IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 6, JUNE 2004

1081

BCI Competition 2003—Data Set 1V:
An Algorithm Based on CSSD and FDA
for Classifying Single-Trial EEG

Yijun Wang*, Zhiguang Zhang, Yong Li, Xiaorong Gao, Shangkai Gao, Senior Member, IEEE, and Fusheng Yang

Abstract—This paper presents an algorithm for classifying
single-trial electroencephalogram (EEG) during the preparation
of self-paced tapping. It combines common spatial subspace
decomposition with Fisher discriminant analysis to extract fea-
tures from multichannel EEG. Three features are obtained based
on Bereitschaftspotential and event-related desynchronization.
Finally, a perceptron neural network is trained as the classifier.
This algorithm was applied to the data set (self —paced 1s) of
“BCI Competition 2003 with a classification accuracy of 84% on
the test set.

Index Terms—Brain-computer interface (BCI), common spatial
subspace decomposition (CSSD), electroencephalogram (EEG),
Fisher discriminant analysis (FDA).

1. INTRODUCTION

N RECENT years, brain-computer interface (BCI) systems

based on analysis of single-trial electroencephalogram
(EEG) associated with hand movements have developed
rapidly. The physiological studies on movement-evoked poten-
tials indicate that the spatio-temporal pattern of EEG differs
between left and right hand movements. In the premovement
period, Bereitschaftspotential (BP) can be recorded over the
vertex region [1]-[3] and during the movement tasks, mu and
beta rhythms are found to reveal event-related synchronization
and desynchronization (ERS/ERD) over sensorimotor cortex
[31-[6].

G. Pfurtscheller et al. first used EEG classification based on
ERS/ERD during hand movements for a BCI application [5].
B. Blankertz et al. designed a BCI system based on BP prior
to voluntary finger movements with Fisher discriminant anal-
ysis (FDA) for classifier training, which reached >96% classi-
fication accuracy on a subject [1]. The technique of classifying
single-trial EEG during finger movements has become an attrac-
tive topic in BCI research due to its advantages such as simple
experimental approach, low rejection rate, high classification
accuracy, short response time, and easy training for users.
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In this paper, we propose an algorithm integrating both BP
and ERD for classifying movement-evoked EEG during prepa-
ration of keystroke. It applies common spatial subspace decom-
position (CSSD) to analyze the multichannel EEG signals for
two tasks (left and right), and studies the characteristic distri-
butions of BP and ERD in time, frequency, and space domains
respectively. The algorithm was employed in off-line analysis of
the data set (self-paced 1s) of “BCI Competition 2003.” These
data are single-trial EEGs recorded during voluntary self-paced
tapping [7].

II. METHODOLOGY

A. Feature Consideration

1) Bereitschaftspotential (BP): Slowly decreasing poten-
tials named movement-related cortical potentials (MRCPs) can
be recorded before voluntary limb movements. BP is one of the
main components of MRCPs, which can be recorded with the
maximum amplitude over the vertex region.

Contralateral dominance is a significant character of BP.
Fig. 1 shows the averaged trials of each channel and the spatial
distribution of BP on the scalp at 140 ms and 320 ms before the
key press. The declining waveforms of most channels reveal the
decreasing nature of BP and the spatial distributions show the
pronounced contralateral dominance. As shown in the images
[Fig. 1(a)], BP of left finger movement is dominant over right
vertex region and it is more obvious at the moment of —140 ms,
which is closer to the actual keystroke, than at —320 ms. More-
over, even on the same channel, the responses of different tasks
differ greatly in amplitudes. Thus, the remarkable difference
of BP’s distributions between the two tasks can be taken as an
important basis for classification.

2) Event-Related Desynchronization (ERD): ERD and ERS
represent the changes of the ongoing EEG activity character-
ized by decrease or increase of power in the given frequency
bands. For actual finger movements, ERD/ERS in mu and beta
rhythms are obvious over somatosensory or motor cortex, also
with contralateral dominance. Preparation of movement is typ-
ically accompanied by ERD in mu and beta rhythms. ERS in
beta rhythm, considered as the rebound of ERD, occurs after
movement.

In our study, the epoch before actual keystroke was analyzed
to predict the upcoming task, so only the character of ERD is ap-
plicable. Fig. 2 displays the power spectrum on channels C3 and
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Spatial distribution of BP at 320 ms and 140 ms before keystroke and averaged trials of the 28 channels corresponding to (a) left finger movements and

(b) right finger movements. The amplitudes at the beginning of the epoch are normalized to zero.
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Fig. 2. Average power spectrum of EEG signals on channels C3 and C4 over

motor cortex for the two tasks. Legend “— stands for left finger movement and
“- - -7 stands for right finger movement.

C4 corresponding to both tasks. High-pass filtered EEG signals
(cut off at 5 Hz) show difference in power distribution between
the two tasks. For channel C3 [Fig. 2(a)], the power of mu and
beta rhythms evoked by right hand movement is lower than that
of left hand, which is consistent with the principle of contralat-
eral dominance. Similar conclusion can be drawn from Fig. 2(b)
for channel C4. The difference of power distribution derived
from ERD implies another choice of feature for classification.

