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Abstract—Electroencephalogram (EEG) based brain-computer
interfaces (BCI) have been studied for several decades since the
1970s. Current BCI research mainly aims to provide a new
communication channel to patients with motor disabilities to
improve their quality of life. The BCI technology can also benefit
normal healthy users; however, little progress has been made in
real-world practices due to low BCI performance caused by
technical limits of EEG. To overcome this bottleneck, this study
uses a collaborative BCI to improve overall performance through
integrating information from multiple users. A dataset involving
15 subjects participating in a Go/NoGo decision-making
experiment was used to evaluate the collaborative method. Using
collaborative computing techniques, the classification accuracy
for predicting a Go/NoGo decision was enhanced substantially
from 75.8% to 91.4%, 97.6%, and 99.1% as the number of
subjects increased from 1 to S, 10, and 15, respectively. These
results suggest that a collaborative BCI can effectively fuse brain
activities of a group of people to improve human behavior.
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L INTRODUCTION

The human brain is the most complex system in the world.
The functional brain imaging technologies such as functional
magnetic resonance imaging (fMRI) and Electroencephalogram
(EEG) give us an opportunity to observe brain activities related
to thoughts, emotions, and behavior, and therefore, help us
understand the relationship between the brain and behavior.
Recently, a new technology known as brain-computer interface
(BCI) or brain-machine interface (BMI) has made a significant
progress in brain science [1]. The BCI study covers the three
aspects in exploring the human brain: understanding the brain,
protecting the brain, and creating the brain. During the past two
decades, the BCI technology has become a hot research topic in
the areas of neuroscience, neural engineering, medicine, and
rehabilitation [2][3].

In essence, a BCI is a communication channel that
bypasses the traditional pathway of peripheral nerves and
muscles, and creates a direct link between the human brain and
an output device [1]. Currently, the main focus of BCI research
lies in the clinical use which aims to provide a new
communication channel to patients with motor disabilities to
improve their quality of life. In current BCI systems,
commonly used neural recording technologies include EEG,
Magnetoencephalogram (MEG), Electrocorticogram (ECoG),
fMRI, near infrared spectroscopy (NIRS), and neuronal
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recording. Among these methods, EEG is the most widely used
modality in current BCI studies due to its advantages such as
simple and inexpensive equipment, flexibility and mobility,
and short time constants. In present-day BCls, the following
EEG signals have been paid much attention: visual evoked
potential (VEP), sensorimotor mu/beta rhythms, P300 evoked
potential, slow cortical potential (SCP), and movement-related
cortical potential (MRCP) [1].

Although the EEG-based BCI technology has achieved
great successes, moving a BCI system from a laboratory
demonstration to a real-life application still poses severe
challenges to the BCI community. Applications of the BCI
technology are very limited due to bottleneck problems
including high system cost, low communication speed, low
recognition accuracy, and easy user fatigue [4]. To overcome
these problems, a practical solution is to develop a multi-user
collaborative BCI system, which can utilize collective
intelligence from a group of users. Recently, we first proposed
the framework for a collaborative BCI system and further
investigated the feasibility and practicality of the system [5].
The development of group-synchronized neural recording
systems and group collaborative cognitive computing methods
will open a totally new direction for BCI research.

In this study, we propose to study the feasibility of using a
collaborative BCI system to improve human decision making
in a Go/NoGo decision-making task. In the Go/NoGo task, the
N2 event-related potential (ERP) component, which reflects the
processing of motor inhibition, will be used as a feature for
identifying the NoGo condition. To evaluate the performance
of the collaborative BCI, EEG-based prediction of a Go/NoGo
decision will be executed using a single-trial classification
paradigm and a collaborative classification paradigm
respectively.

II.  METHODS

A. System diagram

Figure 1 shows the system diagram of a collaborative BCI.
Similar to a single-user BCI, a collaborative BCI consists of
three major parts: a data acquisition module, a signal
processing module, and a command translation module.
Consequently, there are three major procedures in system
operations:

1) Brain signals from a group of users are acquired by
multiple EEG recording devices, and then are
synchronized with common environmental events.
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2) Integrated EEG and event data are processed for extracting
features for decoding users’ intentions.

3) Extracted features from a group of users are directly
translated to operation commands, which can also be used
to give sensory feedback to the users.

Compared to a single-user BCI, the complexity of system input
from multiple users will lead to technical challenges in both
data recording and signal-processing procedures. For example,
new algorithms for implementing collaborative computing
have to be developed to perform the procedure of collaborative
EEG analysis, which plays the most important role in the data
processing module.

