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Abstract—Electroencephalogram (EEG) based brain-computer 
interfaces (BCI) have been studied for several decades since the 
1970s. Current BCI research mainly aims to provide a new 
communication channel to patients with motor disabilities to 
improve their quality of life. The BCI technology can also benefit 
normal healthy users; however, little progress has been made in 
real-world practices due to low BCI performance caused by 
technical limits of EEG. To overcome this bottleneck, this study 
uses a collaborative BCI to improve overall performance through 
integrating information from multiple users. A dataset involving 
15 subjects participating in a Go/NoGo decision-making 
experiment was used to evaluate the collaborative method. Using 
collaborative computing techniques, the classification accuracy 
for predicting a Go/NoGo decision was enhanced substantially 
from 75.8% to 91.4%, 97.6%, and 99.1% as the number of 
subjects increased from 1 to 5, 10, and 15, respectively. These 
results suggest that a collaborative BCI can effectively fuse brain 
activities of a group of people to improve human behavior. 

Keywords-Brain-computer interface (BCI); collaborative 
computing; Electroencephalogram (EEG); human performance; 
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I.  INTRODUCTION 

The human brain is the most complex system in the world. 
The functional brain imaging technologies such as functional 
magnetic resonance imaging (fMRI) and Electroencephalogram 
(EEG) give us an opportunity to observe brain activities related 
to thoughts, emotions, and behavior, and therefore, help us 
understand the relationship between the brain and behavior. 
Recently, a new technology known as brain-computer interface 
(BCI) or brain-machine interface (BMI) has made a significant 
progress in brain science [1]. The BCI study covers the three 
aspects in exploring the human brain: understanding the brain, 
protecting the brain, and creating the brain. During the past two 
decades, the BCI technology has become a hot research topic in 
the areas of neuroscience, neural engineering, medicine, and 
rehabilitation [2][3]. 

  In essence, a BCI is a communication channel that 
bypasses the traditional pathway of peripheral nerves and 
muscles, and creates a direct link between the human brain and 
an output device [1]. Currently, the main focus of BCI research 
lies in the clinical use which aims to provide a new 
communication channel to patients with motor disabilities to 
improve their quality of life. In current BCI systems, 
commonly used neural recording technologies include EEG, 
Magnetoencephalogram (MEG), Electrocorticogram (ECoG), 
fMRI, near infrared spectroscopy (NIRS), and neuronal 

recording. Among these methods, EEG is the most widely used 
modality in current BCI studies due to its advantages such as 
simple and inexpensive equipment, flexibility and mobility, 
and short time constants. In present-day BCIs, the following 
EEG signals have been paid much attention: visual evoked 
potential (VEP), sensorimotor mu/beta rhythms, P300 evoked 
potential, slow cortical potential (SCP), and movement-related 
cortical potential (MRCP) [1]. 

  Although the EEG-based BCI technology has achieved 
great successes, moving a BCI system from a laboratory 
demonstration to a real-life application still poses severe 
challenges to the BCI community. Applications of the BCI 
technology are very limited due to bottleneck problems 
including high system cost, low communication speed, low 
recognition accuracy, and easy user fatigue [4]. To overcome 
these problems, a practical solution is to develop a multi-user 
collaborative BCI system, which can utilize collective 
intelligence from a group of users. Recently, we first proposed 
the framework for a collaborative BCI system and further 
investigated the feasibility and practicality of the system [5]. 
The development of group-synchronized neural recording 
systems and group collaborative cognitive computing methods 
will open a totally new direction for BCI research.  

  In this study, we propose to study the feasibility of using a 
collaborative BCI system to improve human decision making 
in a Go/NoGo decision-making task. In the Go/NoGo task, the 
N2 event-related potential (ERP) component, which reflects the 
processing of motor inhibition, will be used as a feature for 
identifying the NoGo condition. To evaluate the performance 
of the collaborative BCI, EEG-based prediction of a Go/NoGo 
decision will be executed using a single-trial classification 
paradigm and a collaborative classification paradigm 
respectively. 

 

II. METHODS 

A. System diagram 

Figure 1 shows the system diagram of a collaborative BCI. 
Similar to a single-user BCI, a collaborative BCI consists of 
three major parts: a data acquisition module, a signal 
processing module, and a command translation module. 
Consequently, there are three major procedures in system 
operations:  

1) Brain signals from a group of users are acquired by 
multiple EEG recording devices, and then are 
synchronized with common environmental events. 
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