B. Feature Extraction

The activities specific to the tasks (left or right finger move-
ment) are usually overwhelmed by the spontaneous EEG and
other nontask activities. Here, the method of CSSD is used to ex-
tract the task-related components and eliminate the background
activities. Y. Wang et al. successfully used it to extract signal
components specific to one task from multichannel EEG of mul-
tiple tasks [8].

The multichannel EEGs are denoted as matrices X1, (left)
and X g (right) with dimension of N (channels) by T (samples).
They can be modeled using multiple simultaneously activated
sources as follows:

X = [CL CC][g(I;] Xgr =[Cr C(] [22]

where S, and SR are task-related source activities corre-
sponding respectively to left and right hand movements, S¢
is the source corresponding to background activities that are
common to both conditions. Assume that S, consists of my,
sources and Sy consists of mp sources, then Cp, and Cr
consist of my, and my spatial patterns related with S;, and Sr
respectively. A spatial pattern is an N X 1 vector indicating the
signal distribution over the N electrodes caused by a specific
source. C¢ stands for the common spatial patterns related with
Sc.

The aim of CSSD is to design spatial filters that lead to the
estimations of Sy, and Sr. This method is based on the si-
multaneous diagonalization of the spatial covariance matrices
of X, and Xg. Principal component analysis (PCA) and spa-
tial subspace analysis are performed to eliminate the common
components and extract the task-related components. More de-
tails of the algorithm can be found in [8]. As the result, two
spatial filters, SF, and SFg, are constructed corresponding
to the two tasks. The estimations of S, and Sy are given by
Sy = SFL - X and Sg = SFg - X, where X is a single-trial
EEG. It can be demonstrated that the specific temporal source
activities estimated by CSSD are approximately the same as
that in the spatio-temporal source model. Theoretically, for left
finger movements, Sp, will be much stronger than Sy and for
right finger movements, the result is just the opposite.

FDA can linearly project high dimensional data to one-
dimensional vector so as to facilitate the classification. It bears
the advantages of easy implementation and low computational
cost. A linear discriminant function is designed by use of
FDA on the training set, which reduces the feature space to
1-D vector representing the proximity of the extracted feature
belonging to either pattern.
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Fig. 4. Averaged feature vector T consisting of sy, and sr, denoted as legends “0” and “*”. “—"" and “- - -” are used to link the elements of T corresponding

to the two tasks respectively.

Fig. 3 shows the flow chart of the algorithm, which can be
summarized as follows: three features (f;,4 = 1,2,3) are ex-
tracted from the single-trial EEG, then a perceptron is trained
with the extracted features as input. Note that the data have been
subsampled to 100 Hz in order to reduce the computational cost.
After the decimation, 50 data points are retained for each trial.
For convenience, index of sample point (1 to 50) will be utilized
to describe the corresponding time (—620 ms to — 130 ms) infra.
Our algorithm only deals with the frequency components in the
range of 0 to 33 Hz, because the higher frequency components
are less related with BP and ERD.

1) Extraction of Feature f1: The first feature f; is derived
from BP, manifested as a declining slope of EEG with contralat-
eral dominance. A zero-phase low-pass filter (0—7 Hz) is used
to preprocess the data, and then a fixed time window (sample
points of 44—47) is used to intercept the segment that bears the

most obvious difference between the two tasks. Then the new
data X with dimension of 28 (channels) by 4 (samples) will
pass through SFi, and SFR (with dimension of 1 x 28) cor-
responding to the most significant spatial patterns. Define an
8 x 1 feature vector as £; = [sy, sr]T, where s;, = SFp - X
and sg = SFgr - X. FDA projects x; to one dimension as
fi = WlTa:l + b1, where the weight W and the bias b; are
determined by the training set. As shown in Fig. 4, s1, of left
trials and sy of right trials have larger amplitudes than that of
the contrary patterns, ensuring an effective classification with
feature fi.

2) Extraction of Feature fo: The second feature f5 is derived
from ERD. An analogous procedure is applied to the extraction
of f5 as that for f;. However, different parameters are employed
due to the different physiological background of ERD and BP.
The parameters that significantly influence the classification
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Fig. 5.
all the 28 channels between left and right finger movements.

result include: passband of temporal filters, time window,
number of spatial patterns selected for CSSD, and feature
definition on the result of spatial filtering.

It has been mentioned that ERD also shows contralat-
eral dominance though it appears on both hemispheres. A
band-pass filter (10-33 Hz) and a time window (sample points
of 19-50) are worked out to preprocess the data. As three
most important spatial patterns are selected to construct the
spatial filters, after spatial filtering, sp; and sg;(: = 1,2,3)
with dimension of 1 x 32 are obtained. A 192 x 1 feature
vector is then constructed by concatenating sp; and sg;, i.e.,
To = [SL1SR1SL28R2SL3SR3|T. Because a high dimensional
feature vector is harmful to the stability of FDA, the dimension
of x5 is reduced to 24 x 1 by taking the averaged absolute
value of its components consecutively for every eight elements.
Absolute values are employed because they are just the pa-
rameters that reflect power magnitude. FDA with x5 results in
feature f5.

