigenvalues as its diagonal elements. The variance in the space spanned by U0 com-
ponents can be equalized by the following whitening matrix P:

P U= −Σ 1 2
0
T (8.10)

It can be shown that, if R L and R R are transformed into SL and SR by whitening

matrix P:

S PR P S PR PL L R R= =T T (8.11)

then SL and SR will share common eigenvalues. This means, given the SVD of SL and
SR,

S U U S U UL L L L R R R R= =Σ ΣT T (8.12)

the following equation holds true:

U U U IL R L R= = + =Σ Σ (8.13)

Thus, L and R may look like the following diagonal matrix:

� �
Σ

Σ

L

R

diag

diag

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1 1 0 0

0 0

1� �
� 	
 �


�

�

m

m

m mL

C

C R

σ σ

� �m

m

m mL

C

C R

δ δ1 1 1�
� 	
 �


�

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(8.14)

Because the sum of corresponding eigenvalues in L and R is always 1, the big-
gest eigenvalue of SL corresponds to the smallest eigenvalue of SR. The eigenvectors
in L corresponding to the first m eigenvalues in L are used to form a new transform
matrix Ul, which makes up the spatial filter with whitening matrix P, for extracting
the so-called source activity of left-hand imagery. The spatial filters for the left and
the right cases are constructed as follows:

F U P F U PL R= =l
T

r
T (8.15)

Then the source activities YL and YR are derived by applying the preceding spa-
tial filter on bandpass-filtered EEG data matrix X, that is,

Y F X Y F XL L R= ⋅ = ⋅R (8.16)

Because of the way in which the spatial filter is derived, the filtered source activ-
ities YL and YR are expected to be better features for discriminating these two imag-
ery tasks, compared with the original EEGs. Usually, the following inequation holds
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true, which means the variance of the spatial filtered signal can be a good feature for
classification purposes:

( ) ( ) ( ) ( )var var var varF X F X F X F XL L R L R R L R⋅ > ⋅ ⋅ > ⋅ (8.17)

Alternatively, the band powers of YL and YR are more straightforward features.
As shown in Figure 8.7, a more prominent peak difference can be seen on the power
spectrum of the CSP-filtered signal than on the original power spectrum.

For the purpose of visualization, the columns of the inverse matrix of FL and FR

can be mapped onto each EEG electrode to get a spatial pattern of CSP source distri-
bution. As shown in the right-hand panel of Figure 8.7, the spatial distribution of YL

and YR resembles the ERD topomap, which shows a clear focus in the left- and
right-hand area over the sensorimotor cortex.

8.3.3 Online Three-Class SMR-Based BCI

8.3.3.1 BCI System Configuration

In this study, three states of motor imagery were employed to implement a
multiclass BCI. Considering the reliable spatial distributions of ERD/ERS in
sensorimotor cortex areas, imagination of body part movements including those of
the left hand, right hand, and foot were considered as mental tasks for generating
detectable brain patterns. We designed a straightforward online feedback paradigm,
where real-time visual feedback was provided to indicate the control result of three
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directional movements, that is, left-hand, right-hand, and foot imagery for moving
left, right, and forward, respectively.

Five right-handed volunteers (three males and two females, 22 to 27 years old)
participated in the study. They were chosen from the subjects who could success-
fully perform two-class online BCI control in our previous study [55]. The recording
was made using a BioSemi ActiveTwo EEG system. Thirty-two EEG channels were
measured at positions involving the primary motor area (M1) and the supplemen-
tary motor area (SMA) (see Figure 8.8). Signals were sampled at 256 Hz and
preprocessed by a 50-Hz notch filter to remove the power line interference, and a 4-
to 35-Hz bandpass filter to retain the EEG activity in the mu and beta bands.

Here we propose a three-phase approach to allow for better adaptation between
the brain and the computer algorithm. The detailed procedure is shown in Figure
8.9. For phase 1, a simple feature extraction and classification method was used for
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online feedback training, allowing for the initial adaptation of both the human brain
and the BCI algorithm. For phase 2, the recorded data from phase 1 were employed
to optimize the feature extraction and to refine the classifier parameters for each
individual, aiming at a better BCI algorithm through refined machine learning. For
the real testing phase, phase 3, three-class online control was achieved by coupling
the trained brain and optimized BCI algorithm.