Data processing

Data acquisition
(C=D)
, R
Natural environment NS
2
r%q/
n
Collaborative
Visual/ "
Auditory analysis
Events l
Output
|
| p—re—
Feedback

Figure 1. System diagram of a collaborative BCI.

B. System implementation

The implementation of a collaborative BCI has posed
several specific requirements for hardware and software
designs:

1) Multiple EEG recording systems
independently and simultaneously.

need to work

2) Multiple-subject data need to be received and
synchronized with respect to the common environmental
events.

3) Multiple-subject data recording and data processing
procedures have to be performed in real time.

Ideally, the system can be implemented using a centralized
paradigm similar to a conventional BCI (Figure 2(a)). In this
paradigm, EEG data from multiple subjects are received and
recorded, then thrown into a conventional BCI module for
signal processing and command translation using a data server.
A centralized paradigm is optimal for designing a collaborative
BCI system; however, practicality of system implementation
may be limited for the following reasons:

1) Data transmission: When wired EEG systems are used, all
systems need to be connected to the data server for data
sending/receiving in real time. Therefore, the data sever
requires high capacities of data communication, memory,
and storage. Because users’ natural behaviors such as
standing and walking are always limited when using wired
EEG systems, portable and mobile EEG recording devices
are more preferable in natural environments. Then, a data

server requires a low-latency, high bandwidth, and reliable
wireless infrastructure, which might be very costly.

2) Computational cost: Advanced signal processing and
machine learning techniques have been widely used in
current BCI studies [6] [7]. These approaches always
require large amount of computational resources. In a
collaborative BCI where a large amount of subjects are
involved, the computational cost will significantly
increase. Because real-time data processing in a
collaborative BCI will lead to a large amount of
computation, the data server has to be equipped with high-
performance CPUs and large amounts of memory.

3) System robustness: A collaborative BCI system inevitably
consists of multiple EEG recording and processing
devices. To assure the stability of the system, the software
should have the ability to keep the whole system working
even when subsets of the whole system fail (e.g., data
connection loss). In other words, the overall system
performance should not be seriously affected by the failure
of a subsystem or subsystems.

Multiple-subject Data Fusion

(b)

Figure 2. (a) A centralized paradigm and (b) a distributed paradigm for a
collaborative BCI.

To solve the problems existing in the centralized paradigm,
this study proposes a distributed paradigm to facilitate the
implementation of a collaborative BCI. As shown in Figure
2(b), the whole system consists of multiple distributed BCI
subsystems and a simplified data server. For each subject, a
BCI subsystem works independently, each subsystem has its
capability in EEG data acquisition and processing. In this
paradigm, the amount of data transmitted between subsystems
and the data server, as well as the computational cost for data
processing, are significantly reduced. The single-user BCI has
been well studied in previous studies. Therefore this distributed
paradigm is a more practical solution for implementing a
collaborative BCI. The only disadvantage of the distributed
paradigm is that the overall costs of the system hardware might

584



increase due to the employment of a data-processing platform
for each user. In practice, portable data-processing platforms
can be integrated into the EEG recording device to reduce the
system cost, and improve system practicality as well [8].

C. Go/NoGo decision-making experiment

Following a Go/NoGo paradigm, 15 human subjects
performed in alternation an "animal" categorization task and a
single-photograph  recognition task. Details of the
experimental setup and the images used in the experiment can
be found in [9]. During the experiment, target (Go)
photographs were randomly mixed with non-target (NoGo)
images and flashed for 20 ms on a computer screen. For each
target, subjects had to lift their finger from the button as
quickly and accurately as possible. When non-target images
appeared, subjects had to withhold their button press. For each
subject, 32-channel EEG data of 10 blocks (100 trials each),
were recorded together with stimulus/response related event
codes at a 1000 Hz sampling rate and downsampled to 200 Hz
for offline analysis, totally resulting in 500 trials per condition.

D. Single-trial EEG classification

This study performed a single-trial EEG classification on
each subject using a standard machine-learning paradigm. First,
independent component analysis (ICA) was employed to
remove eye-movement and muscle artifacts [10]. Second, ERP
segments in a predefined time window were extracted after
removing the ERP baseline calculated within [-100 ms - 0 ms].
Third, the intercepted ERPs from all 32 electrodes were
concatenated, and then inputted to a support vector machine
(SVM)-based classifier to predict the Go/NoGo decision. For
each subject, a 10x10-fold cross validation was used to
estimate the classification performance.