3) Extraction of Feature f5: Like feature f, feature f3 is
also derived from BP. The same low-pass filter as that for f ex-
traction preprocesses the signals before the comparison of wave-
forms of the two tasks. Fig. 5(b) illustrates the contrast of single
trials on all the 28 channels by subtracting averaged X g from
averaged X,. As shown in the figure, differences are less ob-
vious on F3, F1, F4, FC5, FC3, C5, C3, CP5, and CP3 than the
other channels, so these channels are rejected. Two features, kq
and ks, are defined as the mean values of the beginning (sample
points of 1-8) and ending (sample points of 41-50) portions of
a single trial on one channel [see Fig. 5(a)]. Their difference is a
good feature characterizing the declining trend of the waveform.
All k1 and k9 of the remaining 19 channels are concatenated into
a feature vector 3 = [k11k1a ... kirki2] T (i = 19), leading to
the feature f3 by FDA.

C. Classification

After extraction of the above three features, a percep-
tron, which is a fast and reliable neural network suited for
simple classification problems, is used as the classifier. The
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(a) Averaged potential and two single trials on channel C4 of left finger movements. Legend “o” indicates the two features k; and k.. (b) Differences of

vector p = [f1f2f3]" is fed as the input, and the output is
a = hardlim (W™p + b), where W and b are the weights and
bias of the network determined by the training data. hardlim(z)
denotes the hard-limit transfer function, which returns O or 1
corresponding to left or right finger movements respectively.

III. RESULTS

The classification accuracy is (92.98+2.50)% on the training
set with the leave-one-out method. The accuracy on the test set
is 84% ultimately. For comparison, similar algorithm is also
applied to the data set (self —paced 2s) of “BCI Competition
2002.” The accuracy is 98.23% due to the fact that BP is more
prominent in this data set which greatly improves the effects of
the features f1 and f3.

The results demonstrate that the proposed algorithm is rea-
sonable and effective for classifying single-trial EEG during
self-paced tapping. High classification accuracy of the algo-
rithm makes it a feasible choice for a practical BCI system.

IV. DISCUSSIONS

A. Time Window and Frequency Window

The frequency window for temporal filtering and the time
window for CSSD in the preprocessing stage should be consid-
ered carefully. The prior knowledge that BP appears in the lower
frequency band and ERD occurs in mu and beta frequency bands
can be utilized to make initial estimates of the parameters. In
practice, a sliding window with adjustable bandwidth and cutoff
frequency is used to find the appropriate frequency band. The
optimal frequency band for BP is found to be 0—7 Hz and that
for ERD is 10-33 Hz. The same approach is used to determine
the time windows for CSSD and the results are sample points
of 44-47 for BP and 19-50 for ERD. Fig. 6 shows the relation-
ship between different time windows and classification accu-
racy when classifying with feature f> alone. Here the test is on
the training set itself without use of leave-one-out method. The
ending point is fixed at point 50, and the starting point leading
to the highest accuracy is point 19.
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Fig. 6. Classification accuracy based on feature f, with different time windows. The ending point (P2) is 50 and the best starting point (P1) is 19.

TABLE 1
CLASSIFICATION ACCURACY CORRESPONDING TO SINGLE EIGENVALUE FOR
SPATIAL FILTER DESIGN

Eigenvalues
Features
[ € €3 [ es
N 82 51 53 55 52
f 84 77 70 61 59

Leave-one-out accuracy corresponding to the 5 largest eigenvalues. The

bold font letters refer to the selected eigenvalues for spatial filter design.

B. Spatial Filter Design

Proper selections of spatial patterns can markedly improve
the classification accuracy. The accuracy may be degraded if in-
significant spatial patterns are chosen. The selection of proper
spatial patterns is determined by the magnitude of eigenvalues
of the “whitening transformed” spatial covariance matrices of
X1, and Xy [8]. In principle, the eigenvectors corresponding
to the several largest eigenvalues should be chosen. However,
in our practice, they are chosen through comparing their contri-
butions to classification accuracy. Each one of these eigenvec-
tors is used individually to design the spatial filter. Features are
extracted from the filtering results and classified by FDA. The
significant eigenvectors are determined based on their relevant
classification accuracy.

Table I shows the corresponding accuracy of the five largest
eigenvalues (e to es, in descending order) in the extractions of
the features f; and f>. For feature f7, the accuracy of using e is
82%, much higher than those of using other eigenvalues (around
50%). Therefore, the spatial filters for feature f; are worked out
with only the largest eigenvalues. For feature fs, using ey, es, or

e3 individually leads to an accuracy above 70%, so all the three
eigenvalues are accepted to design the spatial filters.
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