8.3.3.2 Phase 1: Simple Classifier for Brain and Computer Online Adaptation

Figure 8.10 shows the paradigm of online BCI training with visual feedback. The
“left hand,” “right hand,” and “foot” movement imaginings were designated to
control three directional movements: left, right, and upward, respectively. The sub-
ject sat comfortably in an armchair, opposite a computer screen that displayed the
visual feedback. The duration of each trial was 8 seconds. During the first 2 seconds,
while the screen was blank, the subject was in relaxing state. At second 2, a visual
cue (arrow) was presented on the screen, indicating the imagery task to be
performed.

The arrow pointing left, right, and upward indicated the task of imagination of
left-hand, right-hand, and foot movement, respectively. At second 3, three progress
bars with different colors started to increase simultaneously from three different
directions. The value of each bar was determined by the accumulated classification
results from a linear discriminant analysis (LDA), and it was updated every 125 ms.
For example, if the current classification result is “foot,” then the “up” bar will
increase one step and the values of the other two bars will be retained. At second 8, a
true or false mark appeared to indicate the final result of the trial through calculat-
ing the maximum value of the three progress bars, and the subject was asked to relax
and wait for the next task. The experiment consisted of two or four sessions and
each session consisted of 90 trials (30 trials per class). The dataset comprising 360 or
180 trials (120 or 60 trials per class) was used for further offline analysis.
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The features extracted for classification were bandpass power of mu rhythms
on left and right primary motor areas (C3 and C4 electrodes). LDA was used to clas-
sify the bandpass power features on C3/C4 electrodes referenced to FCz [9]. A linear
classifier was defined by a normal vector w and an offset b as

( )y bT= +sign w x (8.18)

where x was the feature vector. The values of w and b were determined by Fisher
discriminant analysis (FDA). The three-class classification was solved by combining
three binary LDA discriminant functions:
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where PC3(t) and PC4(t) are values of the average power in the nearest 1-second time
window on C3 and C4, respectively. Each LDA was trained to discriminate two dif-
ferent motor imagery states. The decision rules are listed in Table 8.1, in which six
combinations were designated to the three motor imagery states, respectively, with
two combinations not classified.

An adaptive approach was used to update the LDA classifiers trial by trial. The
initial normal vectors wi

T of the classifiers were selected as [+1 −1], [0 −1], and [−1
0] (corresponding to the three LDA classifiers in Table 8.1) based on the ERD distri-
butions. They were expected to recognize the imagery states through extracting the
power changes of mu rhythms caused by contralateral distribution of ERD during
left- and right-hand imagery, but bilateral power equilibrium during foot imagery
over M1 areas [47, 48]. The initial b was set to zero.

When the number of samples reached five trials per class, the adaptive training
began. Three LDA classifiers were updated trial by trial, gradually improving the
generalization ability of the classifiers along with the increase of the training sam-
ples. This kind of gradual updating of classifiers provided a chance for initial user
brain training and system calibration in an online BCI.

Figure 8.11 shows the probability that three progress bars won during an online
feedback session. In each motor imagery task, the progress bar that has the maxi-
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Table 8.1 Decision Rules for Classifying the Three
Motor Imagery States Through Combining the Three
LDA Classifiers

Left Versus
Right

Left Versus
Foot

Right Versus
Foot

Decision

+1 +1 −1 Left

+1 +1 +1 Left

−1 +1 +1 Right

−1 −1 +1 Right

+1 −1 −1 Foot

−1 −1 −1 Foot

+1 −1 +1 None



mum value correctly indicates the true label of the corresponding class. For exam-
ple, during foot imagination, the “up” bar had a much higher value than the “left”
and “right” bars; therefore, for most foot imagery tasks, the final decision was cor-
rect although some errors may occur.