E. Collaborative classification

Using the distributed system paradigm (Figure 2(b)), the
collaborative data analysis was performed with an ensemble
classifier [11], which consists of multiple sub-classifiers and a
voting system. In the case of a binary classification where two
classes are labeled as +1 and -1 respectively, the procedure for
a weighted voting can be described as follows:

U= sign(z w(i) y(i)j )

i=l1
where m is the number of subjects, w(i) is the subject specific
weight and y(i) is the output of a sub-classifier. An SVM
classifier was trained as a sub-classifier for each subject, and
the training accuracy was used as the voting weight.

III.  RESULTS

A. Event-related potentials

As shown in Figure 3, during 180 ms - 250 ms after an
image onset, the N2 ERP component, which located over the
medial frontal cortex (MFC), showed a significant difference
between the Go and NoGo conditions (paired t-test, p<10~, at
the Fz electrode). Compared to the Go trials, the NoGo trials
showed a larger N2 component (-9.8 uV vs. -4.5 uV), which
might reflect the motor inhibition process. A subsequent P3

component also largely differed under two conditions over the
medial frontal and parietal areas. The distinct spatio-temporal
patterns of N2 and P3 components under the Go and NoGo
conditions provide the basis for predicting a Go/NoGo

decision using EEG [12].
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Figure 3. Scalp ERP wave forms and difference waves under Go and NoGo
conditions at all electrode positions.

B. Single-trial classification

The single-trial EEG classification achieved accuracy
significantly higher than the chance level (50%) using data
prior to mean response time (RT) of the Go trials across all
subjects (377+48 ms). Figure 4 shows the accuracy for all
subjects when using the time window of [0 RT] (mean+std:
75.8+6.7%, range: 64.4% - 85.2%). Consistent with the time
courses of the N2 and P3 components, the prediction accuracy
was enhanced from 61.2+4.1% to 68.1+4.3%, 70.9+4.5%, and
74.4£6.3% as the length of time window increased from 200
ms to 250 ms, 300 ms, and 350 ms, respectively. These results
suggested that a Go/NoGo decision can be reliably predicted
by single-trial EEG classification.
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Figure 4. Accuracy of single-trial EEG classification for all subjects. The dash
line indicates the chance level (50%).
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C. Collaborative classification

Figure 5 shows the classification accuracy as a function of
the length of time windows used for data analysis. Results for
1, 5, 10, and 15 subjects were put together to show the
interaction between the number of subjects and the prediction
time. Using the time window of [0 RT], the classification
accuracy for predicting a Go/NoGo decision was enhanced
substantially from 75.8% to 91.4%, 97.6%, and 99.1% as the
number of subjects increased from 1 to 5, 10, and 15,
respectively. The results also clearly showed that the
acceleration of decision-making depended on both the desired
accuracy and the number of subjects involved in the
collaborative system. As shown in Figure 5, when all 15
subjects were included, the Go/NoGo decision could be made
around 200 ms after the stimulus onset, which was more than
150 ms earlier than the subject’s actual motor response, by
decoding the group ERP activities arising mainly from the
medial frontal cortex, which are related to the processing of
motor inhibition.
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Figure 5. Classification accuracy of different numbers of subjects as a function
of the window length. The vertical line indicates the mean response time (RT)

across all subjects (377 ms). The dash lines indicate mean accuracy + standard
deviation.

IV. CONCLUSION AND DISCUSSIONS

This study demonstrated an application of the collaborative
BCI to accelerate decision-making in a Go/NoGo task. The
classification accuracy of the system showed a significant
improvement over that of the single-user BCI. Furthermore, the
collaborative BCI allowed the subject’s decision to be made
much earlier than his/her actual motor response. In summary,
this study designed and demonstrated the use of the
collaborative BCI technology to improve human performance.

The prototype system demonstrated in the current study can
be directly transferred to an online system if the hardware and
software requirements can be met. Currently, there are several
challenges that have to be resolved before an online
collaborative BCI system can become a reality. First, a
collaborative BCI needs multiple BCI platforms, which consist
of an EEG recording system and a real-time signal-processing
platform. Because commercial EEG products used for EEG
research are still expensive, the total cost for building a

collaborative BCI will be high. Second, a collaborative system
requires specific software development, which allows seamless
communication between EEG systems and signal-processing
platforms, and between the BCI subsystems and the data
server. Furthermore, data processing in BCI subsystems and
the data server has to be implemented in (near) real time. With
advances in biomedical electronics and telecommunication
technology, it will soon be possible to implement an online
collaborative BCI system.
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