8.3.3.3 Phase 2: Offline Optimization for Better Classifier

To improve the classification accuracy, we used the common spatial patterns
method, as described earlier, to improve the SNR of the mu rhythm through extract-
ing the task-related EEG components.

The CSP multiclass extensions have been considered in [56]. Three different
CSP algorithms were presented based on one-versus-one, one-versus-rest, and
approximate simultaneous diagonalization methods. Similar to the design of binary
classifiers, the one-versus-one method was employed in our system to estimate the
task-related source activities as the input of the binary LDA classifiers. It can be eas-
ily understood and with fewer unclassified samples compared to the one-versus-rest
method. The design of spatial filters through approximate simultaneous
diagonalization requires a large amount of calculation and the selection of the CSP
patterns is more difficult than the two-class version.

As illustrated earlier in Figure 8.9, before online BCI control, the CSP-based
training procedure was performed to determine the parameters for data preprocess-
ing, the CSP spatial filters, and the LDA classifiers. A sliding window method was
integrated to optimize the frequency band and the time window for data preprocess-
ing in the procedure of joint feature extraction and classification. The accuracy was
estimated by a 10 × 10-fold cross-validation. The optimized parameters, CSP filters,
and LDA classifiers were used to implement the online BCI control and ensured a
more robust performance compared with the online training procedure.

Table 8.2 lists the parameters for data preprocessing and the classification
results for all subjects. The passband and the time window are subject-specific
parameters that can significantly improve the classification performance. Average
accuracy derived from online and offline analysis was 79.48% and 85.00%, respec-
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tively. For subjects S1 and S2, no significant difference existed between the classifi-
cation results of the three binary classifiers, and a high accuracy was obtained for
three-class classification. For the other three subjects, the foot task was difficult to
recognize, and the three-class accuracy was much lower than the accuracy of classi-
fying left- and right-hand movements. This result may be caused by less training of
the foot imagination, because all of the subjects did more training sessions of hand
movement in previous studies of two-class motor imagery classification [55]. The
average offline accuracy was about 5% higher than the online training phase due to
the employment of parameter optimization and the CSP algorithm applied to
multichannel EEG data.

8.3.3.4 Phase 3: Online Control of Three-Direction Movement

In phase 3, a similar online control paradigm as in phase 1 was first employed to test
the effect of parameter optimization, and a 3% increase in online accuracy was
observed. Then, three of the subjects participated in online control of three-direc-
tion movement of robot dogs (SONY, Aibo) for mimicking a brain signal controlled
robo-cup game, in which one subject controlled the goalkeeper and the other con-
trolled the shooter. This paradigm and approach could be used for applications
such as wheelchair control [57] and virtual reality gaming [58, 59].

8.3.4 Alternative Approaches and Related Issues

8.3.4.1 Coadaptation in SMR-Based BCI

As discussed in Section 8.1.2, the BCI is not just a feedforward translation of brain
signals into control commands; rather, it is about the bidirectional adaptation
between the human brain and a computer algorithm [2, 6, 60], in which real-time
feedback plays a crucial role during coadaptation.

For an SSVEP-based BCI system, the amplitude modulation of target EEG sig-
nals is automatically achieved by voluntary direction of the gaze direction and only
the primary visual area is involved in the process. In contrast, for an SMR-based
BCI system, the amplitude of the mu and/or beta rhythm is modulated by the sub-
ject’s voluntary manipulation of his or her brain activity over the sensorimotor area,
in which secondary, even high-level, brain areas are possibly involved. Thus, the
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Table 8.2 Classification Accuracies of Three Phases

Subjects Passband (Hz)

Time
Window
(seconds)

Phase 1
Accuracy (%)

Phase 2
Accuracy (%)

Phase 3
Accuracy (%)

S1 10–35 2.5–8 94.00 98.11 97.03

S2 13–15 2.5–7.5 94.67 97.56 95.74

S3 9–15 2.5–7 74.71 80.13 81.32

S4 10–28 2.5–6 68.00 77.00 68.40

S5 10–15 2.5–7.5 66.00 72.22 71.50

Mean — — 79.48 85.00 82.80



BCI paradigm with proper consideration of coadaptation feasibility is highly pre-
ferred for successful online BCI operation.

As summarized by McFarland et al. [61], there are at least three different para-
digms for training (coadaptation) in an SMR-based BCI: (1) the “let the machines
learn” approach, best demonstrated by the Berlin BCI group on naive subjects [51];
(2) the “let the brain learn” or “operant-conditioning,” best demonstrated by the
Tübingen BCI group on well-trained subjects [62]; or (3) the “let the brain and com-
puter learn and coadapt simultaneously,” best demonstrated by the Albany BCI
group on well-trained subjects [12, 61]. Basically, the third approach fits the condi-
tion of online BCI control best, but poses the challenge of online algorithm updat-
ing, especially when a more complicated spatial filter is considered.

Alternatively, we have proposed a three-step BCI training paradigm for
coadaptation. The brain was first trained for a major adaptation, then the BCI algo-
rithm was trained offline, and finally the trained brain and fine-tuned BCI algorithm
were coupled to provide better online operation. This can be best expressed by the
statement “let the brain learn first, then the machines learn,” which results in a com-
promise between maintaining an online condition and the more simple task of
online algorithm updating.

8.3.4.2 Optimization of Electrode Placement

Different spatial distribution of SMR over sensorimotor areas is the key to discrimi-
nating among different imagery brain states. Although the topographic organization
of the body map is genetic and conservative, each individual displays considerable
variability because of the handiness, sports experience, and other factors that may
cause a plastic change in the sensorimotor cortex. To deal with this spatial variabil-
ity, a subject-specific spatial filter has proven to be very effective in the case of multi-
ple-electrode EEG recordings. For a practical or portable BCI system, placing fewer
EEG electrodes is preferred. Thus, it is crucial to determine the optimal electrode
placement for capturing SMR activity effectively.

In a typical SMR-based BCI setting [48], six EEG electrodes were placed over
the cortical hand areas: C3 for the right hand, C4 for the left hand, and two supple-
mentary electrodes at positions anterior and posterior to C3/C4. Different bipolar
settings, such as anterior-central (a-c), central-posterior (c-p), and anterior-posterior
(a-p), were statistically compared and a-c bipolar placement was verified as the opti-
mal one for capturing mu-rhythm features for 19 out of 34 subjects.

Instead of this typical setting, for considering the physiological role of the sup-
plementary motor area (SMA), we proposed a novel electrode placement with only
two bipolar electrode pairs: C3-FCz and C4-FCz. Functional neuroimaging studies
indicated that motor imagery also activates the SMA [63] (roughly under electrode
FCz). We investigated the phase synchronization of mu rhythms between the SMA
and the hand area in M1 (roughly under electrode C3/C4) and observed a
contralaterally increased synchronization similar to the ERD distribution [55]. This
phenomenon makes it possible to utilize the signal over the SMA to enhance the sig-
nificance of the power difference between M1 areas, by considering SMA (FCz) as
the reference. It was demonstrated to be optimal for recognizing motor imagery
states, which can satisfy the necessity of a practical BCI [64]. This simple and effec-
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tive electrode placement can be a default setting for most subjects. For a more sub-
ject-specific optimization, ICA can be employed to find the “best” bipolar electrode
pairs to retain the mu rhythm relevant signal components and to avoid other noisy
components, which is similar with that described in the Section 8.2.2.3.

8.3.4.3 Visual Versus Kinesthetic Motor Imagery

As discussed in Section 8.1.2, an EEG-based BCI system requires the BCI user to
generate specific EEG activity associated with the intent he or she wants to convey.
The effectiveness of producing the specific EEG pattern by the BCI user largely
determines the performance of the BCI system. In SMR-based BCI, for voluntary
modulation of the μ or β rhythm, the BCI user needs to do movement imagination of
body parts. Two types of mental practice of motor imagery are used: visual motor
imagery, in which the subject produces a visual image (mental video) of body move-
ments in the mind, and kinesthetic imagery, in which the subject rehearses his or her
own action performed with imagined kinesthetic feelings.

In a careful comparison of these two categories of motor imagery, the kines-
thetic method produced more significant SMR features than the visual one [65]. In
our experience with SMR-based BCI, those subjects who get used to kinesthetic
motor imagery perform better than those who do not. And usually, given same
experiment instructions, most of the naïve subjects tend to choose visual motor
imagery, whereas well-trained subjects prefer kinesthetic imagery. As shown in
Neuper et al.’s study [65], the spatial distribution of SMR activity on the scalp var-
ies between these two types of motor imagery, which implies the necessity for care-
ful design of the spatial filter or electrode placement to deal with this spatial
variability.

8.3.4.4 Phase Synchrony as BCI Features

Most BCI algorithms for classifying EEGs during motor imagery are based on the
feature derived from power analysis of SMR. Phase synchrony as a bivariate EEG
measurement could be a supplementary, even an independent, feature for novel BCI
algorithms. Because phase synchrony is a bivariate measurement, it is subject to the
proper selection of electrode pairs for the calculation. Basically, two different
approaches are used. One is a random search among all possible electrode pairs
with a criteria function related to the classification accuracy [66, 67]; the other is a
semi-optimal approach that employs physiological prior knowledge to select the
appropriate electrode pairs. Note that the latter approach has the advantage of
lower computation costs, robustness, and better generalization ability, which has
been shown in our study [55].

We noticed that phase coherence/coupling has been widely used in the physiol-
ogy community and motor areas beyond primary sensorimotor cortex have been
explored to find the neural coupling between these areas. Gerloff et al. demon-
strated that, for both externally and internally paced finger extensions, functional
coupling occurred between the primary sensorimotor cortex (SM1) of both hemi-
spheres and between SM1 and the mesial premotor (PM) areas, probably including
the SMA [68]. The study of event-related coherence showed that synchronization
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between mu rhythms occurred in the precentral area and SM1 [69]. Spiegler et al.
investigated phase coupling between different motor areas during tongue-movement
imagery and found that phase-coupled 10-Hz oscillations were induced in SM1 and
SMA [70]. All of this evidence points to the possible neural synchrony between SMA
(and/or PM) and SM1 during the motor planning, as well as the motor imagery.
Thus, we chose electrode pairs over SM1 and SMA as the candidate for phase
synchrony measurement.

In one of our studies [55], a phase-locking value was employed to quantify the
level of phase coupling during imagination of left- or right-hand movements,
between SM1 and SMA electrodes. To the best of our knowledge, for the first time,
use of a phase-locking value between the SM1 and SMA in the band of the mu
rhythm was justified as additional features for the classification of left- or right-hand
motor imagery, which contributed almost as much of the information as the power
of the mu rhythm in the SM1 area. A similar result was also obtained by using a non-
linear regressive coefficient [71].

8.4 Concluding Remarks

8.4.1 BCI as a Modulation and Demodulation System

In this chapter, brain computer interfaces based on two types of oscillatory
EEGs—the SSVEP from the visual cortex and the SMR from the motor cor-
tex—were introduced and details of their physiological bases, example systems, and
implementation approaches were given. Both of these BCI systems use oscillatory
signals as the information carrier and, thus, can be thought of as modulation and
demodulation systems, in which the human brain acts as a modulator to embed the
BCI user’s voluntary intent in the oscillatory EEG. The BCI algorithm then demodu-
lates the embedded information into predefined codes for devices control.

In SSVEP-based BCI, the user modulates the photonic-driven response of the
visual cortex by directing his or her gaze direction (or visual attention) to the target
with different flashing frequencies. With an enhanced target frequency component,
the BCI algorithm is able to use frequency detection to extract the predefined code,
which largely resembles the process of frequency demodulation. Note that the car-
ried information is a set of discrete BCI codes, instead of a continuous value, and the
carrier signal here is much more complicated than a typical pure oscillation, cover-
ing a broad band of peri-alpha rhythms, along with other spontaneous EEG compo-
nents. The SMR-based BCI system, however, resembles an amplitude modulation
and demodulation system in which the BCI user modulates the amplitude of the mu
rhythm over the sensorimotor cortex by doing specific motor imagery, and the
demodulation is done by extracting the amplitude change of the mu-band EEG. The
difference from typical amplitude modulation and demodulation systems is that two
or more modulated EEG signals from specific locations are combined to derive a
final code, for example, left, right, or forward.

For both of the BCI systems, the BCI code is embedded in an oscillatory signal,
either as its amplitude or its frequency. As stated at the beginning of this chapter,
this type of BCI bears the merit of robust signal transmission and easy signal pro-
cessing. All examples demonstrated and reviewed in previous sections have indi-
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cated a promising perspective for real applications. However, it cannot escape from
the challenge of nonlinear and dynamic characteristics of brain systems as well,
especially in terms of information modulation. The way in which the brain
encodes/modulates the BCI code into the EEG activity varies across subjects and
changes with time. These factors pose the challenge of coadaptation as discussed in
the previous section. This suggests again that BCI system design is not just about the
algorithm and that human factors should be considered very seriously.

8.4.2 System Design for Practical Applications

For the BCI systems discussed here, many studies have been done to implement and
evaluate demonstration systems in the laboratory; however, the challenge facing the
development of practical BCI systems for real-life application is still worth empha-
sizing. According to a survey done by Mason et al. [72], the existing BCI systems
could be divided into three classes: transducers, demo systems, and assistive devices.
Among the 79 BCI groups investigated, 10 have realized assistive devices (13%), 26
have designed demonstration systems (33%), and the remaining 43 are only in the
stage of offline data analysis (54%). In other words, there is still a long way to go
before BCI systems can be put into practical use. However, as an emerging engineer-
ing research field, if it can only stay in the laboratory for scientific exploration, its
influence on human society will certainly be limited. Thus, the feasibility of creating
practical applications is a serious challenge for BCI researchers. A practical BCI sys-
tem must fully consider the user’s human nature, which includes the following two
key aspects:

1. A better electrode system is needed that allows for convenient and
comfortable use. Current EEG systems use standard wet electrodes, in which
electrolytic gel is required to reduce electrode-skin interface impedance.
Using electrolytic gel is uncomfortable and inconvenient, especially if a large
number of electrodes are adopted. First of all, preparations for EEG
recording before BCI operation are time consuming. Second, problems
caused by electrode damage or bad electrode contact can occur. Third, an
electrode cap with large numbers of electrodes is uncomfortable for users to
wear and then not suitable for long-term recording. Moreover, an EEG
recording system with a high number of channels is usually quite expensive
and not portable. For all of these reasons, reducing the number of electrodes
in a BCI system is a critical issue and, currently, it has become the bottleneck
in developing an applicable BCI system. In our system, we use a
subject-specific electrode placement optimization method to achieve a high
SNR for SSVEP and SMR. Although we demonstrated the applicability of
the subject-specific positions in many online experiments, much work is still
needed to explore the stationarity of the optimized electrode positions.
Alternatively, more convenient electrode designs, for example, one that uses
dry electrodes [44, 73], are highly preferable to replace the currently used
wet electrode system.

2. Better signal recording and processing is needed to allow for stable and
reliable system performance. Compared with the environment in an EEG
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laboratory, electromagnetic interference and other artifacts (e.g., EMGs and
EOGs) are much stronger in daily home life. Suitable measures then need to
be applied to ensure the quality of the EEG recordings. Therefore, for data
recording in an unshielded environment, the use of active electrodes may be
better than the use of passive electrodes. Such usage can ensure that the
recorded signal is less sensitive to interference. To remove the artifacts in
EEG signals, additional recordings of EMGs and EOGs may be necessary
and advanced techniques for online artifact canceling should be applied.
Moreover, to reduce the dependence on technical assistance during system
operation, ad hoc functions should be provided in the system to adapt to the
individual diversity of the user and nonstationarity of the signal caused by
changes of electrode impedance or brain state. These functions must be
convenient for users to employ. For example, software should be able to
detect bad electrode contacts in real time and adjust the algorithms to fit the
remaining good channels automatically.
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